
 

Babyrobot 
A Study on Sensori-motor 
Development 
 
 
 
 
 

Giorgio Metta 
LIRA-Lab, DIST, University of Genova 
 
 
 
 
 
 
 
 
 
 

 



 2 

This work has been carried out by Giorgio Metta, during his Ph.D. course 
in Computer Sciences, under the supervision of Prof. Giulio Sandini at 
LIRA-Lab, Department of Telecommunication, Computer and System 
Sciences, University of Genova, Italy.  1996-1999 LIRA-Lab 
 
The research described in this book has been supported by grants from the 
Italian Ministry of Research and University (MURST), the European 
Union (projects: VIRGO, SMART, SVAVISCA, NARVAL, ROBVISION) 
and by the Italian Space Agency (ASI). 
 
 
 
 
 
 
 
All rights reserved. No part of this book may be 
reproduced, in any form or by any means, 
without the permission in writing from the authors. 
 
 
 
Printed in Italy. 
 
 
 
 
 
 
 
 
 
 
 
Copyright notice: 
LIRA-Lab, DIST, University of Genova, Italy,  1996-1999 LIRA-Lab 
URL: http://www.lira.dist.unige.it 
URL: http://pasa.lira.dist.unige.it 



 

 3 

 
 
 
 
 
 Considerate la vostra semenza: 

fatti non foste a viver come bruti, 
ma per seguir virtute e canoscenza. 
 

Dante, Inferno XXVI, vv. 118-120 
 



 4 

 



 

 5 

 

Acknowledgements 
I should have mentioned here all the people who made this work 

possible. I was rather afraid to forget somebody and, in any case, it would 
have been a long, long list. Consequently, whether you have been working 
at LIRA-Lab or we have been in touch between 1997 and 1999, you should 
feel as being part of this. Among all the people, I would like to thank, in 
particular, Prof. Giulio Sandini who, being of constant support, helped in 
creating the nice environment around the newborn Babybot, and Dr. Nick 
Barnes who helped in the revision of the manuscript. 

Moreover, I wish to thank my wife Sabrina who has been so patient, 
considering the “extra” time I spent trying to make things work. I should 
not forget, my family and hers, for the constant “moral” support. Finally, I 
would like to dedicate this book to my grandmother �. 
 

Giorgio Metta 



 6 

 



 

 7 

 

Abstract 
he research presented in this manuscript stems from an 
interdisciplinary approach ranging from “brain sciences” to robotics. 
The goal is to answer two main questions, namely: 

• Is it possible to test hypotheses on the brain function involved in a 
particular task, by implementing biologically plausible models on a 
real physical system such as a robot? 

• Is there any way to design more adaptable and potentially efficient 
robots? 

In order to provide a sensible reply, we have studied “sensori-motor 
development” as a model of learning and adaptation from a neuroscience 
and robotics perspective. In this respect, we shall argue that development 
is not simply a mere summation of learning stages. We rather consider it 
as the process which governs the time-varying nature of the learning agent 
itself. Consequently, on one hand we believe that the analysis of 
developmental processes provides unique insights on how sensori-motor 
coordination arises in biological learners, on the other it could be the only 
feasible procedure to design highly complicated artificial systems. From 
the modeling point of view, we shall demonstrate how a twelve degrees of 
freedom “baby” humanoid robot (Babybot) acquires orienting and reaching 
behaviors, and investigate the advantages of the proposed framework over 
traditional learning paradigms. More specifically, artificial development is 
based on the observation that biological development of visuo-motor 
coordination follows several stages, starting from a “plant” mostly driven 
by reflexes, and steering through phases where the cortex begins to 
influence sub-cortical structures. In the artificial implementation, we shall 
show that reflexes can be seen as the building blocks, guiding the learning 
of more sophisticated behaviors, and acting as a bootstrap procedure for 
the whole system. Moreover, they can also serve to keep subsequent 
learning processes within feasible regions of the “state space”. It will be 
shown, through the implementation of an artificial system, that it is 
possible: i) to outline the mechanisms relevant for visuo-motor control, ii) 
to implement realistic models of sensori-motor learning iii) to demonstrate 
the important role of development in building adaptable systems operating 
in real environments. 

T 
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1 Introduction 
he study presented in this manuscript stems from an 
interdisciplinary approach covering aspects of “brain sciences” and 
robotics. The goal is to answer two main questions, namely: 

• Is it possible to test hypotheses on the brain functions involved in a 

particular task, by implementing biologically plausible models on a 

real physical system such as a robot? 

• How can we design more adaptable and potentially efficient 

robots? Is it possible to build a truly human-like robot? 

Of course, given these premises and the difficulties in answering such 
questions, not all the aspects will be equally detailed. The hope is, at least, 
to provide useful hints on the many topics involved. 

In fact, we believe that there might be commonalities, sometimes due 
to the nature of the tasks, sometimes to the physics itself, which suggest 
that both artificial and biological agents could consistently employ the 
same solutions. The study of the biology – the modeling of brain functions 
– could suggest how to build more successful and adaptable “artificial 
beings”. On the other hand, the quest for adaptation raises the issue of 
learning; in other words, how can the learner acquire useful information in 
order to accomplish a given task? Which sensors does it need? Is learning 
always feasible? Until now, robotics and AI have failed to give a definitive 
answer (assuming it does exist) and indirectly they have also failed to 
produce truly autonomous and flexible agents. In spite of many successes 
in building robots of various shape, size, abilities, sensory types, etc. there 
seems to be something lacking in terms of “cognitive abilities”, as well as 
adaptability of the system to the dynamic of the environment. Moreover, 
even for successful robots, the integration of different behaviors and 
sensory modalities gave rise to a series of unexpected problems. The 
traditional artificial learning paradigm faced such difficulties, perhaps 
because of some wrong assumptions about the learning process itself, 
rather than the lack of proper models and algorithms. 

In recent times “brain sciences” also face an increasingly and intricate 
picture, where it is hard to discover the general underlying principles, 

T 
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which eventually will bear the real explanatory power. The panorama 
consists of a huge number of brain areas and intricate interconnections 
between them (the so-called “telephone switchboard” model). It is not the 
case that all parts are fully interconnected (i.e. the connection density is 
about 30%1), but a general explanatory principle is still missing. Here lies 
the significance of modeling, many researchers have employed 
computational models to explain functions, to derive general rules, and to 
integrate data gathered by using different methodologies. Perhaps, not 
everything is suitable for representation in a model, and the world – the 
“external” environment – is probably something which is too complex to be 
replicated appropriately. For this role, a robot is a suitable tool to be 
employed in the field of computational neuroscience. 

Eventually roboticists have realized that there is something to learn 
from biology – though the approach was often too pragmatic – and 
neuroscientists have approached robotics with growing interest. If AI 
researchers were less pragmatic, we might have realized that biological 
learners are characterized by a peculiar sequence of learning stages, where 
control structures radically change over time, and new abilities 
progressively arise. Moreover, pushing this further, there might be the 
chance to cast new light on the design of learning agents, specifically, by 
adopting a correct design paradigm and the correct assumptions. 

In this context, “brain scientists” have studied, since a long time, the 
acquisition of behaviors and cognitive abilities, and nobody is surprised by 
the fact that newborns are not simply a sort of “reduced size human 
beings”. What is more surprising is that, from an early age, infants show a 
series of “innate” behaviors, basic control synergies, and reflexes. On this 
basis, more sophisticated behaviors develop, and this process progresses 
through stages, where the limited abilities already formed are efficiently 
exploited in order to simplify the learning process itself. On the contrary, 
the approach followed in robotics is mainly that of designing the “complete 
final product” (i.e. the adult robot). One might wonder: what is wrong with 
that? Perhaps, something was underestimated, and from a purely 
engineering point of view, this “something” was the whole process of 
design. Dennet (Dennet, 1997), for instance, thinks that the overall design 
process must be included in the specifications of the final product. This 
approach shifts the emphasis from the final product to the developmental 
process thus the goal of the designer becomes that of devising a suitable 

                                                      
1 This figure concerns the visual areas of the macaque brain – (Van Essen & Deyoe, 
1995). 
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initial state (at time t0), and the appropriate developmental rules to get 
some close approximation of the desired final product. 
 
 
 
 
 

Box 1 The experimental setup. The experimental setup consists of a five 
degrees of freedom robot head (designed and realized at LIRA-Lab), and 
an off-the-shelf six degrees of freedom robot manipulator (an Unimation 
Puma260), both mounted on a rotating base: i.e. the torso. The 
kinematics resembles that of the upper part of the human body although 
with less degrees of freedom. From the sensory point of view, the 
Babybot is equipped with two space-variant cameras (Sandini & 
Tagliasco, 1980), (Sandini, Braccini, Gambardella, & Tagliasco, 1981), 
microphones for acoustic localization, an inertial sensor simulating the 
vestibular system (Panerai & Sandini, 1998), and propioceptive 
information through motor encoders. The robot is controlled by a set of 
PCs – ranging from Pentium II to Pentium III processors – each running 
Windows NT and connected by a fast Ethernet link. In order to provide 
the necessary interface with the hardware (i.e. sensors and motors) some 
machines are equipped with motion control boards, frame grabbers, AD 
converters, etc. In particular, one machine controls the robot arm and 
the torso, another one the head, and a third computer performs the 
visual processing. The software adheres to DCOM, a standard, which 
allows running objects among the various machines. The Babybot 
kinematics is shown on the right panel of the picture below. The dashed 
lines indicate joint’s axes numbered from q1 to q12 respectively. 
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However, posed in this way, our goal questions would cover a rather 
broad scope, ranging from cognition, motor control, sensory processing, etc. 
In order to narrow this range, our investigation was focused on sensori-
motor coordination tasks, although we took care not oversimplify either 
the physics of the system or the problems under scrutiny. As a general 
principle, the “physical system” should have enough degrees of freedom 
(e.g. in some part it might even be redundant), and a proper sensorial 
stimulation. The important point, rather than having an exceptional 
sensory and motor system, is that of keeping all sub-parts reasonably 
balanced, so that they can possibly develop all together (see also Box 1). 

1.1 A few words about this manuscript 

The general organizing principle of the book is that of presenting 
things in a sort of reverse order. The first chapter partially covers some of 
the experimental results obtained after the robot learnt simple 
coordination tasks; namely i) orienting the gaze toward visually identified 
targets, ii) reaching the fixation point in order to touch the acquired visual 
target. The rest of the manuscript will try to explain, demonstrate, and 
show how and why the robot is able to learn and what simplification the 
aforementioned “developmental” approach provides. 

Furthermore, the manuscript presents experimental results and 
related biological facts. They are inserted as boxes; the main concepts, on 
the other hand, are treated in standard text sections. 

The remainder of this chapter, besides introducing our experimental 
setup in section 1.3, makes the point that we indeed deal with complex 
systems (section 1.4) and, in order to justify the “developmental approach”, 
presents some of the aspects related to development in biological systems 
(section 1.5). We shall comment briefly those relevant for the design of 
complex systems. 

Chapter 2 introduces the learning problem, and points out that 
developing systems show a more effective adaptive behavior, compared to 
“traditional artificial learners”. We shall describe some well-known 
problems, such as, the bias-variance dilemma, or the “curse of 
dimensionality”, and we will conjecture that “developing systems” may be 
equipped to cope with these “theoretical pressures”. Through some 
examples, we will argue that this is actually the case, and we will make 
references to the corresponding “biological” solutions. 

Chapter 3 describes the Babybot’s architecture in details; it also 
shows where biology meets robotics and where it does not. It presents 
many of the details concerning the robot design, its controllers, and the 
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experimental results. In particular, a full range of experimental results 
will cover the aspects related to gaze control and reaching – this is our 
reference task – in both biology and robotics. 

Conclusions, future work, comments, etc. are contained in chapter 4. 
Finally, mathematical details and algorithms are presented in the 
appendix 5. We describe the visual algorithms (optic flow and color 
segmentation), the learning models, and finally a torque based motion 
control, known as “force fields” approach. 

The next section presents a brief overview of research at the boundary 
between biology and robotics. 

1.2 Robotics and biology 

Research activity linking studies on artificial systems to “brain 
sciences” is certainly not new. Besides the studies on artificial neural 
networks, substantial efforts are devoted worldwide to build physical 
models of parts of biological systems, with the aim of suggesting novel 
solutions to robotics or processing problems, and to advance our 
understanding of human brain functions (Brooks, 1996), (Sandini, 1997). 
For example, the control of robot heads and visually guided manipulation 
tasks were studied with reference to psychophysical performance data of 
humans and animals (Aloimonos, Weiss, & Bandyopadhyay, 1988), 
(Bajcsy, 1985), (Ballard & Brown, 1992), (Crowley, Bobet, & Mesrabi, 
1992), (Capurro, Panerai, Grosso, & Sandini, 1993), (Gandolfo, Sandini, & 
Tistarelli, 1991), (Grosso, Manzotti, Tiso, & Sandini, 1995), (Grosso, Metta, 
Oddera, & Sandini, 1996). In this respect, many levels of similarity to 
biological systems can be considered: from emulation to a vague 
resemblance. The important point is to grasp the relevant aspects of 
biological systems so that we can both address specific biological questions 
and propose new methodologies for robotics. 

However, the main advantage of using robots rather than pure 
computer simulations, at least in the study of the motor system, is that the 
physics of the environment comes “for free” – a proper simulation would be 
very difficult, if not impossible. The concept of embodiment further 
supports this view or, at least, it makes more significant to situate the 
“brain” into a real physical body (such as a robot) (Pfeifer & Scheier, 1998), 
(Pfeifer & Scheier, 1997). 

A very active area of research has been, for instance, the study of 
locomotion, either strict bipedal locomotion (Brooks, 1989), (Hirai, Hirose, 
Haikawa, & Takenaka, 1998) or swimming (Vaidyanathan, Chiel, & 
Quinn, 1997). Also insect-like robots have been proposed (for a review see 
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(Beer, Chiel, Quinn, & Ritzmann, 1998)). A few realizations used muscle-
like actuators either pneumatic- or polymeric-based (Majarrad & 
Shahinpoor, 1997), (Caldwell, Medrano-Cerda, & Bowler, 1997). 

The study of computational motor control, involves a series of 
techniques borrowed from traditional system theory. Some of these have 
been applied to the study of limb movements (e.g. optimization 
techniques), in order to fit psychophysical data to models (Jordan, 1996). 
An influential model, derived from biology, is the so-called “equilibrium 
point model” (EP), which has direct applicability to robotics (Mussa-Ivaldi 
& Giszter, 1992), (Mussa-Ivaldi, Giszter, & Bizzi, 1993), (Mussa-Ivaldi, 
1997), (Mussa-Ivaldi & Bizzi, 1989), (Gomi & Kawato, 1997) – see also 
section 5.6 in this manuscript. 

Williamson (Williamson, 1996) applied this approach for controlling 
the arm movements of COG – the humanoid robot being built at MIT. 
Metta and coworkers used a similar biologically inspired approach to 
control the movements of the LIRA-Lab Babybot (described in this book) 
(Metta, Sandini, & Konczak, 1999). 

Another area which attracted considerable attention is the study of 
orienting behavior and ocular movements. Many implementations arose, 
using visual, acoustic, and inertial sensory systems (Crowley et al., 1992), 
(Capurro, Panerai, & Sandini, 1995), (Berthouze, Bakker, & Kuniyoshi, 
1996), (Panerai, Metta, & Sandini, 2000). Rucci and colleagues (Rucci, 
Wray, Tononi, & Edelman, 1997) modeled the orienting behavior after that 
of the barn owl, with a particular emphasis on the visuo-auditory plasticity 
(Stein & Meredith, 1993). Also, Kuniyoshi is using a multi-cue approach in 
his humanoid robot controller (Kuniyoshi & Cheng, 1999). Panerai et al. 
used inertial sensors to simulate the vestibular organs, and employed both 
visual and inertial information inside the control loop of a binocular robot 
head. They demonstrated superior performance compared to a purely 
vision based controller (Panerai & Sandini, 1998). 

On the other hand, in spite of all these efforts, few researchers 
addressed the problem of adaptive behavior from a developmental point of 
view (Pfeifer & Scheier, 1997), (Kuniyoshi & Cheng, 1999), (Berthouze & 
Kuniyoshi, 1998), (Sandini, Metta, & Konczak, 1997). In our view, in spite 
of such advances, the systems implemented are still far from achieving 
human-like performance levels and task flexibility. More importantly, the 
integration of different behaviors, such as manipulation and gaze control, 
proved to be more difficult than expected. This difficulty arises, at least in 
part, from the approach followed to construct complex systems: to make 
the problem more tractable, sensori-motor coordination is broken down 
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into a set of sub-problems defined by a specific sensory modality (e.g. 
vision, audition, touch, etc) or specific motor skills (e.g. manipulation, gaze 
control, navigation). 

A different solution is used in humans and many other vertebrates, 
where flexible and efficient levels of performance are achieved through the 
simultaneous development of sensory, motor, and cognitive abilities. This 
process is not simply caused by the maturation of single components or by 
learning a progressively more sophisticated set of skills. Instead, it is 
marked, particularly in the very early stages, by a sequence of changes of 
the neural circuitry, and by a strategic exploitation of the environment 
with a limited set of motor skills that are present at each developmental 
stage. Finally, biological systems calibrate themselves in the presence of 
ongoing environmental and internal changes. 

1.3 The “baby” humanoid robot 

The “baby humanoid robot” is neither particularly small nor it grows 
in the standard meaning of the term – the physical structure is invariant 
over time. Conversely, the control strategies, modules, and their subparts 
evolve in the sense discussed below: the idea is to have a system, which at 
“birth” uses only simple controllers, such as reflexes, and successively 
“grows” by employing more sophisticated modules – i.e. the so-called 
internal models. The overall system’s initial state is thus characterized by 
a very limited number of free parameters, which can be easily estimated 
online. Concurrent controllers learn on the basis of how the reflex-like 
subsystems behave. The general principle is that of mimicking a 
“developmental process” where control is initiated from the very beginning 
of the agent’s life and, although imprecise, it constitutes a sort of 
“bootstrap procedure”. Noise, simulating defective command generation 
(muscle control), drives the exploration of the state space. Exploration and 
exploitation are carried out in parallel; the robot performs system 
identification and control at the same time. When some degrees of freedom 
are under a consistent control, the robot can start moving more joints. This 
progression is not simply due to our particular design choices, but is 
necessary in order to acquire proper behavior, and it is indeed exploited 
also by biological agents. The rationale behind this approach is that it 
should be simpler to design the system at “time t0” and its “developmental 
rules” rather than the complete system. However, it is not clear at the 
moment whether it would be simpler to predict the final outcome. 

Is this approach feasible? In order to remove any doubt, in this 
chapter, we present some of the results obtained after the robot acquired 
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orienting and reaching behavior. The results mainly indicate that the 
approach is at least feasible; further experiments will eventually compare 
these results with those derived from different learning methodologies. In 
particular, the experimental setup consists of the twelve degrees of 
freedom (DOF) anthropomorphic robot shown in Box 1, which is composed 
by a five DOF robot head entirely designed and realized at LIRA-Lab, an 
off-the-shelf six DOF manipulator (Unimation Puma 260), and a one 
degree of freedom torso. Two color cameras are mounted on the robot head. 
The head can move them independently around a vertical axis, and 
together around a horizontal one. Two more degrees of freedom in the neck 
allow the whole head to pan and tilt. The Puma 260 manipulator has six 
degrees of freedom. Both the arm and the head are mounted on a rotating 
base, which realizes a simple motion of the torso. 

In order to understand the real complexity of controlling such a 
system, just consider how many state variables, input and output need to 
be examined, analyzed, and coordinated. As mentioned above, the sensory 
system consists of two color cameras, an inertial sensor (angular 
gyroscopic accelerometer) simulating the vestibular apparatus, and optical 
encoders, which provide proprioception (position and speed of each joint). 
From the purely system theory point of view, the physics of the robot can 
be described by 24 state variables – position and speed of each joint. 
However, from the learning perspective, the “state” space can be much 
larger. The robot must find out both the right time-sequence of motor 
commands from any possible starting configuration, and how to convert (or 
map) different signals back and forth from sensory to motor, from motor to 
sensory, and eventually from motor commands to predicted sensorial 
effects. These aspects of the learning problem will be analyzed in some of 
the following chapters. 

1.4 Complexity and the “telephone switchboard model” 

We introduce here the complete block control diagram of the robot (see 
Figure 1). It is worth noting that, though complicated, it could have been 
designed by hand – i.e. by tuning all controllers’ gain and mappings – 
although it would have been hard work. Consider that, Figure 1 sketches 
what is required in order to perform a relatively simple task: gazing and 
reaching. We did not address problems such as trajectory generation, 
obstacle avoidance, planning, and object persistency, memory, and so forth. 
Our robot behaves in a very primitive way: it is substantially stimulus 
bound – a stimulus appearance causes the robot’s reaction. This is to say 
that complexity and adaptability cannot be simply designed using the 
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same methodology and tools we might use to design, let’s say a car. 
Perhaps, we need something else if we want to design a real “adaptive2 
agent”, admitting for the moment it can be designed. The point we would 
like to make is that at a first glance, it is not possible to infer behavior 
from the wiring itself. This adds something to the intrinsic difficulty: i.e. 
can we predict what the behavior of the whole system will be3? Can we 
design everything by hand – can we design adaptation? 

Figure 2 shows something similar to Figure 1; it is a well-known block 
diagram representing the visual processing areas of the macaque brain. A 
question arises: can we understand perception and behavior just by 
observing the wiring of brain areas? Is further knowledge required? 
Consider also that the more we get into the details of the wiring, the more 
intricate the connections become. This is to say, even if we had a perfect 
understanding of the whole schematics, probably we would need some 
general purpose unifying principles. Van Essen (Van Essen, Anderson, & 
Olshausen, 1992), (Van Essen & Deyoe, 1995) tried to address the problem 
by extracting commonalities about the pathways and connections in terms 
of forward and feedback signals, and by characterizing accurately the 
different neural responses. Therefore, we consider that developmental 
studies might provide a different and complementary perspective. 

Generally speaking, developmental studies allow starting with a 
simpler system. Considering motor control, for example the initial 
controller configuration is certainly simpler than the adult counterpart. 
Firstly, cortical influence is rather limited (and perhaps unreliable). 
Secondly, the behavior is very much stimulus bound: i.e. the appearance of 
a stimulus causes the infant to react – although it is not often easy to have 
the baby collaborate in the experiments. This is a much simpler situation 
compared to adults, where many control pathways are in place and 
contribute to the final outcome (behavior). Moreover, the study of 
development allows observing when and how the different subsystems 
come into play – for instance, dramatic changes in the control structure 

                                                      
2 We are not claiming that adaptation has to be designed, what we should be able 
to design is the adaptive agent. Adaptive behavior, on the other hand, is perhaps 
acquired through the interaction with the environment. 
3 The main goal of a design process is the comprehension and the capacity of 
making predictions about the final behavior of the designed product. For instance, 
in software engineering there is the need to have complete control over CPU 
resources, a prediction of response delays, memory usage, etc. Hence, real-time 
operative systems were designed aiming at the satisfaction of such performance 
requirements. The question can be restated as: to what extent can we make these 
predictions? 
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have been observed at particular stages (see section 1.5.2). In addition, the 
timing of development becomes an important factor, for the same reasons 
outlined above. 

 
 

 

Figure 1 The pattern of interconnections in the Babybot. This 
schematic is the block diagram of Babybot’s controller. The light 
gray blocks are those where learning and adaptation take place. 
Not all areas are active from the beginning. The medium gray  
central block is the robot mechanical plant – i.e. the system 
dynamics. Dark blocks are processing related areas either visual 
or motor. Triangles are gain of PD controllers. Many of them are 
tuned beforehand. 
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Figure 2 The pattern of interconnections in the macaque (adapted 
from (Van Essen & Deyoe, 1995)). Van Essen and coworkers 
pointed out that visual processing in primates involves dozens of 
different areas, and both forward and backward connections, with 
the former, perhaps, carrying out the processing per-se, and the 
latter type mostly implementing a sort of “flow control” structure 
– this view is oversimplified anyway. Connections are both 
hierarchical and concurrent, so processing is both serial and 
parallel at the same time. 
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As a metaphor, let us imagine we want to know how a car works: 
there are several reasonable approaches such as driving it, taking it apart, 
reading the manual, and going to the factory and seeing how it is put 
together. The “driving” approach takes a behaviorist point of view, though 
putting together neural responses and behavior is not an easy task – this 
approach substantially neglects the “inside”, the brain becomes a “black 
box”. The “taking apart” might indeed work: it bears resemblance with the 
connection and wiring analysis – it would include all the current 
techniques such as electro-physiology, PET scanning, fNMRI, localized 
lesions, etc. “Reading the manual”… actually we do not have it, though one 
might think that DNA provides the ultimate manual. It is again hard 
work, even harder, to make behavioral inferences starting from the 
molecular level (reductionism). Further, consider that behavior is the 
result of complex interactions of the environment and endogenous 
processes – that is, it is partly phylogenic and partly ontogenic. 
Consequently, these complex interactions should be taken into account for 
a real comprehension of the whole “brain” issue. The last, approach is the 
“going to the factory”: in this case, we go into the details of how the system 
is put together. Again, there might be different feasible levels of analysis: 
from molecular – how genetic factors influence the final product – to 
neuron and population level. The latter level of analysis is suitable for 
approximate simulation and/or implementation on a physical robot, and it 
is the main topic of this book. 

1.5 Development of gaze control and reaching 

This section outlines some relevant developmental issues related to 
motor control, in particular, we focus on the acquisition of gazing and 
reaching (i.e. eye-head-arm coordination). Though this is not meant to be 
an exhaustive survey of the biological literature, it deals with the main 
aspects of development. We make the point that development is not the 
same as learning. In this respect, we see development as the process, 
which allows learning to take place. Roughly speaking, from now on, 
learning concerns the acquisition of a particular skill, either a map or a 
control parameter, while development defines the sequence of acquisition 
of such basic skills. In other words, development dictates which, among the 
infinite sequences of possible learning events, is realized. Bearing this in 
mind, we would like to mention a series of biological related findings, 
which further support the hypothesis that this is indeed the case. 
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1.5.1 Development of eye-head coordination 

In the context of eye-head coordination, many authors have suggested 
the hypothesis that newborn’s motor acts are controlled only by sub-
cortical structures, with cortical control taking over at about two to three 
months (see (Atkinson, 1998)). Other models consider different visual 
functions (e.g. “what and where” streams (Goodale, 1989), (Milner & 
Goodale, 1995)) as developing with slightly different timing. Overall, the 
issue of differential timing in development can be seen in the context of 
learning as reducing the exploration4 space by constraining it. In fact, sub-
cortical structures, active since birth, could actually guide the learning of 
cortical ones. Another way of looking at these facts is to consider the 
newborn at birth. Sub-cortical sensori-motor pathways are active and 
allow the baby to start his/her interaction with the external world. 
Meanwhile, development of cortical areas proceeds, but clearly the 
training data which can be collected from the environment are constrained 
by how the sub-cortical system is behaving (and by what the environment 
is generating – i.e. a deprived agent cannot learn). 

The sub-cortical arrangement found in newborns can be seen as the 
initial “bias”. Considering a broader perspective, the differential activation 
of brain areas is likely to provide each of them with a sort of bias: areas 
that develop first bias areas that develop later. Carpenter (Carpenter, 
1988), (Carpenter, 1999) and Atkinson (Atkinson, 1998) described a few 
examples of the mechanism in the context of saccade generation and 
smooth pursuit control. This subdivision is not entirely clear, because it 
has been demonstrated that sometimes the cortex influences the sub-
cortical pathways from the very beginning (although unreliably). There are 
instances where even parts of the same stream, or between different sub-
cortical streams, fail to integrate. 

There are some more experiments worth mentioning, which support 
the idea of the two systems (cortical and sub-cortical) developing with 
different time spans. It appears that 1-month-old newborns are often 
unable to disengage from an already fixated target. This is called “sticky 
fixation” and it is probably evidence that the sub-cortical system has the 
control at that age. Later on (at about 3 to 4 months of age), cortical 
modules (some authors suggested those located in the posterior parietal 
cortex, the frontal eye fields and the prefrontal cortex) develop and allow 
babies to disengage rapidly (Gilmore & Johnson, 1998). 

                                                      
4 This concept will be defined and detailed in chapter 2. 
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A complete picture should also take into account development of the 
visual processing system, which through time improves discrimination 
capabilities as well as perceived spatial resolution. In fact, newborns show 
poor visual acuity and proprioceptive feedback (see discussion on next 
section). This should be considered an advantage rather than a drawback. 
Poor resolution means that the number of free parameters that need to be 
controlled (or tuned) could be small. This is particularly true in the view of 
recent proposals on constructive learning (see (Quartz & Sejnowski, 1997), 
(Schaal & Atkeson, 1998)). Some kind of neural networks (Barron, 1993), 
(Fritzke, 1995) could actually take advantage of the initial low resolution 
to improve learning performance. Intuitively, it is easier to tune few 
parameters rather than many, even if in the long term the presence of a 
high number of tunable variables allows better learning. 

There is further evidence that newborns plan saccades in a retino-
centric coordinate system. This has been taken sometimes as the hallmark 
of the Superior Collicolus activity. Gilmore and Johnson have tested the 
hypothesis (Gilmore & Johnson, 1998). They found that 4-month-old 
infants fail in a “double saccade paradigm test”, while 6-month-old do not. 
The hypothesis here is that areas, which process spatial information in 
head- or body-centered coordinates, do not develop until 6-8 months of age. 
Even in this case, simplicity seems to dominate at the beginning, while 
more complex information processing needs more time to become 
functional. 

Also the smooth pursuit system is at birth driven only by a sub-
cortical circuitry. In fact, some asymmetries of the OKN in infants have 
been correlated to the functioning of the NOT (Nucleus of the Optic Tract). 
Later, improvement of motion detection takes place, supersedes, and 
complements functioning of the NOTs. This is supposed to involve 
development of the projections from the cortex to the NOTs, as well as the 
development of the magno cellular stream (sensitive to velocity stimuli). 

Von Hofsten showed also that evolution of gaze control shifts, from a 
stage where head motion is used a little, to successive stages where neck 
and eye movements are combined effectively (Von Hofsten & Rosander, 
1997). The reason for this pattern of development might be twofold: first, 
neck and eyes form a kinematically redundant system so that, coupling 
(i.e. by limiting the number of controlled degrees of freedom) the 
controllers could be an effective learning strategy. Second, as discussed 
above, coordinated motion of both head and eyes requires proprioceptive 
(or efferent copied) information, which is thought to be unreliable at birth. 
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Consider also that one of the major goals of the mobility of the eyes is 
that of positioning the high-resolution foveae at perceived interesting 
regions in the external world. Nevertheless, in order to obtain reliable 
visual information, it is likely that the more stable the images the better 
such information. The stabilization process is accomplished by various 
subsystems where both visual and vestibular information is used and 
combined (Sauvan, 1998). For instance, vision deals with low frequency 
perturbations, while the vestibular system works effectively at high 
frequencies (Miles, 1997), (Miles, Kawano, & Optican, 1986). The 
Vestibulo-Ocular Reflex (VOR) is thought to be present at birth, however, 
its proper use probably requires some gain adjustments (Panerai & 
Sandini, 1998), (Medendorp, Bakker, Van Gisbergen, & Gielen, 1999). This 
means that, even in this case, the development of the cortex shapes and 
improves the sub-cortical system functionality (i.e. by tuning the VOR gain 
as a function of the target distance and eccentricity). 

In spite of these mechanisms, it would be difficult for a learner to 
gather enough information without exploring its state/control space. One 
natural mechanism, which might serve this function, is “noise”. It is also 
thought that the nervous system is deliberately generating randomness to 
increase the amount of variability (Carpenter, 1999). Instances of noise in 
the nervous system can be found in the immature command generation, 
where the pattern of connection between motor neurons and muscle fibers 
is far from its adult counterpart. In the former, each fiber might be 
innervated by more than one motor neuron. This is likely to cause 
problems in the control of movements. Another possible source of noise is 
incomplete myelination; the electrical properties of neurons (axons) are 
greatly dependent on the degree of insulation, which is provided by myelin. 
This noise source is likely to disappear as soon as myelination completes. 

Other related work has been done in the field of “computational 
neuroscience” (Bizzi, 1974), (Goossens & Van Opstal, 1997), (Van Hopstal 
& Kappen, 1993) though it was often more concerned with the modeling of 
the “adult” oculo-motor system, than its development. These results could 
provide an additional constraint on how the “final product” might appear. 
A quite influential line of research gave rise to the so-called “Bizzi’s model” 
(Bizzi, 1974). Although this model is now questioned (McCrea, Gdowsky, 
Boyle, & Belton, 1999), it provides the first clear example of what the role 
of the vestibular system might be inside an eye-head coordination schema 
(at least in principle). In the model saccades were generated in a purely 
retino-topic coordinate frame, thus Bizzi’s model could not take into 
account movements outside the oculo-motor range (for instance, 
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remembered or acoustic targets). More sophisticated models are presently 
considered, which are often referred as “the common gaze feedback 
models”. They can, in theory, deal with targets outside the oculo-motor 
range and they also modulate the VOR gain appropriately (in order not to 
disturb the programmed eye motion, when the target is not yet acquired). 
Moreover, neural correlates are also available, which further validate 
these results (Stein & Meredith, 1993), (Wurtz & Munoz, 1996). 

1.5.2 Development of reaching 

At birth, a human infant can neither reach nor grasp. From a control 
point of view, the completion of two processes is required to perform 
successful reaching. First, any neural controller must be able to interact 
with its “plant” (i.e. the arm in this case), in such a way that “centrally 
planned”, complex actions can be executed. Second, visually specified goals 
must be linked to appropriate motor actions. These motor actions, in turn, 
must be suitable for moving the arm to the desired goal. There are a 
number of reasons that appear to explain newborn infants’ inability to 
solve these two tasks: 
• They have limited postural control of the trunk, head and arms. 

Appropriate head and trunk righting reactions begin only to 
emerge 2-3 months after birth (Milani-Comparetti & Gidoni, 1967). 

• They have limited knowledge about the physical makeup of their 
bodies (i.e. moments of inertia, viscosity, stiffness of their arm 
segments). 

• They have only a limited movement repertoire consisting of an 
array of infant reflexes (i.e. grasping, sucking), and basal intra- 
and interlimb synergies (coupled flexor, extensor activity, 
coactivation) (Bekoff, Kauer, Fulstone, & Summers, 1989), 
(Hadders-Algra, Eykern, Nieuwendijk, & Prechtl, 1992). 

• They have limited visual capabilities. During the 1st postnatal 
month, the visual system provides the infant with functionally 
useful, but unrefined vision at the level of approximately 5% of 
adult acuity level (20/200 on a Snellen scale). The infant can likely 
differentiate facial features from a distance of about 50cm. Objects 
beyond this distance are probably not seen clearly (Atkinson & 
Braddick, 1981). 

• They have not established a finite neural control structure. Most 
cortico-spinal projections are not differentiated. There might be 
different processes, either growing- or pruning-based, which are 
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known to occur postnatally (Leary, 1992), (Quartz & Sejnowski, 
1997). 

Despite all these limitations, babies as early as one week of age will 
attempt small arm movements directed toward objects, and are capable of 
orienting towards and tracking a moving object by rotating both head and 
eyes, although their heads may wobble considerably (Trevarthen, 1980). 
These early arm movements occur unpredictably, but they are not the 
result of random activity or pure reflex actions (i.e. they are goal directed). 

While the arm movements of newborns are characterized by a rather 
fluid inter-joint pattern, reach and grasp motions of two- and three-month 
old infants reveal either short swiping motions or relatively long lasting 
jerky movements. These movements appear to be pre-programmed, 
“ballistic” motions, because trajectory correction is absent (Bower, 
Broughton, & Moore, 1970). That is, in early ontogenesis the role of visual 
information seems to be restricted to triggering the movement, rather than 
to visually guiding the hand toward the target by shifting the gaze back 
and forth between hand and object. Piaget originally proposed such process 
of “mutual assimilation” (Piaget, 1952). His claim was supported by work 
of Held and Hein (Held & Hein, 1963) studying the role of forelimb vision 
during the locomotion in kittens. Their experiments revealed that the view 
of the forelimbs, during the early stages of development, is essential for 
fine placements of the front paws. Additional experiments on baby 
monkeys demonstrated that a complete suppression of the vision of limbs 
and body, during the first postnatal month, strongly affects hand-to-eye 
coordination (Held & Bauer, 1967). When the sight is restored, monkeys 
tended to concentrate much of their attention on their hands rather than 
on the object to be grasped. 

Given the experimental evidence, in recent years, the concept of 
mutual assimilation and the associated gaze-shifting hypothesis has gone 
under intense scrutiny. Alt and Trevarthen (Trevarthen, 1984) tested 
infants 16 to 20 weeks of age, that is, just at an age when infants begin to 
show their first goal-directed reaches. A lightweight screen attached with a 
headband to the baby occluded the view of arm and hand in either central 
or peripheral vision. None of the babies attempted to see their arm or hand 
before initiating a reach or while executing the movement. Along the same 
line is a result by Clifton and coworkers, who found that babies between 6 
and 25 weeks of age did not rely on vision of the hand when attempting to 
reach for an object (Clifton, Muir, Ashmead, & Clarkson, 1993).  
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Box 2 Konczak and coworkers (Konczak, Borutta, Topka, & Dichgans, 
1995) followed nine young infants longitudinally from 4 to 15 months of 
age. They analyzed arm kinematics and dynamics in order to determine 
which learning procedure might underlay the acquisition of goal-directed 
reaching. The main results of this study can be summarized as follows: i) 
the amplitude of joint torques do not vary systematically with age – thus 
early reaching kinematics is not conditioned by the inability to generate 
appropriate torques; ii) external forces exploitation emerges only at 
about 9 months of age, that is an important component of proper limb 
control is acquired with experience; iii) there is a clear trend in the 
evolution of torque timing, which might reflect yet another kind of 
learning process – important for proper trajectory generation; iv) it 
seems conceivable that learning is “unsupervised”, which might also 
reflect a sort of optimization based learning. The latter point is a crucial 
one; in fact, the economy of the movement could be a suitable “cost 
function”, whose minimization would lead to the observed hand 
kinematics in adults. As an example, the picture above shows the 
progression towards a stable kinematic pattern and the straightening of 
the trajectory. Trajectories are projected onto a vertical plane: the 
starting point is on the bottom left corner of the image, and the 
stationary target is toward the upper right corner – see bottom row 
(adapted from (Konczak & Dichgans, 1997)). 
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Babies contacted glowing objects in darkness, when vision of the hand 
was restricted, at the same rate as during normal daylight conditions, 
when they were able to see their hands. That is, the gaze-shifting 
hypothesis could not be confirmed for the development of early reaching in 
these studies. The empirical findings indicate that visual “guidance” of the 
hand is not necessary to establish object contact around the onset of 
reaching, although it might be necessary for learning to take place. 

The first successful goal-directed reaches of human infants appear 
around the age of 4 to 5 months (Von Hofsten, 1991), (Konczak et al., 
1995), (Thelen et al., 1993). The emergence of such behavior around that 
time is not coincidental: 
• By that time, infants had enough time to calibrate their sensory as 

well as their motor subsystems. Visual acuity has improved 
considerably, and it is now in the range of 20/800. Around two-
thirds of the infants at that age have obtained stereoscopic vision – 
an important cue of depth perception. 

• Higher supraspinal motor centers are operational and reflex 
behavior can effectively be inhibited to enable the system to 
acquire more flexible, task-oriented motor behaviors (i.e. 
suppression of the grasp reflex or the asymmetric tonic neck 
reflex). 

When young infants attempt their first reaches, their movements are 
jerky and look ataxic. In contrast to the stereotypic kinematic patterns 
seen in adults, infant hand paths do not follow a straight line, nor do the 
corresponding velocity profiles reveal a bell-shaped form (Von Hofsten, 
1979), (Konczak et al., 1995), (Mathew & Cook, 1986). Within the first 4 to 
8 weeks after the onset of goal-directed reaching, kinematic improvements 
are dramatic (see Box 2). At the onset of reaching, newborn’s hand 
trajectories consist of about five segments. Two months later, the number 
of movement units of the hand is halved. By the age of 7 months, a typical 
reach consists of one large transport segment and one or two additional 
units in the approach phase. During the approach phase, the palm is 
usually kept open – a precision or pinch grip has not yet developed. In this 
first phase of gross-motor reaching, infant motor systems learn to time 
their neural impulses in such a way that the hand does not over- or 
undershoot the desired object. In order to achieve this goal, they have to 
embed basal muscular synergies that are present at birth (e.g. flexing the 
elbow), into functional, task-adequate multi-joint movements. That is, 
during early reaching, emphasis is put on refining the transport, not the 
approach phase, nor on skillful handling of the grasped object. 
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About 3 months after the onset of reaching, infants reach consistently 
for objects in their surround and rarely miss their target. By the same 
time, infants reveal improvements in their manipulative skills (i.e. 
precision grip). Next to these advancements in the approach phase of the 
reach, infant motor systems continue to refine the transport phase. 
Kinematically, their hand paths become straighter, but more important, 
they now show signs of external force exploitation. For example, they learn 
that gravity and motion-dependent forces alone can extend their forearms. 
Consequently, they do not have to initiate elbow extension through 
muscular activation, but let gravity do the work (Konczak, Borutta, & 
Dichgans, 1997). Because of this learning process, infant movements 
become more economical – muscles will be only activated when needed. 
However, an adult-like skill economy will not develop before 24-36 months 
of age (Konczak et al., 1997). 

Within the first year of life, infants also develop the ability to detour 
around a barrier to retrieve objects. That is, not only the pure motor act is 
acquired, but also its adaptive use. Diamond (Diamond, 1981) studied how 
infants reached for a toy inside a box, using a small transparent box with 
one face open, (the toy was always visible but could only be reached 
through the open side of the box). 7-month-old infants reach for the object 
only through the same side of the box they see the toy. The reaching 
trajectory follows the line of sight. Successful reaching is achieved only if 
the object is seen directly (i.e. not behind one of the transparent sides). At 
about 8-9 months of age, a separation of the line of sight from the line of 
reach may be observed: infants can look through one side of the box, while 
reaching through another. However, at this age they still need to see the 
toy through the opening on each trial in order to succeed (the memory of 
having seen the object is not enough). By 11-12 months of age, infants 
become perfect on the object retrieval task, being able to reach the toy from 
any side of the box efficiently. 

1.5.3 Relevant issues for artificial development 

The first, and perhaps the major, observation relates to the fact that 
the newborn is, in a systemistic way, a “complete” system in the sense that 
all sensory and motor components are present and functional. The 
performance of each component is not developed, but it is remarkable how, 
in spite of their relative immaturity, the performance of all components 
seems to be well matched. 

Sensori-guided coordination is absent at birth but other mechanisms, 
such as motor reflexes and sensori-triggered motion, are present exploiting 
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the still limited sensory and motor abilities and allowing the infant to start 
some form of interaction with the external environment and the 
acquisition of the first sensori-motor experiences. 

Throughout the developmental stages described previously, the 
maturation of all “sub-systems” proceeds harmoniously and the motor 
abilities are matched to the sensory and cognitive ones. It is worth noting, 
however, that this process cannot be modeled entirely as a learning 
process because, during development, the system itself drastically changes 
its own motor strategies. For example, from a purely reflexive system to a 
system capable of voluntarily initiating “dominant motor sequences”, 
arriving finally to complete voluntary, sensori-guided control. 

During these phases, some of the abilities are only temporarily 
present (for example, some of the early reflexes) and are strategically used 
to take full advantage of the very early sensori-motor experiences. Later, 
they disappear as soon as these skills are replaced by more developed ones. 
For example, the infant does not learn to control simultaneously all the 
degrees of freedom of his/her arms, but the first exhibition of reaching 
behavior is a ballistic-like, posture dependent swiping motion of the arm, 
with the ability neither to correct the trajectory nor to control pre-grasping 
postures of the hand. In some sense, the system seems to practice with just 
a few joints before attempting more complex motor acts. The underlying 
control structure takes care of maintaining archetypal postures, 
controlling the remaining degrees of freedom in a “reflex-like” way. 

Reflexes, such as the grasping reflex or the tonic neck reflex, are 
present and facilitate the interaction with the outside world, even with 
such a limited control strategy, in order to provide a sufficiently high 
success rate. In this respect, one could argue that if all degrees of freedom 
were under voluntary control, it would be a lot more difficult to learn 
complex motor actions. The fact that the infant is not perceptually skilled 
becomes, in this view, a positive factor because it makes successes more 
probable and easier to repeat. This is true, of course, if the system is 
designed in such a way that the motor, perceptual and cognitive abilities 
proceed harmoniously. 

1.6 Seeing, reaching and touching 

In order to substantiate the theoretical claim we shall make in the 
following sections, we carried out several experimental investigations. 
Though the primary concern was to show that a particular controller 
configuration is important for the learning process itself, we measured the 
robot performance after the training phase. In terms of orienting behavior, 
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the goal for the head subsystem was to acquire a visual target, act to get it 
in the foveae, and eventually coordinate the redundant degrees of freedom. 
The head controller, both learnt how to follow smoothly the movement of 
the target (i.e. a sort of smooth pursuit behavior), and how to orient the 
gaze toward a new perceived location (i.e. saccade-like movements). 
Moreover, coordination of head and eye movements can efficiently exploit 
the information coming through proprioception (i.e. by using a sort of 
vestibulo-ocular reflex – VOR), which is provided, in this case, by the 
inertial sensor and the optical encoders. As we shall see, a successful 
coordination requires the mapping, or frame of reference conversion, from 
the sensory to motor data. In other words, the robot has to learn also how 
to tune these transformations. Once a simple orienting behavior is 
established, the robot can start the process of acquisition of reaching, 
although a simple reflex-like arm extension mechanism was handcrafted 
into the system from the beginning. As soon as gazing is precise enough, 
reaching also improves quickly, allowing the robot to start a new kind of 
interaction with the environment: i.e. touching. 

1.6.1 Phases and components 

In order to acquire the correct information for building the maps or 
transformations described above, the robot must follow a precise 
“developmental” course (sketched in Figure 3). In practice, the system is 
able “at birth” to move the eyes only. Control, at that stage, is a mixture of 
random and goal-directed movements. With respect to the head-arm 
coordination, at this stage the robot possesses only a reflexive behavior 
simulating basic muscular synergies and spinal reflexes. 

The initial task of the control process is that of calibrating the closed 
loop gains – in many cases biological systems have also to tune delays in 
order to have the relevant information “in phase”. Afterwards, gains can be 
properly adjusted (Von Hofsten & Rosander, 1997), (Distler, Vital-Durand, 
Korte, Korbmacher, & Hoffmann, 1999), (Cioni, Favilla, Ghelarducci, & La 
Noce, 1984). In this robot implementation though, delays were manually 
adjusted beforehand. 

It is worth stressing that even at the very beginning the system is 
already moving in a “goal-directed” manner, although noise dominates the 
actual movements. In successive phases, the robot starts learning 
saccades, but only the eyes are moving. Indeed, this is necessary because 
otherwise the neck motion would disturb the estimation of the required 
eye commands (i.e. part of the required eye movement would be indirectly 
performed by the head motion). In order to relax this constraint, the robot 
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actually moved the head but with a very low probability. The latter is the 
developmental parameter, which has been used to intermingle the two 
learning processes. Of course, the smaller the head motion the better the 
training data. 

Once eyes are under “proper” control, the whole head starts moving, 
at this point, the saccade maps are well formed and can be used to help 
coordination of the redundant eye-head degrees of freedom. 

Concurrently, reaching steadily improves by storing more information 
in the head-arm coordination map. As a result, the initial reflexes become 
part themselves of the coordinative action. On the other hand, because 
reaching depends on gazing, during the initial phases, reaching improves 
slowly. Later, as soon as gazing obtains a reasonable performance level, 
reaching also improves quickly. It is worth stressing that, from the robot’s 
point of view, motor control can be seen as “learning” to combine the initial 
“skills” – i.e. reflexes – in order to obtain voluntary goal-directed 
movements. 

The VOR is always turned on, and any stimulation allows the robot to 
obtain more data, which are used to tune the vestibulo-ocular response. 
When the first multi-joints eye-head movements are practiced, the VOR is 
already effective in facilitating coordination. This is important as pointed 
out in the following chapters. 

1.6.2 The big show after learning 

Once head and arm controls are in place, the robot can orient 
appropriately toward moving stimuli, follow them while moving, and 
eventually, it can try to touch the tracked object. Roughly speaking, 
Babybot starts by looking at objects, which are identified because of their 
motion. It can correctly saccade, and it possesses a sort of smooth pursuit 
ability. It is worth mentioning that only the eyes are controlled directly by 
means of visual information. The redundant DOF are easily “centrally” 
coordinated. This ability to gaze is the first step toward yet another 
visually driven behavior: i.e. reaching. By mapping gaze direction into 
appropriate motor commands, the robot can effectively reach for objects in 
extrapersonal space. Moreover, thanks to a low stiffness controller, 
Babybot can safely interact with humans and the external environment. If 
we wish to build a truly autonomous system, this robot-environment-
humans interaction is of paramount importance. 

Figure 4 shows the robot’s trajectories of both the fixation point and 
the arm end-point. They were acquired during an unrestrained 
experiment: that is, an experimenter handled the target, in such a way to 
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cause the robot to react. The whole experiment endured for about half an 
hour during which joint positions were recorded at 25Hz rate. Two more 
plots, in Figure 5, show the same trajectories from different viewpoints. 

1.7 Discussion 

This chapter, as well as presenting the formulation of our aims and 
goals, showed informally that biological systems, which manifest a 
remarkable adaptive and skilled behavior, do not come with monolithic 
control structures. On the contrary, especially in the very first periods of 
their life, they go through a peculiar sequence of developmental events. We 
argued, that newborns are not a sort of “tabula rasa”: they possess a series 
of stereotyped behaviors implemented as reflexes. We also pointed out, 
that noise might play a role in allowing the controllers to explore the 
available “state space”, but more importantly, that the control structure 
changes during development – mostly because new modules come into play 
and some of the existing ones become embedded or mixed together. 

Furthermore, this chapter presented some experimental results from 
“brain sciences”, which support this view. We discussed what might be 
relevant for “artificial development”, that is for mimicking a 
developmental process in an artificial system. We also suggested that, 
through testing models by using a robot, we might address specific 
biological related questions, or suggest novel testable hypotheses. 
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Figure 3 The developmental stages. The diagram above 
approximately shows the interleaving of the developmental 
stages; abscissa represents time. The first step is the acquisition 
of the closed loop gains; reflex-like modules control the arm sub-
system. After a while, learning of the saccade control begins. 
Whatever movement of the robot also stimulates the inertial 
sensor: this information is used to tune the VOR. Eventually the 
eye-head coordination is acquired together with a more effective 
head-arm coordination map. 
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Learning neck map 
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Figure 4 Gazing and reaching. Two trajectories are shown, the 
fixation point and the arm end-point respectively. The simple 
wire-frame model represents the robot. Small circles indicate 
joints; solid lines are the links. Concerning the fixation point, two 
different marks can be distinguished: the crosses represent the 
time instants when tracking was of smooth pursuit type, the 
small squares are related to saccadic control. Note that the arm 
end-point follows the motion of the fixation point up to the 
moment when the target is too far away to be reached. 
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Figure 5 Two views of the same trajectory plot shown in Figure 4. 
The upper panel is the lateral view; the lower plot represents the 
top view. As before, fixation point and arm trajectories are 
shown. The fixation point motion is described by either cross 
marks (when smooth pursuit is active) or square marks (saccadic 
control). 
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2 The learning problem 
t has been recognized that learning from examples is an ill-posed 
problem (Vapnik, 1998), (Poggio, Torre, & Koch, 1985), (Geman, 
Bienenstock, & Doursat, 1992). Every learner faces the so-called 

“theoretical pressures”, which require balancing competing needs in order 
for learning to be feasible. Recently, a number of theories on learning 
formalized these problems (Vapnik, 1998), (Carpenter & Grossberg, 1986), 
(Sutton & Barto, 1998). Generally speaking, a learner should be able to 
learn from incomplete information, using a limited number of samples, and 
quickly enough to cope with changes in the environment, as well as of its 
internal physical parameters (e.g. growth, malfunctions, etc). The first step 
for any learning agent is that of acquiring information through the 
interaction with the environment. However, without any a priori 
information, it is hard to tell which part of the “state5” space is worth 
exploring in order to solve a particular task. As a matter of fact, the size of 
the state space might consist of hundreds of dimensions, which precludes 
any type of enumerative search for a solution. However, it is not always 
true that the solution belongs to the whole state space; on the contrary, in 
many cases the actual problem rests on a lower dimensionality manifold 
(Schaal & Atkeson, 1998). This suggests that, if the learning process is 
carried out together with the identification of the relevant sub-manifold, a 
complete exhaustive search can be avoided. 

It turns out that learners have two competing requirements in terms 
of exploring the control/state space, and in responding as much as possible 
appropriately to stimuli (i.e. exploit their knowledge). Recent research on 
human development suggests that such exploration component might be 
provided naturally by noise. In fact, newborns show several noise sources: 
due to incomplete structures (non-myelinated neurons are an example); 
due to unnecessary neural branching (such as in the neuro-muscular 
junction); and, by using random behavior actively (latencies on saccade 
generation). This role of noise during learning resembles the usage, in 
system theory, of broadband (e.g. white noise) input signal for system 

                                                      
5 The state space can be a proper state space, the parameters manifold, or a 
combination of the two depending on the kind of learning algorithm considered. 
The discussion presented here applies to all of them. 

I 
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identification purposes. In other words, the system has to be “excited 
enough” in order for identification to be feasible. Of course, if the control 
were noisy, motor tasks would not be accurately fulfilled; on the other 
hand, if the learner were too “static”, it might never learn the correct 
solution to the task. 

Further, other researchers provided evidence for the existence of a 
strong “goal-directed” behavioral component, even in newborns (Streri, 
1993). There might be a twofold reason for that: firstly, even if high 
exploration rates might be useful, a complete random behavior could be 
remarkably inefficient6. Instead, a mixture of “goal-directed” command 
generation and noisy control could balance the two requirements. 
Secondly, the fact that the behavior is goal-directed can speed up the 
acquisition of the appropriate controller, e.g. imagine a task with a single 
target state, in this case a goal-directed agent might solve the problem for 
only a relatively small neighborhood of the target. On the contrary, a 
random explorative search has to test all possible states, unless some a 
priori knowledge is inserted into the system. Lacking of any constraint, the 
random “explorer” needs to visit all possible states prior to any actual 
control; otherwise, a possibly useful part of the state space might remain 
unexplored. 

Furthermore, the cooperation of many control loops developing with 
different time spans can help in reducing the already mentioned 
exploration space. Roughly speaking, each control loop generates a bias for 
subsystems that develop later. In the context of “computational motor 
control”, one notable example of such a schema is the feedback-error 
learning model (Kawato, Furukawa, & Suzuki, 1987). In this case, an 
inverse modeling is carried out through the interaction of a learner with a 
much simpler feedback loop. Similar multi-loop structures can also be 
observed in the brain. An example of this process is the so-called cortical 
take-over, where cortical areas develop on top of sub-cortical structures. At 
birth, the sub-cortical loops control behavior, although imprecisely. As 
development progresses, the cortex takes over the control process and 
eventually establishes a functional projection toward the sub-cortical 
circuitry (Stein & Meredith, 1993). It is worth stressing that this process is 
not definitely on/off; in fact, the motor output could be a combination of 
multiple streams’ output as well. Furthermore, the delay and bandwidth 
involved in the various structures can be different thus providing the basis 

                                                      
6 If the state space is n-dimensional the search and selection of a proper behavior 
(in the worst case) can cost up to O(n!). 
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for faster reactions (reflex-like) and accurate control at the same time 
(consider, for instance, the visuo-vestibular integration). 

Implicit in the preceding discussion is the assumption that the 
learning agent is functional from the beginning, which means that the 
training data must be collected on-line. This is a major constraint for 
biological as well as artificial systems. Concerning biological systems, it is 
clear that they could not be some sort of “blank slate” at birth; they rather 
need to have some useful bootstrap functionality. These initial behaviors 
are usually reflex-like and stimulus bound in nature (Bekoff et al., 1989), 
(Hadders-Algra et al., 1992). They can be thought as the initial bias7, and 
perhaps their role is indeed that of guiding the system through feasible 
regions of the state space. 

It is worth stressing that the exploration-exploitation tradeoff is 
closely related to the well-known engineering problem called “the curse of 
the dimensionality” (Bellman, 1956). In fact, the need for representational 
resources grows exponentially with respect to a linear growth of the 
number of dimensions. For an on-line learner, the time to explore the state 
space would suffer of this remarkable growth. Moreover, the bigger the 
space the sparser the data. Indeed, it has been shown that there is a limit 
on the mathematical consistency of topographic mapping based on 
neighborhood relationships (roughly 20 dimensions) (Scott, 1992). The 
latter also has been shown to be an overall organizing principle in the 
brain (Hubel & Wiesel, 1977), (Hubel & Wiesel, 1974). Hence it might be 
important to limit the size and dimensionality of the state space, which 
would allow topographic mapping to be carried on reliably. 

To recap, we can ask the following question: what are the practical 
consequences, in terms of learning and particularly on the learner’s 
functional organization of the “theoretical pressures”? We should note that: 
firstly, if a system is highly biased, it is of course easy to train, although it 
might suffer of poor learning (approximation) performances. On the other 
hand, if it is too general it might be very hard to gather the required 
training set. Even in this case, learning would be neither optimum nor 
particularly close to it. Secondly, whenever the system is general enough, 
the state space tends to be extremely big. At the same time the learner 
needs to explore such a state space, though it needs also to behave 
properly (exploitation), which seems to preclude a pure random 
(enumerative) exploration. Biological systems overcome the impasse by 

                                                      
7 Proper bias selection leads to another impasse usually called the bias-variance 
dilemma. 



Babyrobot: a Study on Sensori-motor Development 

 

 42 

adopting a series of different mechanisms. The following sections describe 
in details some of these aspects. 

2.1 Bias and variance 

In the context of function approximation (including some neural 
network models), the bias-variance dilemma (Geman et al., 1992) can be 
illustrated qualitatively by observing that, in the case of a norm-2 based 
error e, it can be decomposed in two terms (Ljung, 1987): 
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The first addendum is called “bias”. It measures the distance of the 
optimally tuned approximator )(x,wf oˆ  from the unknown target function 
f(x). The second term (“variance”), on the other hand, represents the 
distance of the current parameter approximation )(x,wf T

ˆ  from the optimal 
one. E represents the statistical expectation operator. The dilemma 
appears when we try to jointly minimize both components. In fact, if the 
model is highly biased, it might not grasp the true function embedded in 
the training set, although the variance might be low because of the 
reduced number of parameters. On the contrary, if we increase the model 
complexity, the bias is reduced but the variance is increased unless we also 
increase the training set size. In other words, simple models are easy to 
train and should be preferred unless we realize that they are too limited. 
In the latter case we can resort to some improved model by increasing the 
number of free parameters (i.e. the model complexity). 

The effect of employing a high bias is that of over-smoothing: that is, 
the approximation does not faithfully follow the training data, because the 
model is inadequate to approximate it appropriately. On the contrary, if 
the model is too complex, the opposite happens: the approximation will 
follow every single variation in the data set, maybe also those which 
require a very high slope. In this case, generalization is lost, unless a huge 
training set is employed – infinite in the limit. The majority of the learning 
theory obtained results concerning the behavior of the approximations in 
the limit; of course, this is not realistic. Modern theory of learning, started 
considering also those cases where the training set is limited (Vapnik, 
1998). 

A sensible strategy to balance bias and variance could be that of 
controlling the model complexity so to avoid either over-fitting (see an 
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example in Figure 6) or over-smoothing – a very elegant solution, of mainly 
theoretical interest, is presented in (Vapnik, 1998). 

Without entering into the details too much, it has been conjectured 
that growing networks are able to cope with the situation. Furthermore, 
some researchers reported that the expression power of such models, 
employing complexity control, might be superior in terms of learning 
performance (Quartz & Sejnowski, 1997). 

 

Figure 6 A neural network (RBF) over-fits the data. In this case, 
a very limited training set was used. The network has more units 
than training points and consequently cannot properly 
approximate the data. 

Proper bias selection leads to the question of what the appropriate 
starting point is. As described in section 1.5, biological systems possess a 
repertoire of movements and reflexes, which are exploited as a sort of 
“bootstrap” functionality. In broad terms, they can be seen as a sort of bias 
– or basic behaviors. On the other hand, because the control system is 
“growing”, it is also true that the basic behaviors could be either extended 
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or removed if no longer necessary – i.e. the system is not limited to those 
behaviors or their combination. 

2.2 Exploration versus exploitation 

Though the bias and variance dilemma concerns general 
approximators, there is another major constraint for “on-line” learners. 
Actually, getting training data on-line poses yet another requirement: i.e. 
to explore the learning space. The “learning space”, depending on the 
algorithm considered, might consist, for example, of the Cartesian product 
of the input and the output space or the space of “tunable” parameters. 
Beside the size of such a space, which might consists of dozens of 
dimensions, the learner cannot only devote all resources (time) to testing 
different input-output combinations. It is clear, in particular for biological 
systems, that learning must take place in a reasonable amount of time. 
The learner could not just test all possible combinations (randomly) before 
taking a suitable action. It has also to employ its skills to try to solve the 
task itself (though it could not be the optimal strategy). The words of 
Sutton and Barto (Sutton & Barto, 1998) nicely resume this point: “…in 
interactive problems it is often impractical to obtain examples of desired 
behavior that are both correct and representative of all the situations in 
which the agent has to act. In uncharted territory – where one would expect 
learning to be most beneficial – an agent must be able to learn from its own 
experience” p.4. 

In other words, it turns out that the learner has to balance these two 
requirements: exploration of the state/learning space and exploitation of 
the current abilities at the given phase. This is a particular feature of on-
line learners and it is never encountered if we deal, for example, with 
traditional supervised learning. If we provide the system with a training 
set, of course the problem is simplified. 

Moreover, we suggest that the organization of the learning modules 
might be designed in order at least to reduce the problem. This is because 
if many sub-systems have control of the same physical structure, it might 
happen that not all the state/learning space has to be explored. One 
module, for instance, can provide the training signal for another, thus 
reducing the actual search. This concept might be very well exploited by 
biological systems, in fact, as already pointed out, they do not come as a 
monolithic structure, rather they show a modular one where different 
parts develop one on top of the other. 

To illustrate this last point, we carried out a simple simulated 
learning experiment. The idea here is first to test two components of a 
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double loop schema in isolation (namely an inverse model acquisition and 
a closed-loop controller), and finally to show how they perform together. 
The goal is that of controlling a discrete linear system in order to reach a 
stationary target. The learner does not have direct access to the state 
though, it can be measured through a non-linear channel as shown in 
equation (2): 
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where xt is the state vector at time instant t, ut the control variable and ∆T 
the time interval of the simulation. The measure of the state y is non-
linear, and k  is a normalizing factor. The state space is bi-dimensional 
and the system is forced to lie within the region xt∈[-5,5]×[-5,5]; the 
quantization step is equal to one (overall the space consists of 121 cells). 
The goal of the controller is to learn how to move the system to (0,0) in the 
smallest amount of time. We tested three different learning models, 
namely: 
• The random explorer. This controller uses a map (look-up table) to 

associate previously visited states to commands. The idea is that of 
randomly interleaving “goal directed” commands and random 
motion. A new correspondence between visited states and motor 
commands is stored, if and only if, the new tested value can reduce 
the distance from the target more than the possibly previously 
stored one. Otherwise, the old value is kept in the map. The 
learner exploration space consists of 114 states. 

• The closed-loop controller. This model learns the transformation 
between the error and the motor space, and uses it to drive a 
negative feedback loop controller. This is similar to what described 
later in section 3.1. The exploration space in this case is reduced to 
only 112 possible states. 

• The double loop schema. It uses the inverse model (which is similar 
to the random explorer), though the closed loop controller now 
drives the exploration. The exploration space is reduced from 114 to 
112 because the closed loop subsystem provides the correct training 
samples to the inverse model mapping. 

The three systems were tested for 5000 control cycles. We measured 
the average reaching time from a random position within the state space 
to the target in (0,0). Further, we counted the number of successful trials 
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over the 5000 cycles. We kept the testing to the initial stages of learning in 
order to evaluate the learning performance themselves, rather than the 
steady state solution to the problem. The comparative results are shown in 
Figure 7. The plot represents the number of successful trials for the three 
different cases as a function of the exploration noise. Noise represents here 
the probability of taking a “greedy action”8 respect to a “random 
explorative” one. 

 

Figure 7 Results of the performance test of three learning 
algorithms. Abscissa represents noise (i.e. the probability of 
taking a “greedy” action versus an explorative one), ordinates the 
number of successful trials out of 5000 control steps. These 
results endorse the hypothesis that the solution to the control 
problem actually lies in a sub-region of the whole control/state 
space – there are in practice “wrong” regions of the state space, 
which do not need to be explored. In this case an algorithm such 
as the closed-loop or the inverse model based one performed 
comparatively better than a “random explorer”. In terms of 
performance the “inverse model” schema is running two orders of 
magnitude better than the “random explorer”. 

                                                      
8 Greedy means that the action is directed at exploiting as much as possible the 
current knowledge about the problem, without considering that in the long term, 
an exploratory one might lead to better results. 

Comparison

0

200

400

600

800

1000

1200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Noise

N
u

m
b

er
 o

f 
tr

ia
ls

Random Explorer Closed-loop Inverse Model



The learning problem 

 

 47 

Lower values of noise mean that the system is behaving more 
greedily. As can be seen, there is an optimum of the noise level (the 
maximum in the plot), and this is attained at different noise levels by the 
various learning strategies. In fact, it is likely that the more goal-directed 
methods (i.e. “closed-loop” and “inverse model”) require a smaller amount 
of time in order to get useful information (i.e. a working controller), and 
consequently they require less noise. This is reflected also by the fact that 
they are performing comparatively better. 

2.3 Stability and catastrophic forgetting 

Another problem, frequently encountered in connectionist models, is 
the so-called catastrophic “interference” or “forgetting”. While doing 
sequential learning, that is presenting a sequence of patterns to be 
learned, connectionist models show an abrupt forgetting of previously 
learned patters (French, 1999) – human learning, on the contrary, shows a 
gradual smooth forgetting. The problem is the downside of the stability-
plasticity dilemma; in other words, how can a distributed network be 
plastic to new inputs and, at the same time, stable to previously learned 
associations? 

The problem turned out to be tightly linked to the presence of a single 
shared set of weights. In practice, the fact that new inputs influence all 
weights in the network causes also interference with old learning. In order 
to alleviate this effect, networks with semi-distributed sets of weights have 
been proposed. The solution separates new learning from old learning. 
This has been shown to allow partially graceful degradation. 

There is no clear theoretical study on this problem. An outstanding 
model, which has been suggested to have links to how the brain eliminates 
the problem, is the dual architecture. In practice, there are two modules, 
one is a standard connectionist network (called processing network), and 
the second is a control network, which has the task of modulating the 
weights of the first (Rueckl, 1993). There are clear hints that the solution 
lies halfway in distributing the representation of the weights and in 
separating processing from control, in order to discriminate newer inputs 
from older ones. Some researchers suggested that part of the brain 
organization might indeed be employing this mechanism, with the 
hippocampus being a fast learning module and the neocortex a gradual, 
slower, one. 

In this sense, we argue that some of the key factors for the success of 
a learning architecture might be the particular design choices, in terms of 
distribution and representation of the input patterns – see localized 
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receptive fields – and the interaction of modules with different structural 
architectures. As shown earlier in section 2.2, a single structure would fail 
in the task, while many interacting modules might succeed. 

2.4 Dimensionality: the big curse 

Yet another major problem faces learners: the curse of the 
dimensionality. The problem was first noticed by Bellman in the context of 
dynamic programming (Bellman, 1956), where he noted that the need for 
memory resources grows exponentially for a corresponding growth of the 
number of dimensions of the state space. 

 

Figure 8 A cartoon drawing illustrating the effect of constraining 
the state space. In this case, dimensionality is reduced because 
the problem itself is inherently two-dimensional. Furthermore, 
another principle is shown: though the initial formulation is 
made on ℜ3, the actual problem has its own precise limits – i.e. it 
is defined on a limited set of points. On top of this, the learner 
can apply a variable resolution-coding schema, thus maximally 
exploiting a limited amount of resources. 

As an example, imagine that we have to allocate a memory location 
for each element of an N-dimensional space. Imagine also, you decide to 
sample uniformly the state space; each component of the N-dimensional 
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state vector would be quantized using Q different levels. The total required 
amount of memory, in this situation, would be QN – i.e. exponential in the 
number of dimensions. Clearly, as N grows we would have problems 
obtaining and handling such a large amount of memory. 

Is there any solution? Any chance to cope with this problem? Actually, 
the answer is “maybe”. There might be methods to alleviate the problem. 
One can devise a schema with variable resolution, where the sampling is 
changed dynamically on the basis of some “usefulness” criterion. This is 
also observed in the brain, where most of the mappings belong to this 
category – just think about the sensory maps (Hubel & Wiesel, 1974). 

The other strong hypothesis we argue about is that the actual problem 
does not necessarily belong to the whole N-dimensional space. Some 
authors (Schaal & Atkeson, 1998) noticed that in many cases the actual 
solution lies in a lower dimensionality sub-space. Our conjecture is that, 
furthermore, each single module may need to know only about a limited 
part of the state space, which may be determined by how the module itself 
is connected (inserted) in the whole schema. The picture below shows this 
principle graphically. On the other hand, it is hard at the moment, to go 
farther than this, because other questions arise: how can we design 
learning modules in order to exploit this beneficial interaction? What is the 
role of the environment in shaping such interactions? Unfortunately, we do 
not have answers yet. 

2.5 Is the environment interaction necessary?9 

We address here the necessity of “embodiment” in the light of the 
bias-variance dilemma discussed above. As pointed out by Vapnik (Vapnik, 
1998), the problem of learning from a small training set can be addressed 
by means of the Structural Risk Minimization (SRM) technique. Roughly 
speaking, SRM consists in choosing “hypothesis spaces” with increasing 
VC capacity, and finding the optimal one in “some sense”. The theory has 
been extended also for cases where the VC dimension is not directly 
utilizable (i.e. it is infinite) (Evgeniou, Pontil, & Poggio, 1999). Although 
these results are mainly of theoretical concern, they suggest what one can 
expect to be learned by a statistical learner from a limited amount of 
information. 

In practice, at least for the standard SRM technique, it is possible to 
determine bounds on the consistency of the solution. It turns out that the 
bounds depend both on the “empirical error” and on the “VC dimension” 

                                                      
9 Refer to (Vapnik, 1998) for the definition of VC dimension. 
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itself. In this sense, a high VC dimension gives a low “empirical error”, 
though the quality of generalization decreases consequently. Note also that 
the true “unknown” function may lie outside the hypothesis space, so that 
the minimum might not be necessarily small – this is called 
“approximation error”, and can be evaluated by means of techniques 
borrowed from standard approximation theory (Lorentz, 1986). 

Furthermore, Evgeniou et al. (Evgeniou et al., 1999) have shown that 
SRM can be related to regularization theory. In this sense, there is a 
formal justification of many of the artificial learning techniques, such as 
Radial Basis Functions networks. It is fair to say that, from the practical 
point of view, “cross-validation” is the most effective technique because 
SRM (involving the VC dimension) is computationally intractable. In other 
words, both SRM and regularization methods propose, in order to cope 
with the ill-posed nature of the problem, to optimize yet another 
parameter: the capacity of the approximator for SRM, or the smoothness 
coefficient, in the case of regularization. Both strategies are equivalent 
under some precise conditions. 

What is the link to biological learners? What’s about “artificial 
learners”? Again from the theoretical results, we notice that a consistent 
solution needs to be found by regularization, or by exploring the sequence 
of hypothesis spaces. That is, the regularization parameter has to be 
optimized as well – read cross validated. This has a profound impact on 
the learner, because without the interaction with the environment there is 
no chance to perform a proper cross-validation. On the other hand, for an 
embodied learner, there might be the chance to evaluate the network 
“model” by measuring some “performance parameter” on a global level. 
This sort of signal behaves as a reinforcer by telling the learner whether 
the model is “good” or “bad” for the task. 

A biologically plausible mechanism, which is supposed to provide 
reinforcers, is the emotional system. Speaking from a purely biological 
point of view, emotions can be seen as “states produced by reinforcing 
stimuli”. Some neural structures like the amygdala, the orbital cortex, and 
the cingulate cortex, as well as other sub-cortical areas are involved in the 
processing of such signals (Adolphs, Tranel, & Damasio, 1998), (Ledoux, 
1996). Among them, the amygdala seems to play a crucial role, being 
implicated in the learning of associations between stimuli and reinforcers. 
Without entering into details, the emotional system areas collect a huge 
amount of different sensory afferences, and combine them in order to 
establish “some general properties” of a given situation (like the goodness 
of the situation). Besides allowing fast reactions, for instance, in dangerous 
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situations, those areas influence the sensory processing, and the learning 
itself. In this light, it is clear that the agent-environment interaction 
becomes a key factor for a successful learning process. 

2.6 Do we need to “perceive” in order to control our movements? 

Many recent results favor the fact that the brain possesses specialized 
areas dealing with different kind of information for different purposes. An 
example, and perhaps the most influential, is the Milner and Goodale 
(Milner & Goodale, 1995) proposal of the two streams (i.e. “what” and 
“where”). These vision-related processing pathways have been correlated 
either to the response properties of neurons (magno vs. parvo) or, more 
recently, to different frame of coordinates for the representation of the 
visual space (allocentric vs. egocentric). 

This is yet another example of the compartmentalization of the brain, 
where different modules, though working in parallel and together, carry 
out different computational processes. 

The relevance to these results for our developmental model comes 
mainly from further experimental evidence (Atkinson, 1998), showing a 
different developmental time course of the different pathways. As already 
mentioned, in light of what discussed in section 2.4, the “state space” of the 
system, might be constrained (for the learning purpose) because eventually 
all these pathways converge and control the same “plant”. In other words, 
not all the variables (connections) are free to change, and not all the space 
needs to be explored. 

There is evidence also for different performance levels within the 
attentional system, whether or not an “involuntary” attentional 
mechanism is employed in a given task (Posner, 1980). More recent results 
showed that the there is a dissociation between the proximal and far 
spaces, which is related to the underlying coordinate systems – egocentric 
for proximal/manipulation space, allocentric for distal/perceptual space 
(Maringelli & McCarthy, 1999). 

Though not explicitly investigated in this book, the same principle 
might be useful for designing a complex artificial system. Consider, for 
instance, that one of the most influential “copied” models was the Marr’s 
computational model of the visual system (Marr, 1982). In brief, by 
processing images AI researchers tried to extract precise physically 
meaningful quantities, such as 2D/3D representations of the visual scene – 
probably they were somehow misguided by Marr’s intuitions. Is it really 
what we need for controlling our movements? Do we really need to 
“perceive” in order to, let’s say, grasp a visually identified object? 
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Our personal feeling is that the answer is no. That is, motion control 
can be performed by a simple processing, taking care to extract only the 
relevant information. This is also economical, in terms of the required 
computational power: resources are allocated where needed. Another 
question is whether the robot can identify what is relevant for a task just 
by using a learning procedure. 

As a matter of fact, it could be better to have many simple modules 
working together, rather than a huge single control structure (aka old-AI-
style). Nonetheless, the former approach has been pursued only recently 
(Brooks, 1986). 

Our experiments on the robot show, in some sense, that this is the 
case. Resolution is not high, vision is crude, the controllers simple, but 
nevertheless the system can gaze appropriately and reach for objects in its 
extrapersonal space. That is, nine degrees of freedom are under adaptive 
control just by employing about 4000 visual receptors (overall), and by 
using very standard PCs! 

2.7 Noise is everywhere 

As we suggested at the beginning of this chapter, noise might play an 
important role in driving the exploration of the state space, which is 
necessary for learning to be carried out. This is true for whatever 
identification schema employed. Generally speaking, identification needs 
information about the unknown plant. If we restrict our discussion to 
linear dynamical systems, for instance, the identification procedure would 
consist of providing a suitable input to the plant, and observing its output. 
The best input is a unitary pulse, its output the pulse response of the 
system that, in the case of linear system, would uniquely characterize its 
behavior for all possible inputs. In the frequency domain, the pulse is 
characterized by a flat unitary response over the whole spectrum. Thus, 
the pulse stimulus provides the maximum amount of information for the 
system identification purpose. 

In everyday life, plant dynamics may be strongly non-linear thus 
requiring many different inputs in order to characterize completely the 
system’s response. Nonetheless, the necessity to use broadband input 
signals (stimuli) remains. 

Noisy inputs have the same spectral characteristics; for instance, 
white noise has a flat response over the whole spectrum. Again, in real life 
problems, even a band limited (but large enough) signal can offer 
significant advantages over a narrowband signal. This situation has, in 
reality, profound links to the exploration-exploitation dilemma discussed 
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above. In fact, though exploration is facilitated by noise, which allows easy 
system identification (read learning), it compromises the task execution. 

We conjecture that some natural “noise sources” in the brain could 
actually facilitate learning by keeping the “plant” stimulated enough. They 
would play the role of the aforementioned broadband signals. The amazing 
part of the story is that these sources are likely to disappear during 
development; that is, once the plant is mostly identified, they do not need 
to be operative anymore. These can be seen as an endogenous mechanism 
allowing system identification; it is clear that another major role in 
learning is played by the environment influences, we should not forget that 
by “depriving” a learner, learning itself is compromised. 

One possible source of noise might be due to the immature pattern of 
neural innervations (Purves & Lichtman, 1980). Concerning, for example, 
motor control, at birth each muscle fiber may be innervated by more than 
one motor neuron. On the contrary, the adult counterpart shows that each 
muscle fiber is contacted by one, and only one, motor neuron. This pruning 
phenomenon is probably determined by trophic factors. 

Another similar situation can be observed in the Purkinje neurons in 
the cerebellum. In the adult, each Purkinje cell is innervated by only one 
climbing fiber, while during development inputs come from many fibers. 

These early configurations might cause problems, and consequently 
noise, in the control of movement thus serving as an endogenous noise 
generator. 

Another source of noise, during development, is caused by the lack of 
myelination. Neurons, which are known to be mylinated in the adult, 
complete the process only postnatally (Kandel, Schwartz, & Jessel, 1991). 
Myelin provides an insulation sheath to axons, and consequently reduces 
transmission times for action potentials. On the contrary, when 
myelination is lacking, such as in some pathologies (multiple sclerosis), 
conduction delays increase or sometimes transmission is blocked. In this 
cases, defective transmission leads to defective movement control. 

These results suggest that beside the actual stimulation, coming 
through the sensory channels, some endogenous “devices” might be 
essentials for proper learning to take place. 

2.8 Discussion 

This chapter reviewed some of the characteristics of the learning 
problem in the light of the developmental approach we proposed in chapter 
1. In particular, we showed that biological systems, of course, are equipped 
to deal with the troublesome situations outlined in the previous sections. 
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For instance, bias and variance might be balanced by growing networks, 
but also by employing a suitable initial state; it can be seen as a general 
problem concerning learning either at the network level or at the group of 
networks (areas). We pointed out that gathering the training set is not an 
easy task because, in spite of the huge amount of information coming 
through the sensory channels during the interaction with the environment, 
the learner has to balance the resources devoted to exploration and those 
dedicated to exploitation. Noise, in various forms, improves this 
exploratory tendency by keeping the “plant” excited enough, so that 
identification can be efficiently carried out. 

In many cases, it would be also hard to explore the whole state space, 
because it might require exponential time with respect to the number of 
dimension – a biological system, in an ecological context, would be dead 
ages before it could complete the exploration. 

One point, which emerged during this discussion, is that the internal 
organization of the learner must be flexible. We argued that this “high 
level organization” should be explicitly designed together with the artificial 
learner, because eventually it might be a key factor for its successful 
behavior (survival). 
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3 A developing robot 
his chapter outlines Babybot’s adaptive control structure, which has 
been modeled based on the developmental framework introduced in 
previous chapters. As mentioned before, the idea is to have a 

system, which at “birth” uses only simple controllers – the initial 
configuration – and successively “grows” by employing more sophisticated 
modules (e.g. an inverse model, maps, etc). This sequence of successive 
developmental events was described in section 1.6.1; for clarity, we repeat 
it here (see Figure 9 below). The overall system initial state is thus 
characterized by a small number of free parameters, which can be easily 
estimated on-line. The concurrent controllers then learn on the basis of 
how the simpler loops are behaving. State space exploration is driven by 
additive noise, which simulates defective command generation (muscle 
control). Exploration and exploitation processes are carried out in parallel; 
in practice, the robot performs system identification and control at the 
same time. After eye movement control reaches a reasonable level of 
performance, the robot starts moving more degrees of freedom (i.e. the 
neck). Even at this level we stressed the biological parallelism by adopting 
a schema, which closely resembles the solution found in many species, 
including humans. We equipped the robot head with an inertial sensor, 
simulating the vestibular apparatus, which can sense the rate of rotation 
of the head respect to a vertical axis. Beside the extension of the working 
bandwidth as shown in (Panerai et al., 2000), the use of the inertial 
information also simplifies command generation. As we shall see, the 
system can work under the hypothesis that eyes and head controllers are 
decoupled, the vestibulo ocular reflex (VOR) carries out the necessary 
compensation. Concerning vision, the system employs space-variant 
images (Sandini & Tagliasco, 1980), (Sandini et al., 1981), which resemble 
the distribution of the photoreceptors in the human retinas (a brief 
description of the space variant geometry is contained in section 5.1). 
Image resolution is kept at minimum (images are 64×32 pixels), with the 
general idea of starting the robot with limited sensory capabilities. 
Without entering into the details of the actual visual processing (described 
in the appendix), we can say that the robot is able to compute the presence 
of a target and extract its position and velocity relative to the cameras (in 
retinal coordinates). The sensory abilities are complemented by 

T 
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proprioception, which is provided by optical encoders (one for each 
mechanical joint). The control variables of the robot are the joint velocities. 
An appropriate low-level closed loop controller (usually a PID controller for 
each joint) generates the proper motor driving torques. An exception is the 
arm control schema, which is based on the equilibrium point hypothesis 
(EP). As in biological systems, the position and the impedance 
characteristics of the robot arm are the result of the interaction of the 
stiffness control of spring-like simulated actuators (muscles). 
 

Figure 9 The developmental stages. The diagram above roughly 
shows the interleaving of the developmental stages; abscissa 
represents time. The first step is the acquisition of the closed loop 
gains; reflex-like modules control the arm sub-system. After a 
while, learning of the saccade control begins. Whatever 
movement of the robot also stimulates the inertial sensor: this 
information is used to tune the VOR. Eventually the eye-head 
coordination is acquired together with a more effective head-arm 
coordination map. 

3.1 The noisy initial configuration 

As starting point, consider the problem of moving the eyes toward the 
target. The simplest solution might use positional information to drive a 
negative feedback loop. The fundamental problem in such a strategy is 
that of converting the target position, which is expressed in retino-centric 
coordinates into motor commands. The latter are expressed with respect to 

Learning closed-loop gain 

Building eye maps 

Learning neck map 

Tuning the VOR 

Time 

Initial head-arm reflexes 

Building head-arm maps 
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a motor (or joint) coordinates system. If this is the case the error is 
described by10: 
 

)(tsCe ⋅=  (3) 
 
where e is the position error expressed in motor coordinates, s(t) the 
retinal error and C a coordinate conversion matrix. The matrix C must be 
designed in order to stabilize the closed-loop system. In this case the 
generated motor command is: 
 

eq ⋅−= λ�   0>λ  (4) 
 
with q�  the control variable and λ a positive constant gain. C can be 
determined imposing an exponential decay rule of the error, which is 
guaranteed if (and only if) 0<ee� . Taking the derivative of e and 
substituting yields: 
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Learning of the matrix C is carried out by acquiring discrete samples 

of the variation of the retinal error ∆s due to a variation of the joint 
variable ∆q. A least-square approach is used to compute the components of 
C. Further, it is important to define how to obtain the samples. Performing 
random movements according to the following strategy can easily generate 
them: 
 

),()( σλ 0Csq +−= t�  (7) 

                                                      
10 The following math is valid for either scalar or vector. 
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Box 3 Learning the closed loop Jacobian matrix as described in section 
3.1. The relevant components of the two matrices controlling the eyes are 
plotted with respect to time. The point here is that the learning process 
is convergent. In general, considering a discrete-time case: 

sq ∆⋅
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where jxy are the unknowns, ∆s the variation of image plane position 
(either the target or the background), and ∆q the change of joint angle 
which caused the detected motion ∆s. Note also that ∆s can be 
assimilated to the optical flow: ∆s=(u0,v0). Equation (8) can be rewritten 
as: 
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and, by collecting at least two points – i.e. (∆s, ∆q) – equation (9) can be 
solved for j11, j12, j21, and j22. The same procedure is applied for both eyes. 
The four traces presented are the only non-zero components; in fact, for 
our configuration the two Jacobian matrices are diagonal. These four 
quantities control the closed loop behavior of the three eye-related joints 
(q3, q4, q5). Abscissa is time expressed in control steps (40ms each); 
ordinates are represented as rad/pixel. 
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The first term is the closed loop formula described above; the second 
term � represents a zero mean uniform noise with standard deviation σ. It 
is worth noting that, at the beginning noise dominates (C=0, σ≠0), while as 
learning proceeds the closed loop term takes over the control of 
movements. Moreover, in order to guarantee convergence the standard 
deviation σ has to be reduced to zero. We applied the following criterion: 
 

t
k

1=σ  (10) 

 
where t is the time. The value of k was determined experimentally in order 
to balance exploration duration and noise amplitude. Experimental results 
are presented in Box 3 and Box 4. 
 

Box 4 Emergence of goal directed eye movements. We recorded several 
eye movement trials, with the robot working unrestrained – i.e. the task 
was simply to foveate some visually identified target – targets appeared 
randomly within the robot’s field of view. The results from the first stage 
are plotted below, where abscissa and ordinates represent the image 
plane, and different graphical signs mark trajectories (the target 
position at each control step – 40ms period). As expected all the 
trajectories are converging to the fovea. This plot was obtained after the 
first stage of the development process as described in section 3.1. It is 
worth noting that in this case the movements are still quite slow, and 
the number of “points per trajectory” is high. 
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3.2 The cortical take-over process 

Although the closed loop approach described above is effective, it does 
not mean it is also efficient. In fact, a closed loop approach would always 
lag behind a moving target. Moreover, if the perceived target lies in the 
periphery of the visual field, the robot would take several control steps to 
move the cameras toward it. Probably, for the same reasons, saccade 
movements evolved in those animals capable of moving their eyes. In our 
artificial system, the requirement for generating fast movements, 
emulating saccades, is to know exactly (as precisely as possible) the 
transformation between retinal error s and the corresponding motor 
command ∆q, that is: 
 

)(ˆ sfq =∆  (11) 

 
Under the hypothesis of a stationary target and a closed loop control 

in place as described above, the gathering of training pairs (each of them 
has the form (∆q, s)) is much simplified. The retinal error s is acquired at 
the beginning of the motion, while the required motor command can be 
measured when the retinal error is zeroed. An explicit exploration is not 
actually needed because the closed loop system is already generating 
proper commands (directed at reducing the retinal error – and eventually 
zeroing it). In order to relax the stationary target hypothesis, it is possible 
to acquire a new training example as soon as some control cycles have been 
performed. In this case motion of the target would influence the measure 
of the motor command only a little. Furthermore, if we assume that 
targets generally move with equal probability in each possible direction, 
the mean of the measure error would be zero. The output of the proposed 
mapping is then used to generate saccades. A proper velocity command is 
generated by converting (deriving) its output ∆s (i.e. T∆∆≅ /qq� ). Saccade 
initiation is controlled by another module, which issues a saccade 
command each time either the retinal error is greater than a fixed 
threshold (catch-up saccade) or a moving target is detected but a target is 
not currently being tracked. 

The overall loop controlling eye motion is shown in Figure 10; note 
also that the same kind of control loop has been used for the eyes and the 
common tilt axis. Before proceeding further in the design of the controller, 
a few considerations concerning performance issues are worth noting. As 
comparison term, we can consider the direct inverse modeling approach, 
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which (in theory) might be able to solve the same problem. Although it 
could in fact learn the model used to generate saccades, the inverse 
modeling scheme had to be trained off-line. Furthermore, the training set 
should be generated prior to any actual control. Even intermingling control 
and training cycles would not remove the switching process. In our model, 
as well as in others (Kawato’s feedback error learning – our model is 
similar but it uses position instead of velocity in the inverse model, and the 
error is not directly used to train the model), control and training are two 
parallel processes. This clearly fits much better in a developmental 
approach; besides, the most important property of our schema is that the 
process is intrinsically goal directed. 

 

Figure 10 The eye control schema – simplified. It consists of a 
closed loop and a feed-forward secondary loop. The loop using the 
inverse Jacobian is derived from a classical visual servoing 
approach. The secondary loop consists of an inverse model 
(indicated by “Map”). It is activated whenever necessary – retinal 
error greater than a threshold – and generates a fast motion of 
the eyes in order to foveate the target. The goal of the network is 
to learn the inverse model. λ is a positive constant gain. It is 
tuned in order to obtain stability of the closed loop system. The 
input to the robot controller is a velocity command. A low level 
controller (PID) generates the motors’ driving torques �. The 
block identified by “Saccade” is the governing logic (i.e. the 
threshold mechanism issuing the “start” signal for the fast 
motion). 
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Box 5 An exemplar trajectory after learning. Note as the first three steps 
are enough to reduce the retinal error to less than five pixels, afterwards 
the target remains in the fovea. This plot has been obtained after 
learning of the closed loop controller was completed and the saccade 
maps almost converged to a stable configuration. The two sets of points 
are relative to the left and right eye. In this case, it is clear that, the 
target appeared on the left side of the robot. 

 
 

For a particular target (goal) or subset of targets, the system learns 
only the relevant subset of the control space. Probably this is not an issue 
for the simple mapping we considered here, but it might be an advantage if 
the number of dimensions is increased. The direct approach in this case, 
even for the single goal case, would explore the whole control space. The 
fact that the whole state space has to be (randomly) explored limits the 
speed of adaptation in cases where the system parameters are changed 
(consider for example the change of physical properties of the plant due to 
growth – link lengths, inertia, sensor resolutions, etc. – for artificial 
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systems change in mass distribution, unmodeled parameters, partial 
failures). 

3.3 Controlling more degrees of freedom, eye-head coordination 

Following this hypothetical line of developmental events, there is a 
stage when the neck comes into play in the orienting behavior. It is at the 
same moment when the proprioception becomes reliable and consistent. 
Gilmore et al. (Gilmore & Johnson, 1998) suggested that the shift might be 
also observed in the coordinates system governing these movements (from 
retino-centric to head-centric). 
 

Figure 11 A hypothetical eye-head coordinated movement. The 
left panel (A) represents the initial situation preceding a saccade: 
a target indicated by the big “A” character appears within the 
robot’s field of view. The middle sketch indicates that even before 
any actual motion is started the robot computes the final eye 
positions; this efferent signal is the used to determine the 
required neck rotation. Once the appropriate commands are 
computed they are fed into the head low-level controllers, though 
because of the different inertias and programmed accelerations 
the eyes get to the target before the head motion is completed. On 
the other hand, because of the inertial sensor and the VOR the 
whole motion remains coordinated and eventually the head/eye 
system reaches a stable configuration as shown in panel (C). 
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Whatever motion strategy, it has to deal with the “degrees of freedom” 
problem. In fact, the same fixation point in the 3D world can be obtained 
using different configurations of the joint angles. The head-eye system is 
kinematically redundant; consequently, from the kinematic point of view, a 
further constraint has to be employed. We required the head system to 
achieve a symmetrical vergence configuration: that is, the neck should 
move in order to be roughly heading toward the target. A hypothetical 
situation is sketched in Figure 11. 

Each degree of freedom was allowed to respect its physical 
constraints: roughly speaking, the eyes move faster than the neck because 
of the different inertias. Limiting the accelerations appropriately also 
enforced this behavior. Concerning neck motion control, the proposed two-
loop system can deal with the situation. A PD controller governs the closed 
loop module as before. Its goal is that of zeroing the difference between the 
two eye angles: 
 

Figure 12 The neck control schema. It employs the same working 
principle of the eye controller. However there are a few important 
differences. First, there is not direct visual feedback, on the 
contrary, eye positions drive the movement of the head – the PID 
controller has to move the head in order to maintain a symmetric 
vergence configuration as much as possible. Second, the saccade-
like movement is based on the prediction of the eye positions at 
the end of the saccade – i.e. efferent copy. ∆q5 and ∆q4 are the 
output of the eye maps; they are combined with the actual eye 
positions to get a prediction of the eyes’ orientation, this 
eventually allows estimating the required head rotation. 
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Color plate 1: the experimental setup consists of a five degrees of 
freedom robot head, and an off-the-shelf six degrees of freedom 
robot manipulator, both mounted on a rotating base: i.e. the 
torso. The kinematics resembles that of the upper part of the 
human body although with less degrees of freedom. From the 
sensory point of view, the Babybot is equipped with two space-
variant cameras microphones for acoustic localization, an inertial 
sensor simulating the vestibular system, and propioceptive 
information through motor encoders. 
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Color plate 2: a view of the left eye map (see also Color plate 3). 
The “+” sign represents the most recent 300 samples of the 
training set, and the circles the position of the unit’s centers. The 
plot has been obtained after about 90000 steps performed using 
the most recent 300 samples from the training set. The input 
space (x,y) is the image plane in Cartesian coordinates (bear in 
mind that the actual data are acquired in the space variant log-
polar plane described in section 5.1), the output (the height of the 
surface plot) is the angle required to foveate a target appearing in 
the corresponding (x,y) image position. 
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Color plate 3: a different view of the left eye map (see also Color 
plate 2). The “+” sign represents the most recent 300 samples of 
the training set, and the circles the position of the unit’s centers. 
The plot has been obtained after about 90000 steps performed 
using the most recent 300 samples from the training set. The 
input space (x,y) is the image plane in Cartesian coordinates. 
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Color plate 4: the head control map. The output is the required 
velocity command (approximately the angle multiplied by the 
control rate); the input is the predicted position of the two eyes as 
described in section 3.3. The bottom panel shows a 2D plot of the 
neural network. The “+” signs are the training samples, and 
circles stands for the positions of the units; the solid lines 
represent the contour lines. 
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Color plate 5: learning the vestibulo-ocular compensation: the 
VOR map. The graph above shows the VOR network output after 
about 10000 learning steps. Note that because of the dependence 
on the optic flow, the map allows taking into account the visual 
input appropriately. There is also a dependence on the inertial 
signal as expected. 
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Color plate 6: reaching lookup table. The figure above shows one 
component of the reaching lookup table after more than 1000 
reaching trials. In order to display it (see sketch at the bottom), 
the following procedure has been applied: i) the input domain has 
been divided into a regular grid (for a total of 11×11×12 cubes); ii) 
12 slices of varying “version angle” are plotted as 11×11 2D maps; 
iii) the color intensity represents the output of the map 
controlling joint 6 (shoulder); iv) the outputs of all units falling 
into the same cube have been averaged. The output is the 
position of the EP in joint space, which is expressed in radians. 
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Original image Log-polar image 

Color plate 7: an example of log-polar mapping, note as radial 
structures in the flower (petals) map to horizontal structures in 
the log-polar image. Circles, on the other hand, map to vertical 
patterns. Furthermore, note as the central part of the flower 
occupies about half of the corresponding log-polar image. 
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Color plate 8: color processing. The upper row shows a typical 
image from the robot’s point of view: original image (left) and 
color segmented image (right). All the processing is carried out in 
the log-polar domain; images are mapped back to the Cartesian 
space for visualization purposes. The lower row contains the HS 
histograms: background (left) and object (right). Note that, as the 
histograms do not overlap, segmentation can be performed 
reliably. Hue values range from 0 (red) to 360. Saturation ranges 
from 0 (gray level) to 1 (full color). 
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)qPD(qq 541 −=�  (12) 

 
Also in this case an “inverse model” map can improve performances. It 

maps the predicted eye positions to the proper neck motion. The control 
diagram is sketched in Figure 12. Formally: 
 

)q,q(f� predpred
541

ˆ=  (13) 

 
where ∆q1 is the neck motion command, predq(4,5) the predicted eye 
positions. What does “predicted eye positions” mean? They are the current 
eye positions updated by the saccadic eye motion. The eye movement can 
be recovered using the eye maps, even before any actual motion has been 
started. In equation form: 
 

),(
saccade

),(),(
pred �qq 545454 +=  (14) 

 
This sort of signals saccadeq(4,5) is known in biological literature as an 
“efferent copy”. Despite the simple case where the two addenda of equation 
(14) are in the same reference frame, the use of efferent copy signals raises 
a series of other concerns, which are outside the scope of this book – such 
as multisensory integration (Morasso & Sanguineti, 1997). Eventually, 
both eye and neck commands are generated and fed into the controller at 
the same time. 

It is worth noting that, although the proposed neck motion strategy 
can work, there are still some performance related issues to consider; in 
fact, the motion of the head is likely to disturb the eye movement process 
(either saccade or tracking). This is especially true if the neck is 
performing relatively fast movements. In that case, by applying the 
described control strategy, the robot would likely overshoot the target. The 
overshoot is eventually compensated by the visual feedback. However, 
vision is slow compared to the kind of motion we are dealing with (i.e. a 
saccade might last from 40 to 100ms). Thus the resulting motion, though 
convergent (i.e. stable), would have poor performance (oscillations). 

We may observe that many species developed dedicated sensory 
systems devoted to measuring the motion of the head/body in space. We 
equipped our system with a similar device: an inertial sensor (a solid state 
gyroscope), as described in (Panerai & Sandini, 1998). In order to keep 
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things simple, only inertial information was used (this is a simplification 
because the brain actually integrates visual, proprioceptive, and inertial 
information (Gdowski & McCrea, 1999), (Crowell, Banks, Shenoy, & 
Andersen, 1998)). Our artificial vestibular sensor can measure neck 
angular velocity and, in the context of head-eye coordination, it comes into 
play by counter-rotating the eyes whenever the head moves (VOR). The 
VOR loop is sketched in Figure 10 together with the saccade control 
schema. For the scope of this section, in order to analyze accurately the 
saccade behavior, only the simple constant-gain VOR case is considered. In 
practice, even this simple schema improves the robot performance 
considerably. More sophisticated strategies are considered in details later 
(Panerai et al., 2000). 
 

Figure 13 Robot motor performances. The upper plot shows the 
moving window average of the residual retinal error (i.e. at the 
end of a saccade). The lower plot is the standard deviation of the 
same 300 samples. Abscissas represent the number of trials. Note 
also that the error is computed over the space-variant geometry 
of the retinal layout; consequently they should have been plotted 
on an exponential scale rather than the linear one to take into 
account the compression due to the logarithmic sampling. 
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Neck tilt control is accomplished simply by using a PD controller as in 
the case of joint 1, that is: 
 

)qPD(qq 322 −=�  (15) 
 

The behavior is roughly the same as joint 1; in fact, the PD controller 
links the two redundant degrees of freedom (eye tilt and neck tilt) as 
before. Although a vestibular compensation could be, in principle, applied 
also for up/down movements, at the moment our inertial sensor can only 
measure rotation around one axis (i.e. the vertical), consequently there is 
no such compensation for the tilt motion. 

3.3.1 What the maps look like 

As far as the gazing behavior is concerned, what we shall expect from 
the robot is that the average number of steps required to foveate the target 
should decrease over time – i.e. as the learning progresses saccades 
become more precise, and consequently the number of closed-loop steps 
after a saccade decreases. Indirectly, this is also shown in Figure 13, where 
the residual error after saccades is plotted versus time steps. The rationale 
is that: if the robot improves its performance, the retinal error, on average, 
decreases over time. We recorded from the robot for 300 trials in noisy 
conditions; that is, cluttered background, moving targets, etc. Of course 
the error on the single trial can be influenced by those unpredictable 
perturbations. It might depend also on the quality of the approximation on 
that particular point of the map. We thus applied a 100-sample wide 
moving window to the raw data, and estimated the mean and standard 
deviation inside the window. A clear trend toward the reduction of the 
average retinal error, as well as its standard deviation can be observed. 
More importantly, the time to acquire the target (not shown) is reduced 
(the better the saccade, the fewer control cycles are required to foveate a 
spotted location). 

Another way of looking at these facts is by examining the trajectories 
of the target in the image plane. We again recorded several eye/head 
movement trials at different learning stages; the robot was working 
unrestrained – i.e. the task was simply to foveate some visually identified 
target – targets appeared randomly within the robot’s field of view. 

The results of the first stage are presented in Box 4, where abscissa 
and ordinates represent the image plane, and different graphical signs 
mark trajectories (the target position at each control step – 40ms period). 
As expected, all the trajectories are converging to the fovea. This plot was 
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obtained during the first stage of the development process, as described in 
section 3.1. It is worth noting that in this case the movements are still 
quite slow, and the number of “points per trajectory” is high. An exemplar 
trajectory after some learning is shown in Box 5. Note as the first three 
steps are enough to reduce the retinal error to less than five pixels, 
afterwards the target remains in the fovea. This plot has been obtained 
after the learning of the closed loop controller was completed, and the 
saccade maps almost converged to the configuration shown in Figure 14 
and Figure 15. The maps are implemented by using the Growing Neural 
Gas algorithm described in section 5.5. 
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Figure 14 Two views of the left eye map. The “+” sign represents 
the most recent 300 samples of the training set, and the circles 
the position of the unit’s centers. The plot has been obtained after 
about 90000 steps performed using the most recent 300 samples 
from the training set. The input space (x,y) is the image plane in 
Cartesian coordinates (bear in mind that the actual data are 
acquired in the space variant log-polar plane described in section 
5.1), the output (the height of the surface plot) is the angle 
required to foveate a target appearing in the corresponding (x,y) 
image position. 
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Figure 15 The head control map. It is obtained after about 30000 
control cycles. In this case the output is already the required 
velocity command (approximately the angle multiplied by the 
control rate), the input is the predicted position of the two eyes as 
described in section 3.3. The bottom panel shows a 2D plot of the 
neural network. The “+” signs are the training samples, and 
circles stands for the positions of the units; the solid lines 
represent the contour lines. Note also that the upper-right 
quadrant is empty, because it corresponds to divergent-eye 
configurations. 
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Box 6 Animal vestibulo-ocular reflex. In animals with fixed eyes, like 
many insects and some birds, compensatory head or body movements 
produce retinal image stabilization. Primates and many vertebrates with 
an efficient oculo-motor apparatus, rely mostly on compensatory eye-
movements. As a matter of fact, the “hardware” triggering compensatory 
motor responses is common to many biological species. A wide range of 
mechano-neural transducers, functionally equivalent to rotation- and 
translation-sensitive mechanisms, are found in many species (Wilson & 
Jones, 1979). One can speculate about the advantages of these particular 
motion sensing “transducers”, but nevertheless it remains that such a 
particular design solution has been naturally selected to deal with the 
image stabilization problem. In primates, the mechanism controlling the 
direction of gaze on the basis of inertial information is called Vestibulo-
Ocular Reflex (VOR). It is subdivided into angular VOR (AVOR) – 
generating oculo-motor responses to angular head motion – and 
translational VOR (TVOR) – generating responses to linear head motion 
(Paige, 1991), (Schwarz, Busettini, & Miles, 1989). In the case of the 
AVOR, three ring-shaped sensors (called semi-circular canals) sense 
angular velocities along three perpendicular directions. In the case of the 
LVOR, the sensing is performed by the otoliths organs, which sense 
linear movements in horizontal and vertical directions, and orientation 
of the head with respect to gravity (Kandel et al., 1991). The vestibular 
reflexes are known to operate in open-loop, are very rapid and work best 
for high frequency movements of the head (Keller, 1978), (Benson, 
Guedry, & Melvill Jones, 1970), (Wilson & Jones, 1979). On the other 
hand, the visual reflexes, like the Opto-Kinetic Reflex (OKR), operate in 
closed loop, they are slower and respond better for lower frequencies of 
head movements (Baarsma & Collewijn, 1974), (Micheal & Jones, 1966). 
The human sensory apparatus is shown below. 
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Figure 16 Geometry of the head-eye system showing the 
parameters relevant for the inertial and visual measures. This is 
the reference model for the kinematic analysis of the stabilization 
as described in text. P is the gaze point at distance d from the 
head rotational axis (i.e. the neck). b is the interocular distance 
or baseline. 

3.4 Tuning the Vestibulo-Ocular Reflex 

We consider here the compensatory eye movements required to 
maintain stable fixation of a target at distance d, when the head rotates 
around a vertical, off-centered axis. Figure 16 shows the geometry of our 
binocular system for this case, and indicates the most relevant geometrical 
parameters: the inter-ocular distance (or baseline) b, and the viewing 
distance d, measured from the head rotational axis to the gaze point. The 
analytical relation among these parameters can be derived by considering 
the kinematics of this model, and by imposing the constraint that the eye 
E maintains gaze at point P when the head rotates (see (Panerai et al., 
2000) for details). Simple vector rules and differentiation with respect to 
time leads to the following expression of angular velocity ω5: 
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where Zl=½bsin(q1) represents the Z-coordinate of the left eye. Equation 
(16) determines the relationship between eye velocity ω5, and i) the 
geometrical parameters of the eye-head system (i.e. b) and ii) the distance 
d of the fixation point P, for any given velocity ω1. Equation (16) also 
makes explicit the inverse dependence upon distance. Interestingly 
enough, dependence upon distance is clearly evident in primate’s RVOR 
responses (Biguer & Prablanc, 1981), (Snyder & King, 1992), (Viirre, 
Tweed, Milner, & Vilis, 1986), (Hine & Thorn, 1987), (Crane, Viirre, & 
Demer, 1997), (Telford, Seidman, & Paige, 1998). These findings suggest 
that fixation distance might play an important role in 
simplifying/synthesizing efficient oculo-motor responses to rotational 
movements, especially in the close range domain. In this regard, note that 
the eye velocity, ω5, required to maintain fixation on near objects can be as 
much as twice the value of ω1, for fixation distances in the range 25-200cm; 
in other words, the optimal amount of ocular compensation needed to 
achieve a stable gaze can change rapidly with distance of fixation. 

One point worth stressing here is the fact that, the range over which 
fixation distance influences the optimal control of the eye compensatory 
gain (at least from the kinematics point of view), may not be very relevant 
for locomotion (e.g. a robot walking/navigating and fixating at a long 
range). On the other hand, this range overlaps entirely with manipulation 
workspace and, in this respect, might justify appropriate control circuits 
(e.g. a robot manipulating objects). 

When looking at an eccentric target in near space, the compensatory 
eye movements required to maintain binocular alignment during head 
rotations are different for the two eyes (Hine & Thorn, 1987). From the 
kinematic point of view, the origin of this asymmetry is clear if one 
compares the analytical expressions of the two angular velocities (i.e. left 
vs. right eye). The optimal compensatory velocities are given by equation 
(16) for the left eye and by the following for the right eye: 
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where Zr=-½bsin(q1) represents the Z-coordinate of it. The expressions are 
almost identical except for the sign of a few terms encoding the opposite 
position of the eyes. Equations (16) and (17) reflect the asymmetric 
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requirement of the optimal response. For example, in the case of an object 
at 30cm distance, an angular deviation from the frontal direction of 30deg 
introduces a relative gain difference between the two eyes of about 0.2; 
with a head velocity of 200deg/s, deviating 30deg from the frontal 
direction gives a relative angular differential velocity of 40deg/s. Thus, the 
angular velocities of the two eyes can be rather different in the near space. 
Although in humans there is clear evidence that, during compensatory eye 
movements, binocular alignment is not strictly maintained (Collewijn, 
Erkelens, & Steinman, 1995), this constraint might be more important for 
a robot vision system, especially if the system uses binocularly derived 
cues to control camera movements. 
 

Figure 17 The simple method for image stabilization. The 
angular sensor measures the rotation of the head. Vision, in 
parallel, senses the retinal slip. The two sources of information 
are linearly combined (using gain GAVOR and GOKR) and fed to the 
head control system. The inertial information is processed open 
loop. 

3.4.1 Visuo-inertial integration: the simple way 

The issue of synthesizing simple and effective control strategies that 
integrate visual and inertial information appears challenging. In an 
anthropomorphic binocular system, the rotational axes of the eye and of 
the head do not coincide. Therefore, a rotational movement of the head 
causes both a rotation and a translation of the eyes. If the fixation point is 
at infinity, the inertial information alone will be, in principle, sufficient to 
stabilize gaze perfectly. However, this situation might represent a 
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minority of cases. In general, as we have outlined above, to generate an 
adequate compensatory response, the information about viewing distance 
is required. We suggest a control strategy exploiting range information to 
tune the stabilization performance. The structure of the basic visuo-
inertial mechanism implemented is sketched in Figure 17. In the block 
diagram, the visual and inertial information are simply added together (in 
the biological literature this early modeling was named the “linear 
summation hypothesis”). The compensatory movement, generated by the 
inertial information, limits the amplitude of image motion to a range of 
values measurable by visual algorithms. Optic flow is therefore used to 
measure the residual error (called residual optic flow – ROF) present in 
each image after inertial compensation. 

 

Figure 18 Adaptive tuning of compensatory gains. The 
compensatory gain of the eyes is tuned according to distance of 
fixation. The adaptive gain module simply replaces the constant 
one of the previous scheme (Figure 17). 

In order to work optimally also in a context where the fixation point is 
changed in depth, a tuning scheme which adapts the compensatory gains 
to changes in distance is proposed. The scheme exploits range information, 
which is derived on the basis of proprioceptive information. The distance d 
of the object being fixated can be derived from the vergence and version 
angles, using the following equation: 
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where θp=½(q4+q5) and θv=(q4-q5). Distance information is in turn used to 
adaptively change the compensatory gains of both eyes. The diagram in 
Figure 18 describes the information flow, which implements this scheme. 
The tuning functions we propose to use at this stage are those obtained 
from the kinematic analysis. A different approach is described in the 
following section. 

 

Figure 19 Learning compensation commands: VOR gain tuning. 
In order to generate an appropriate stabilization command, 
inertial information (from the sensor) and retinal slip (from optic 
flow) are combined. The neural network is responsible for 
building such association. The teaching signal is the optic flow 
itself, which has to be minimized for stabilization to be effective. 
It is worth stressing that for the schema to work, the robot must 
be interacting with a real environment; that is the system 
evaluates on-line performance (the residual optic flow) to update 
the network’s parameters. 
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3.4.2 Tuning VOR: the hard way 

The persistent association of vestibular signals related to head turns, 
and visual signals related to image motion, guides learning in biological 
systems. However, the two source of information are weighted differently, 
as the dynamics and latencies of such signals are different. Concerning the 
development of the VOR in humans, the reflex itself is known to be present 
at birth, although probably proper tuning (i.e. learning of the appropriate 
compensation command out of the vestibular and visual information) 
requires some gain adjustments and control (Finocchio, Preston, & Fuchs, 
1991). Concerning the Babybot, as before, we envisaged two signals, which 
are relevant for image stabilization: the inertial signal and the retinal slip. 
The latter is measured through optic flow (OF) processing as described in 
section 5.2. The two sources of information are combined as shown in 
Figure 19. As a matter of fact, the network first collects the inertial signal 
and the OF then produces a suitable compensation command – that is eye 
velocities. Eventually, these compensation components are combined with 
either saccade or tracking commands. The learning process consists of 
incrementally adjusting the network parameters to improve/reduce a 
predefined “performance index” over time. To the extent of our application, 
this index is a first order approximation of the residual optic flow (ROF). 
In formulae, the network has to minimize (see also section 5.5 for a 
detailed description of the network architecture): 
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where fx is the focal length of the camera, Z(0,0) is the distance to the 
fixation point, ω1 the head angular velocity, the sum over i represents the 
actual network output. � in this case is the vector (ω1, u0). The first 
addendum of equation (19) is indeed the analytical expression of the optic 
flow obtained from the general flow equation for a moving observer, whose 
motion is constrained to rotations around a vertical axis and to translation 
along a horizontal, fronto-parallel axis – i.e.: 
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Note also the explicit dependence of optic flow on the fixation point 
distance Z(0,0), and that the translational motion is due to the off-axis 
rotation of the eyes as a consequence of the head motion. In order to carry 
out the minimization, the network learning rule is modified as follows: 
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that is, the target output is shifted by the quantity u0 from the current 
network output. Whenever, stabilization is perfect, u0=0, no adjustment is 
necessary and in fact, ∆νi≈0. It is worth stressing that time, which is not 
explicitly indicated in equation (21), plays a fundamental role in this 
schema. In fact, the optic flow used as input to the network is actually one 
time step before of that used as stabilization measure. That is, the 
measure of the network performance can be obtained only one step after 
the network has been used to generate a motion command. A delay line in 
Figure 19 indicates this last point. 

Box 7 shows some experimental results obtained out of the proposed 
approach. Two graphs present the acquisition of a compensatory command 
at two successive stages of the learning process. The upper plot shows the 
very first moments of the learning; the lower one a phase where the neural 
network almost stabilized its output – the generated compensatory 
response merely grows. Some more experimental results are presented in 
Box 8 and Box 9. 
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Box 7 Learning the vestibulo-ocular compensation. The plots below show 
how the compensatory eye commands are acquired. The robot is 
stimulated manually by random rotation of the torso. This generates 
both inertial and visual information. The neural network combines the 
two sources of information, and a compensatory command is generated 
in order to minimize the optic flow. The first plot shows the inertial 
sensor signal and the generated motor command (eye velocity) just at the 
beginning of training – both signals are normalized in the range ±1; 
abscissa is time expressed as control cycles (40ms). The motor command 
in this first stage steadily increases because compensation is not yet 
effective. On a second plot, the same quantities are displayed after some 
training has taken place. In this case, compensatory motor response is 
still growing, but at a slower rate. 
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Box 8 Learning the vestibulo-ocular compensation: the VOR map. The 
graph below shows the VOR network output after about 10000 learning 
steps. Note that because of the dependence on the optic flow, the map 
allows taking into account the visual input appropriately. In practice, 
the system generates a higher (amplitude) motor command in situations 
where the optic flow is higher – i.e. when the retinal slip is high, it is 
reasonable to use a higher stabilization command. There is also a 
dependence on the inertial signal as expected. 
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Box 9 Learning the vestibulo-ocular compensation: minimizing the optic 
flow. In order to evaluate the learning process, we analyzed the ratio 
between the inertial information (i.e. the stimulus) and the optic flow 
(the stabilization performance). The rationale is that if the network is 
behaving correctly the optic flow should, on average, decrease as 
learning progresses. The analysis consisted of plotting the optic flow 
versus the inertial signal. This operation was repeated for 300 sample-
long portions of data, extracted at different consecutive instants of time 
over the training period. The slope of the linear fitting of those data 
gives an indication of the ratio between stimuli and stabilization. The 
two pictures below show this analysis graphically for an exemplar set of 
300 points (top), and for different portions of data (each of them 300 
points long). As learning progresses the slope decreases showing that the 
optic flow is effectively minimized. 
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3.5 Saccade and VOR interaction 

This section describes the role of inertial information during gaze 
redirection: that is, saccades. In particular, the results show that when the 
inertial information is used the robot behavior is characterized by a faster 
fixation and a smaller overshoot of the target. 
In a series of repeated trials, a target is presented to the robot in fronto-
parallel plane at a distance of 100cm.Three eccentric positions are chosen, 
respectively 5, 10, and 15 degrees eccentricity. These eccentricity values 
represent a reasonable sampling of the robot visual field given the focal 
length of the cameras (7.5mm in this experiment). The movement of the 
eyes is programmed as described in section 3.3. The saccade movements 
lasted about 4 control cycles (30×4=120ms), and in this experiment only 
color information was used to extract target position and program the 
saccades. The stabilization performance is measured quantitatively in two 
cases: i) the robot generates compensatory eye movements by using the 
inertial information; ii) the inertial information is not used. The 
performance measurement is obtained in terms of: i) the target overshoot, 
that is, the transient target position error after the saccadic part of the eye 
control is completed; ii) the time interval required for a stabilization index 
(ISI11) to fall below a given threshold – see section 5.3 in the appendix for 
the description of the stabilization index. In particular, overshoot is 
computed as the difference between the minimal retinal error and the 
maximal retinal error after the saccadic movement. The threshold for the 
ISI index was empirically determined to be 0.3. In fact, when ISI falls 
below this value, processing of image features and extraction of dynamic 
parameters lead to accurate and robust measurement. Figure 20 shows the 
dynamic trajectories of eye-head coordinated movement for a saccade 
performed at 15deg angular eccentricity. The measurements are obtained 
when inertial information is used. From top to bottom the trajectories 
represent: the left eye movement, the head movement, the angular velocity 
measured by the inertial system, and the corresponding gaze angle. 

                                                      
11 Stabilization performances can be evaluated either by estimating image motion 
through optic flow processing or by using a sort of cross-correlation over time. The 
correlation measures the degree of similarity between two subsequent log-polar 
images. We employed a normalized correlation (ISI) as defined in appendix (section 
5.3), so that good stabilization maps to ISI close to zero, and vice-versa poor 
stabilization is represented by ISI values close to one. 
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Figure 20 Position and velocity information during a gaze 
redirection experiment. From top to bottom: the left eye position, 
the head position, the inertial sensor output, and the gaze 
position are shown. The head velocity sensed by the inertial 
sensor is used to generate compensatory eye movements. The end 
of the saccadic part of the eye movement is marked with a ‘*’ 
symbol. 
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Figure 21 Visual parameters computed during gaze redirection. 
From top to bottom: target retinal error (left eye), image 
stabilization index (ISI) for the left eye, target retinal error (right 
eye), and ISI (right eye). The overshoot is measured as the 
difference between the minimum (‘*’ symbol) and the maximum 
retinal error (‘+’ symbol) after the saccade. The time interval 
required for the ISI to fall below a stable threshold of 0.3 is 
delimited by two ‘*’ symbols. 
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Figure 22 Parameters measuring stabilization performance 
during coordinate eye-head movements. Top: retinal error 
overshoot: the inertial and non-inertial case. Bottom: time 
interval required for the ISI to fall below the 0.3 threshold. 
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Figure 21 shows the target position and the ISI index measured 
during the same experiment. The comparison of the data in Figure 21 
shows that: i) in the compensated case (left), the overshoot of the target is 
smaller than 12 pixels (see the difference between the marks ‘*’ and ‘+’ 
around the time unit 15); in the non-compensated case the overshoot 
becomes as large as 35 pixels; ii) the ISI index becomes smaller than the 
required threshold earlier in time (at about time unit 25 versus 55 in the 
non-compensated case). These measurements have been performed several 
times (N=6) and for different saccade amplitudes, namely 5, 10, 15 degrees 
eccentricity. Data have been averaged and standard deviation computed. 
Figure 22 summarizes the results. The overshoot for the compensated case 
is always smaller then the corresponding non-compensated case. At the 
same time, the stabilization interval required for the ISI to fall below the 
robust threshold in the compensated case is considerably smaller. In 
general, the data show that the use of inertial information in gaze 
redirection strategies leads to two important advantages: i) an earlier 
stable image of the new spotted location; ii) simpler motor control 
strategies for gaze-line redirection involving coordinated eye-head 
movements. 

3.6 Reaching 

We now have a reasonable understanding of the developmental 
progression in infant reaching – as outlined in section 1.5.2. Yet a mere 
description of a process of biological development does not shed any light to 
the issue of how physiological mechanisms of development are helpful for 
building complex artificial systems. A second step is necessary to bridge 
this gap. This step is to outline the control problems that have to be solved 
by human infants when trying to reach for objects in their immediate 
workspace. The first question to ask in the context of motor control is: 
what physiological or movement parameters does the system actually have 
to control to achieve its goal of reaching for a target in extra-personal 
space? To answer this question, consider that each limb segment of the 
human arm is moved by a set of actuators with spring-like properties. In 
the resulting mass-spring model, inertia, viscosity, gravity, etc have to be 
estimated in order to move the plant appropriately. Alternatively, the 
controller needs at least, a reasonable approximation of their values. That 
is, a first step could be the identification of the plant parameters. A second 
step, before goal-directed reaches are possible, is the mapping of sensory 
maps onto available motor maps. The system must be able to localize 
objects in extra-personal space, and should have knowledge of where its 
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limbs are positioned relative to the object – though this might not be 
always necessary. In a traditional learning paradigm, these two processes 
of calibration (i.e. plant identification and coordinates space transform) 
have to be completed before the system can begin to work on control. From 
an engineering perspective, this implies that calibration and control are 
separated. Consequently, many neural network models of arm control 
follow a learning paradigm, where the first step is the calibration of the 
system. In theory, some external teacher provides such plant knowledge, 
or the system calibrates itself by performing certain training movements. 
Subsequently, it learns to “control” the arm (Kalveram, 1991), (Kuperstein, 
1988). 
 
 
 
 

Box 10 The Asymmetric Tonic Neck Reflex. The stimulus for the ATNR 
is the turning motion of the head. This head turn triggers a complex 
bilateral synergy. The infant’s arm is extended to the side the infant is 
looking, effectively bringing the hand into the field of view. The 
contralateral arm is flexed as part of crossed extensor reflex spanning 
both homologous limbs. Thus, this multi-muscle synergy, coupling arm 
and head movements, provides an effective mean of linking visual and 
proprioceptive maps. The picture below shows the ATNR in two 3-
month-old twins. Note the typical “fencer” position with one arm flexed 
and the other arm extended. The ATNR can be elicited up to the 4th 
postnatal month. 
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Such a separation of calibration and control is not observed in the 
development of biological systems. Here calibration and control are not two 
distinct and sequential phases of development, but are intertwined, 
proceeding in parallel, and build upon each other. 

Today this view of a parallel development of calibration and control 
processes seems widely accepted by researchers working on neural 
modeling of adaptive eye-hand coordination. Yet, most researchers model 
this process as learning and not as a developmental operation (Jordan & 
Flash, 1994), (Kuperstein, 1988). Implicit to such an approach of artificial 
eye-hand coordination is the premise that all behaviors of the system have 
to be learned. However, this assumption is not necessarily true for 
biological systems. One major difference between a biological and 
traditional AI system is that a biological system does not come as a tabula 
rasa. In a wide variety of different species, one can observe stereotyped 
inborn movement sequences that are clearly unlearned. Ethologists have 
argued for a long time that many behaviors, especially those of lower 
animals, cannot be explained on the basis of sensori-motor learning alone 
(Eibl-Eibesfeld, 1970), (Gould, 1982). Newborn human infants already 
possess a repertoire of coordinated movements. For example, they can 
perform a series of complex multi-joint bilateral movements (e.g. kicking, 
grasping, etc) and have available a set of so-called primitive patterns that 
are triggered by a sensory stimulus. Yet these motor primitives may also 
serve a second function. They help to build up a relationship between 
vision and proprioception. For example, during pre-reaching the presence 
of the Asymmetric Tonic Neck Reflex (ATNR) plays a crucial role in 
allowing babies to see their hand and in increasing visual fixation of the 
hands (White, Castle, & Held, 1964), (Bushnell, 1981). A description of the 
ATNR is presented in Box 10. 

However, not all patterns of early motor behavior are stimulus-bound. 
The orienting and pre-reaching behaviors of infants already contain a goal-
directed component. The frequency and extent of these movements 
depends on the emotional and attentional state of the infant and not 
exclusively on the presence of an interesting visual object. For Trevarthen 
(Trevarthen, 1984) these early behaviors indicate that infants are born 
with a certain knowledge of or readiness for object exploration. 

Given these premises we proceed discussing how they fit into the 
artificial development of the reaching behavior. 
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3.7 Reaching: the idea and beyond 

The approach we shall follow here is directly based on motor 
primitives, representing multi-joint synergies (e.g. arm extension). In this 
case, a single command may produce complex multi-joint coordinated 
movements without the voluntary control of each individual degree of 
freedom (DOF). One example of such multi-joint synergy is the ATNR 
presented above. Another example is the grasping reflex, which activates a 
coordinated grasping movement of the hand when the palm touches an 
object. In order for this approach to be feasible and effective, the crucial 
points are how to represent the motor primitives, their developmental 
rules, and the mechanisms of sensori-motor mapping. 

As far as the coding of motor primitives is concerned, one possible 
procedure is the so-called force fields approach originally proposed by 
Mussa-Ivaldi and Bizzi (Mussa-Ivaldi & Giszter, 1992), (Mussa-Ivaldi et 
al., 1993). It is not our intention to present the whole mathematical details 
here – the model is described extensively in section 5.6. According to the 
force field theory, the action of reaching a point in space can be described 
by a force vector field converging to an Equilibrium Point (EP). The EP can 
be thought of as the point toward which the end-point of the limb is 
moving at each instant of time, and a limb trajectory can be represented by 
a sequence of EPs. The trajectory in space of the EP does not correspond to 
the actual trajectory of the arm and is, therefore, called “virtual 
trajectory”. Of course, there is nothing magic about the origin of this “force 
field” formalism. In practice, each force field is simply the result of the 
action of muscles and the EP is simply the intersection of muscles’ torque-
length characteristics (see Box 11). 

The mechanism is well suited to implement the kind of motor reflexes 
present at birth. Each reflex can be represented by a force field; this is in 
turn obtained by activating a synergy of simulated muscles. Of course, the 
robot’s actuators are not muscles, but they allow being torque controlled – 
i.e. by programming the current that flows into the motors, it is possible to 
simulate whatever characteristic in software, although with some 
limitations. The latter is of fundamental importance; the fact that the 
actuator’s response can be controlled means that we can, at least in theory, 
choose any impedance characteristic of the arm end-point. This means also 
that we might decide to control the end-point stiffness, adapting it to the 
characteristic of the task. We did not investigate further this aspect of the 
“field-based” controller; we just programmed the robot to use a constant 
low stiffness value. As a consequence, the robot is partially compliant, i.e. 
it can interact safely with the environment (including humans). 
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The situation, however, becomes more complicated when goal directed 
movements – such as reaching a point in space – are considered. In this 
case, the trajectory has to be controlled or initiated on the basis of sensory 
information. If this information were provided as a 3D position of the 
target in space, the kinematics of the eye-head system as well as of the 
arm would have to be explicitly considered in order to select and combine 
the appropriate force fields. 

The solution we propose here is based on the use of a direct mapping 
between the eye-head motor plant and the arm motor plant. One premise 
we make is that the position of the fixation point coincides – at least at 
some stage of the control process – with the object to be reached. In other 
words, reaching for an object starts by looking at it. Under this 
assumption, the fixation point can be seen as the “end-effector” of the eye-
head system. The positions of the head with respect to the torso, and that 
of the eyes with respect to the head, uniquely determine its position in 
space relative to the shoulder. Consequently, at least in principle, the arm 
force fields can be obtained by a transformation of these plant variables. 
We will call this approach “motor-motor coordination”, because the 
coordinated action is obtained by mapping motor plant variables into 
motor plant variables. 

Given these considerations, we start here a simple experiment, where 
the robot is constrained to move in a plane – i.e. only two joints are 
controlled. In this case the mapping can be expressed by: 
 

)(qC f=  (22) 
 
where f is the unknown true function which must be approximated by 
learning, q is the head joint angle’s vector (limited to 2 joints in this case – 
i.e. neck panning and the common tilt) and C is the arm activation vector, 
which has dimension equal to four – this is arbitrary, and it was 
predetermined by the experimenter. Two muscles in a push-pull 
configuration control each joint, and consequently four motor primitives 
allow all possible synergies of the (2 muscles×2 joints) four muscles. The 
controller, in this case, is shown in Figure 23. The (q, C) pairs required to 
estimate the function f are measured whenever the system is fixating its 
own hand (and not when the gaze is fixating the target). The values of the 
activation vector C are stored in a growing look-up table (the motor-motor 
coordination map), whose input space q is sampled with variable 
resolution up to a maximum predefined by the experimenter. Each unit 
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can store a corresponding output vector C. The vector stored in the closest 
cell to the query point gives the output of the map. 

If the table is queried with a point q and no unit has been previously 
allocated in an appropriate neighborhood (which implicitly defines the 
maximum resolution), a new unit is instantiated at the position q. Values 
lying inside the activation region (nearest neighbor) of each unit are 
inserted using an averaging procedure. 
 
 
 
 
 

 

Figure 23 Controller structure: motor primitives, represented by 
torque fields are combined (weighted by C1, C2, C3, and C4). The 
overall field “guides” the arm end-point toward the EP. 

Basis Fields

Σ

C1

C3

C2

C4

Linear Combination

Robot Arm

q

Control Parameters

Basis Fields

ΣΣ

C1

C3

C2

C4

Linear Combination

Robot ArmRobot Arm

q

Control Parameters



Babyrobot: a Study on Sensori-motor Development 

 

 100 

 

Box 11 Bizzi and colleagues’ experiment. By electrically stimulating a 
few sites in the frog’s spinal cord, Bizzi and coworkers showed that the 
limb movement could be coded in terms of “force fields” and an 
Equilibrium Point (EP). The experiment consisted in exposing the spinal 
cord (as shown in figure E below) in order to implant an electrode; the 
frog’s limb was connected to a force sensor. The limb was moved 
passively to different positions within its workspace and the forces with 
and without stimulation were recorded (see panel A and B). The position 
of the electrode was kept constant for an entire set of measurement. 
Force samples were interpolated, as shown in panel C, in order to get a 
continuous approximation of the underlying force field (the EP was 
identified as the point where the field is equal to zero). It was surprising 
that among all possible fields, many of the measured ones were of 
convergent type with a single EP. By stimulating different sites, the 
experimenters identified about four different fields. It has been shown 
also that the vast majority of limb movements can be coded by just 
combining these fields linearly. This is even more surprising given the 
non-linearity of actuators and neural responses. This led to the 
hypothesis that limb placement can be obtained by moving the EP, this 
is turn might be obtained by a linear combination of the four identified 
fields (which are termed “basis fields”). Panels D and E show the position 
of a force field with respect to the limb workspace. Adapted from (Mussa-
Ivaldi et al., 1993). 
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3.7.1 Initialization of the motor-motor map 

The first problem to be solved is how to initialize the map in a 
meaningful way (or in other words, what type of motor primitives should 
be used as the basis of the learning procedure). In natural systems, this is 
obtained by reflexive mechanisms like the ATNR, which might have the 
role of maintaining the arm within the field of view. In our experiment, the 
robot utilizes a discrete approximation of the ATNR by initializing the 
head-arm map so that the arm is extended roughly in the direction that 
the head is turned. The map stores three initial values for each of the four 
elements of the activation vector C corresponding to three head positions. 
Each component of the map is virtually empty, apart from the three “dots” 
representing the values C corresponding to three head positions. The three 
activation vectors uniformly span the arm workspace and were computed, 
so that whenever they are used the arm end-point would move into the 
camera field of view. Consequently, even if the choice of just three 
positions is arbitrary, this initialization of the head-arm mapping is 
advantageous with respect to a random sampling of the workspace for two 
reasons. First, the system is put in the conditions to be able to learn from 
visually measured errors (the arm is kept in the field of view); second, the 
initial values implicitly limit the exploration space to accessible and safe 
regions of the workspace. It is worth noting that initially the head can 
explore its entire workspace while only three positions of the arm are 
possible. The goal of the learning procedure is to fill the empty space of the 
maps. 

3.7.2 Trajectory generation12 

The extracted activation vectors C cannot be applied instantaneously 
because the arm has high inertia and the friction of the reduction gears. 
The application of a step command would bring the torque outside the 
operational range of the motors. To avoid this situation, a mechanism 
transforming the activation values obtained by the map into smooth 
sequences is required. Such gradual rise in force is also observed in 
biological motion (Kandel et al., 1991). A possible biological mechanism for 
incremental rise in force levels is motor unit size, with smaller units 
discharging first during the contraction (Hennemann & Mendell, 1981). To 
achieve a smooth rise in torque, we applied a linear interpolation for a 
fixed number of steps between the initial and the final activation values: 

                                                      
12 Please note that a complete description of the arm control model is contained in 
section 5.6. 
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where Ct is the activation vector at the tth time step, Cfinal the target 
activation vector, Cinitial its value when the command was issued, and nsteps 
the number of steps. At each time instant t, it is possible to determine an 
EP, which is a function of Ct by imposing: 
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The sequence of EPs defines the arm’s virtual trajectory. However, the 

sequence of C through time also determines the shape of the trajectory. Ct 
can be considered as a set of parameters, which are learnable in principle. 
In fact, they could be tuned in order to straighten the trajectories or to 
reduce overshoots. Consider the usual Lagrange equation for a planar 
manipulator: 
 

),()( qqqqT ��� BA +=  (25) 
 
where T is the generalized torque applied to the arm. Substituting the 
expression for T, generated by the set of elastic actuators and controllers, 
as previously defined, yields: 
 

),()( qqqqI ��� BAC
i

iji
j

j +=∑∑  (26) 

 
Two considerations stem from the previous equation: i) the real 

trajectory of the arm is determined by the shape and evolution in time of 
the torque field (left hand side of equation); ii) as already pointed out, the 
shape of the torque field is controlled by Ct. If the system were able to tune 
Ct, aside from the simple linear interpolation, it could also modulate the 
resulting arm trajectory precisely. Although this may be a sensible 
strategy (for example to learn how to get a straight trajectory instead of a 
curved one), it was not investigated further in this experiment. 

The overall control scheme is shown in Figure 24. The first stage of 
the processing is implemented in the map containing the arm activation 
vector. These values are interpolated and the output from the trajectory 
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generator is sent to the actuators simulator (identified by the block “Field 
generation”), which eventually generates the torque commands. 
 

Figure 24 The overall arm’s control scheme. The position of the 
head (qhead) queries the map that “computes” the activation vector 
for the arm. This stage is followed by a trajectory generation that 
interpolates linearly between activation vectors. The resulting 
force field is then computed and used to generate the torques, 
which drive the arm motors. 

3.7.3 The learning procedure 

The learning algorithm can be formally described as follows: 
 

Repeat forever. 
1. A proper stimulus appears in the field of view. 
2. The head moves in order to fixate the spotted stimulus. 
3. By fixating the visual target the robot also initiates arm motion by 

computing the arm activation vector C in the following way: 
( ) nq +if̂  

The term n describes a zero-mean uniform noise component 
introduced to simulate errors in the arm control. 

if̂  is the estimate 

of f at the ith iteration. 
4. The arm controller uses the vector C to compute the actual torques 

to drive the motors. Consequently the arm moves toward the new 
EP. 

5. At this point the arm is as close as possible to the target (initially 
it is not very close but certainly it is in the field of view), so that 
the system can re-direct the gaze to its own hand. 

6. As a result of the previous step, a new pair (q, C) is available 
which is used to update the map by computing the value ( )q1

ˆ
+if  in 

the following way: 
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where nv is the number of visits of the cell corresponding to q. If a 
cell close enough to q does not exist a new unit is added to the 
mapping. 

7. The arm then returns to a fixed resting position near the chest. 
 

 
It is important to note that if the procedure were noise free, the 

motion of the arm toward the target (end of step 3) would always bring the 
end-effector in the same final position and the system would not be able to 
learn (in fact, it would always update the same cell of the map with the 
same vector C). The motor-motor mapping, at least initially, does not 
necessarily bring the end-effector near to the fixation point (it will bring 
the arm as close as possible to the target on the basis of what has been 
learned so far). However, instead of correcting the error by moving the 
arm, the direction of gaze is redirected to the end-effector and the arm 
motor command previously issued is associated to the new eye position. In 
other words, the role of the visual target appearing in the environment has 
the only function of initiating the arm motion, while the learning process is 
based on the act of looking at the end-effector. As the learning process 
proceeds, the initial arm motion gets closer and closer to the visual target, 
and eventually, the corrective gaze shift will not be necessary unless 
kinematic changes occur. 
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Box 12 Reaching trajectories. This experiment was performed to 
illustrate the performance of the proposed approach. It describes the 
learning of ballistic reaching movements toward static visual targets. In 
order to test the performance of the system at different learning stages, 
the position in the arm’s workspace of three targets was calibrated 
beforehand by manually positioning the end-effector at target center and 
storing the corresponding joint angle values measured by the encoders. 
Each target consisted of a piece of cardboard about 5×5cm in size. 
During the training the target of the reaching task was manually moved 
by the experimenter over the arm’s workspace while the reaching 
behavior was continuously activated. From time to time training was 
suspended and performance evaluated. During the evaluation phase, the 
three targets in the calibrated positions were activated one at a time and 
the trajectory of the arm stored. The reaching error was measured by 
computing the Euclidean distance between the pre-calibrated target 
positions and the position of the end-effector at the end of the reaching 
movement. At least 30 trials (10 for each target) were executed and the 
average error and standard deviation were computed. During this 
evaluation phase the map update was stopped and the noise term 
removed. The reaching error before and after 51 trials, and after 134 
trials are reported in the following table: 

Number of trials Before 51 134 

Error (mm) 77.8±15.0 39.5±12.0 28.8±8.9 

It is important to note that trajectories are not learned by the system. 
They are just a consequence of the applied control strategy as described 
in section 3.7. A typical arm trajectory after training in joint and 
Cartesian coordinates is shown in the figure below. 
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In both graphs, the presence of overshooting of the real trajectories is 
observed. This is the effect of motion dependent forces, which are 
unknown to the controller. As a consequence the torque applied in the 
initial part of the movement brings the end-effector beyond the target. 
The “force field” approach, however, corrects this overshoot by applying a 
force in the opposite direction and partially compensates this lack of 
dynamic information. In our current schema there is no chance to “learn” 
how to avoid this overshoot because this would require tuning other 
parameters such as the stiffness, or the presence of compensating 
modules, which explicitly take dynamics into account (Ghez, Gordon, 
Ghilardi, & Sainburg, 1996). By observing the plots below similar 
considerations can be drawn. In this case reaching movements toward 
three different targets at the end of the training phase are shown. The 
trajectory toward target 1 shows the same overshoot described before. 
The opposite happens when the most distant target 3 is reached, where 
the end-effector undershoots the target. The remaining error can be 
attributed, in part, to intrinsic errors of the learning process, but also to 
the accumulation of errors deriving from friction. The trajectory toward 
target 2 shows a back-and-forth motion with the final position reached 
after a couple of adjustments. This behavior is caused by the fact that 
the system is continuously operating and, consequently, whenever the 
end-effector partially covers the target, the head shifts the fixation point 
over the center of gravity of the remaining visible part. This change of 
fixation generates a new “force field” and consequently, a new trajectory. 
Eventually, the visible part of the target does not change and the arm 
reaches its final position. 
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3.7.4 Biologically plausible trajectory profiles 

One of the most striking characteristics of human arm trajectories is 
that they show a remarkably stereotyped profile, both in terms of position 
and velocity (Abend, Bizzi, & Morasso, 1982). It is still not clear what 
criterion is employed by the CNS to generate such repetitive patterns. 
Many authors, for example, proposed an optimization criterion based on 
the minimization of either jerk or torque, with different flavors in order to 
take into account timing and smoothness of the trajectories (Jordan, 1996). 
This is not to say that the CNS is explicitly minimizing a sort of cost 
function, but nonetheless the mathematical formulation can help 
understanding which principle the CNS may use. Although we did not 
address the problem of trajectory generation, apart from the simple 
interpolation schema proposed in section 3.7.2, trajectories were measured 
for analysis purposes. 

In spite of the simple linear interpolation, we observed a consistent 
bell-shaped profile – an example is shown in Figure 25. On the other hand, 
the trajectory itself is not straight, and shows remarkable overshoots, 
perhaps because of the lack of dynamic compensation. This is to say, as 
pointed out by some authors (e.g. (Gomi & Kawato, 1997)), that the CNS 
might need to take into account dynamics when moving a limb, because 
under such low-stiffness control self-generated forces might contribute 
substantially to the total torque at joint level. In our model, dynamics is 
not explicitly considered, thus it is not surprising that trajectories are 
neither straight nor precise on the target. In any case, the “force field” 
approach allows considering even more basis fields, and we may imagine 
that some of them are built by a learning procedure. In other words, the 
robot can acquire more basis fields, which compensate for the self-
generated forces, or other external disturbances – such as gravity. 

Therefore, a further stage of development can explicitly use such 
modules and exploit external and motion dependent forces to draw 
trajectories in extrinsic space that are even more efficient. 

3.8 Improving reaching by employing more DOF 

Beside the simple 2D case presented above, the goal of the robot is 
actually to learn positioning in 3D. The 2D experiment was illustrative, 
and showed all the concepts employed for the full 3D experiment. On the 
other hand, some changes were necessary in order to speed up learning. 
The difference between the 2D and 3D experiment is described below. In 
any case, it does not change our concept about reaching: that is, a 
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representation of gaze in motor coordinates is mapped into a 
representation of the arm motor commands. 
 

Figure 25 The trajectory showed a bell-shaped velocity profile. On 
the left, the trajectory of the arm end-point: abscissa and ordinate 
represent the plane where the arm motion was constrained – 
bear in mind it was a 2D experiment. The dashed line is the 
actual trajectory sampled at 40Hz, the solid line is the “virtual 
trajectory”. In spite of the virtual trajectory that moves directly to 
the target, the actual motion showed an overshoot. On the right, 
the hand speed has a bell-shaped profile. Note the two bumps 
corresponding to the first large “transport phase” and a second 
corrective movement. Time is expressed in control cycles (25ms), 
and speed in meters per second. 

3.8.1 Reducing input size 

If we were following the approach described above, we might proceed 
by using the vector of head joints as input to the learning module – the 
lookup table. The head joints vector implicitly represents the gaze 
direction. The position of the fixation point in space can be coded by only 
three variables, while the joint vector has five. Are all these inputs 
actually necessary? The answer is no. In fact, by analyzing the controller 
behavior, we may notice that the head has two control-imposed 
constraints. First, vergence has to be symmetric – this is not to say that 
the condition is always respected in the transient, though for the steady 
state this is exactly the observed situation. Second, the overall tilt 
controller links the two available “tilt DOFs” into one. As before, the 
configuration the head is aiming at, has the eyes frontal (in terms of tilt) to 
the target. By simply analyzing the configuration of the head while 
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fixating, we may discover that gaze can be represented by only three 
variables. We carried out a Principal Component Analysis on the final 
head configurations, and found that 93% of the final head positions are 
described by only three components. 

For this reason, we do not need to code the precise position of the 
fixation point. That is, it is safe to assume gaze can be coded in terms of 
angles that specify its direction, which is what is important for the 
reaching task. 

A suitable coding of the gaze direction is in terms of the vergence, 
version, and tilt angles. Without resorting to any kinematics, they can be 
expressed as: 
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3.8.2 Reducing output size 

Looking at the controller structure, we may notice that also the 
output – i.e. the network target function – can be simplified. In the 2D 
example, the network outputs were the activation values. As shown in 
section 5.6.1, given an EP, we can easily compute the activation vector. 
The idea here is to employ the position of the EP as network output, and in 
a later stage, convert the EP position into the activation values. The 
“exploration space” size is reduced and, at the same time, the network 
output size is limited to the number of controlled joints, which is 
independent of the actual number of basis fields (which are six in the 3D 
experiment)– there are three controlled joints in the 3D experiment. 
Another advantage is that position and stiffness can be controlled 
separately. Though we always used a constant stiffness matrix, it might be 
a sensible strategy to vary the end-point stiffness during motion. For 
instance, when the robot interacts with unknown objects, the stiffness 
might be reduced in order not to damage either the robot itself or the 
external object. Kawato and coworkers (Gomi & Kawato, 1997), measured 
human arm stiffness during multi-joint movements and discovered that 
postural stiffness is generally higher than movement related stiffness. 
 

Consequently, the arm control schema for the 3D case has been 
modified as depicted in Figure 26. The learning sequence is not changed if 
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compared to the 2D experiment; in particular, the map is initialized as 
shown is section 3.7.1, and implemented as a growing lookup table. 

In the 3D case, we recorded the trajectory of the arm end-point. In 
addition we recorded the gaze direction, from which it is possible to recover 
the position of the fixation point in space. The two quantities have been 
plotted during different reaching movements in order to illustrate 
quantitatively the behavior of the robot. Note that, the position of the 
fixation point provides an estimate of the target position; in fact, whenever 
the retinal error is below a small threshold, we can assume that the 
position of the fixation point is indeed the position of the target. Box 13 
shows the reaching map plotted as a set of 2D maps – see caption. Box 14 
and Box 16 show two 100 samples long reaching trials extracted from 
about half an hour of continuous operation of the robot. 
 
 
 
 
 

 

Figure 26 The arm control schema: 3D reaching experiment. This 
schema roughly resembles Figure 24 apart from the two “light 
gray” blocks which carry on the “redundancy reduction” and the 
computation of the arm activation values starting from the 
equilibrium point position. 
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Box 13 Reaching lookup table. The figure below shows one component of 
the reaching lookup table after more than 1000 reaching trials. In order 
to display it (see sketch at the bottom of this box), the following 
procedure has been applied: i) the input domain has been divided into a 
regular grid (for a total of 11×11×12 cubes); ii) 12 slices of varying 
“version angle” are plotted as 11×11 2D maps; iii) the color intensity 
represents the output of the map controlling joint 6 (shoulder); iv) the 
outputs of all units falling into the same cube have been averaged. The 
output is the position of the EP in joint space, which is expressed in 
radians. 
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Box 14 Reaching trajectories. In the 3D case we recorded the trajectory 
of the arm end-point. In addition, we recorded the gaze direction, from 
which it is possible to recover the position of the fixation point in space. 
The two quantities have been plotted during a reaching movement in 
order to illustrate quantitatively the behavior of the robot. Moreover, the 
position of the fixation point provides also an estimate of the target 
position. In fact, whenever the retinal error is below a small threshold, 
we can assume that the position of the fixation point is indeed the 
position of the target. The simple wire-frame model represents the robot. 
Small circles indicate joints; solid lines are the links. Concerning the 
fixation point, two different marks can be distinguished: the cross marks 
represent the time instants when tracking was of smooth pursuit type; 
whereas, the small squares are instead related to saccadic control. 
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3.9 Discussion 

This chapter presented in detail, the robot adaptive control structure 
and a series of experimental results in support of the theoretical claims we 
made earlier. In the first part, we showed how the robot could acquire 
orienting behaviors by carefully exploiting some of the “developmental 
principles” we outlined in the previous chapters. For example, the control 
structure “at birth” consists of only a simple closed loop controller, whose 
explorative behavior is driven by noise. A more sophisticated model based 
saccade generator develops on top of the former. Furthermore, initially, 
the robot only moves a few joints; proper coordination of the redundant 
degrees of freedom is built only when these initially working joints are 
under a sort of “voluntary” control. 

In parallel, we initialized the head-arm coordinative action by using 
only simple “handcrafted” spinal reflexes. These initial controllers become 
eventually part of the coordinative action: i.e. reaching. 

The biologically inspired design was exploited at many levels, 
including (but not only) the low stiffness control of the arm motion, the use 
of the inertial information in the control loop (VOR), and the space variant 
resolution of the cameras. 
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Box 15 Reaching trajectories: top view. As in Box 14, two trajectories are 
shown. Two different marks can be distinguished: the cross marks 
represent the time instants when tracking was of smooth pursuit type; 
whereas, the small squares are related to saccadic control. 
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Box 16 Reaching trajectories: two representative trajectories of the robot 
behavior. As before, two different marks can be distinguished: the 
crosses mark smooth pursuit control; whereas, the small squares are 
related to saccadic control. Note that in the topmost picture the end-
point and fixation position almost coincide. 
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4 Conclusions 
e are at the end. The previous chapters presented a proposal for a 
novel approach aimed at the design and comprehension of 
complex systems. This approach arose by observing how biological 

systems solve the problem of learning and adaptation during the early 
stages of their lives. We tried to isolate those aspects, which may be 
relevant both for the construction of artificial systems and for advancing 
our understanding of the corresponding brain functions. An important 
point worth stressing is that the brain cannot be seen as a monolithic 
structure, but rather we need to look at it as a developing system, where 
many subparts optimally interact. This internal organization might indeed 
facilitate learning and in this sense it is worth copying when one goes 
through the design of an “artificial adaptive agent”. Other aspects have 
been discussed, for instance, the presence of “innate” behaviors, which 
later disappear. This is an open question: do they really disappear? It 
might very well be that those initial modules get embedded into more 
complex control structures. In this sense, voluntary control can be seen as 
learning to combine the initial reflexes, in order to solve a particular task. 

We are conscious that we did not provide any formal justification, but 
at least we provided hints on what aspects might be relevant. These were 
partially introduced in chapter 1, and detailed further in chapter 2, where 
the “learning problem” was described on the light of biological findings. 

Finally, by using a “learning by doing” philosophy, we built a 
humanoid robot, and “programmed” it following some of the biological 
aspects we denoted as “relevant” for artificial development. The robot 
indeed faced problems, such as moving many degrees of freedom by 
employing many different cooperating controllers. This is exactly the point, 
how should we connect all these modules together? Consider that they are 
not separated because all of them act on the same non-linear physical 
plant. Consequently, interactions must be explicitly taken into account. 
We devised a solution, where the timing of adaptation is carefully (but not 
too much) programmed. That is, the solution works by creating a proper 
time slot for each subpart (slots do not need to be temporally separated one 
from another). Inside this “critical period”, adaptation can effectively take 
place without disturbing the other modules excessively. This is important, 
especially in the early phases, when plasticity must be high (i.e. 

W 



Babyrobot: a Study on Sensori-motor Development 

 

 118 

exploration) in order to quickly acquire a consistent behavior. Yet another 
type of interaction occurs: modules that develop first influence modules 
that develop later. Consequently, the “explored state space” depends very 
much on how these early controllers behave. Each module can function as 
a “bootstrap” procedure for other subsystems. This is exactly “constructive 
learning” on a coarse scale, where entire streams, areas, controllers can be 
considered as “basis modules”. Constructive learning is thought to be 
superior to other learning techniques (pruning based), as mentioned in the 
previous chapters. 

So, the spotlight moved from learning itself to the process of learning: 
i.e. development. What and how could be learned is determined by the 
learner’s developmental stage, that is, by what the state of the whole 
system is in terms of the other subparts (e.g. the robot could not move the 
neck without controlling the eyes first). 

Of course, most of these conjectures need to be verified, from either 
the theoretical side (e.g. learning theory) or the biological point of view 
(e.g. by designing new experiments, for example to determine how gazing 
correlates with reaching). In this light, the most sensible prosecution of 
this work would be that of investigating all these open questions, in order 
to formalize a theory about developing systems. On the other hand, many 
hypotheses arose, which might be worth testing on “real brains”. 
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5 Appendix 
5.1 Log-polar images 

Studies on primate’s visual pathways from the retina to the visual 
cortex have shown that the geometrical layout follows an almost regular 
topographic arrangement (Daniel & Whitteridge, 1961), (Cowey, 1964), 
(Allman & Kaas, 1971), (Hubel & Wiesel, 1977). The initial analytical 
formulation based on this data is due mainly to Schwartz (Schwartz, 
1977); his model can be roughly summarized as follows: 
• The distribution of the photoreceptors in the retina is not uniform. 

They lay more densely in the central region called fovea, while they 
are more sparse in the periphery. Consequently, the resolution also 
decreases moving away from the fovea toward the periphery. It has 
a radial symmetry, which can be approximated by a polar 
distribution. 

• The projection of the photoreceptors array into the primary visual 
cortex can be well described by a logarithmic-polar (log-polar) 
distribution mapped onto a rectangular-like surface (the cortex). 

From the mathematical point of view, the log-polar mapping can be 
expressed as a transformation between a polar plane (ρ,θ) (retinal plane) 
and a Cartesian plane (ξ,η) (log-polar or cortical plane), as follows: 
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where ρ0 is the radius of the innermost circle, 1/q is the minimum angular 
resolution of the log-polar layout, and (ρ,θ) are the polar coordinates. Kξ is 
a linear scaling parameter, this has been added to the original formulation 
in order to fit the mapping into a fixed size squared image (which is 
determined by the frame grabber characteristics). These are related to the 
conventional Cartesian reference system by: 
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A graphical example is shown in Figure 27, where the upper row (a) 

shows a log-polar or cortical image on the left, and a remapped Cartesian 
(or retinal) image on the right. The lower panel (b) shows how a simplified 
retinal layout maps to a log-polar mesh. For instance, the innermost circle 
(fovea) maps to the first column in the log-polar layout, and radii in the 
retinal image map to rows in the cortical one. The “flower” picture shows 
this polar mapping effect more clearly – see Figure 28. 
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Figure 27 The log-polar mapping. The upper row (a) shows a log-
polar or cortical image as acquired through the Giotto Camera 
(Sandini et al., 1998) a CMOS realization of the log-polar 
mapping at the sensor level (this image is 76×128 pixels). The 
image on the right is the corresponding remapped retinal image. 
The lower panel (b) shows – albeit simplified – how retinal pixels 
map onto cortical pixels. For instance, the innermost circle (on 
the left) map to the leftmost column (on the right) representing 
the fovea, on the contrary radii map to rows in the cortical image. 



Appendix 

 

 121 

  
Original image Log-polar image 

Figure 28 An example of log-polar mapping, note as radial 
structures in the flower (petals) map to horizontal structures in 
the log-polar image. Circles, on the other hand, map to vertical 
patterns. Furthermore, note as the central part of the flower 
occupies about half of the corresponding log-polar image. 

5.2 Optical flow 

Optic flow, by definition, is the apparent motion of luminance patterns 
in the images (retinas). Under not too restrictive assumptions it can be 
assimilated to the motion of physical objects in the environment or to the 
self-movement of the cameras (eyes) – see (Horn & Shunck, 1981). The 
determination of the optical flow is an ill posed problem; consequently, 
either regularization techniques or integral methods have been proposed 
in the related literature (Barron, Fleet, & Beauchemin, 1994). In general 
terms by assuming brightness constancy on moving pixels, it is possible to 
derive the well-known Horn’s equation (Horn, 1986): 
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where E is the image intensity, ),( yx ��  the flow field. 
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It is evident that from equation (30) alone, the flow field cannot be 
uniquely determined for each pixel on the image – i.e. only the component 
along the gradient of the image intensity can be computed (Horn, 1986). 
Again, generally speaking, it is necessary to employ either a further 
constraint or a suitable a priori model about the resulting flow field. 
Depending on the application either technique will be suitable. Our choice 
was to employ an affine model, which easily allows recovering the first 
order flow field differential invariants, although it might be inaccurate if a 
planar condition is not met. The first formulation of this algorithm is due 
to Koenderink (Koenderink & Van Doorn, 1991), and it is based on the 
following equation: 
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which depends on four quantities: translation, rotation, divergence and 
shear. The first two components u0 and v0 represent a rigid two-
dimensional translation, and D, R, S1, S2 are the four first-order vector 
field differential invariants: divergence, curl, and shear (S1, S2). 

By combining equation (30) and (31), and solving for the six unknown 
parameters, the global first-order approximation of the flow field can be 
uniquely determined using a least square technique. Note that the usual 
hypotheses about the conditioning of the resulting over-constrained system 
must be satisfied in order to get a solution. In order to solve the system of 
equations, at least six points are necessary. 

Moreover, considering that the optic flow we are looking for has to be 
computed in the log-polar13 (cortical) plane rather than in the traditional 
Cartesian image (retinal), Horn’s equation becomes: 
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13 See section 5.1 for a complete description of the log-polar mapping. 
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ρ0, 1/q, Kξ being the log-polar layout parameters, ρ, θ the polar 
coordinates. A least square approach is used, as before, and six points are 
necessary in order to estimate the model parameters. Usually the system 
is solved considering all the available points. 

Actually, Horn’s equation tells something more about the problem – 
that is, optic flow cannot be determined on the basis of local information 
alone. A suitable approach is that of extending the spatial domain by 
applying the same equation to a small neighborhood of pixels: by having 
more constraints a solution can be found, if we assume the flow field 
locally constant. This observation has a link to receptive field size of the 
neural pathway devoted to optic flow estimation. In fact, though motion is 
first sensed through large arrays of visual responsive neurons (Borst & 
Egelhaaf, 1993), each of them tuned to a particular direction, areas MT 
and MST that are known to participate in optic flow “interpretation” have 
broad RFs. This might reflect the necessity to overcome the ill-posed 
nature of the problem itself – local information alone is not enough to 
extract velocity information. Graziano and colleagues characterized the 
tuning curves of such neurons in the rhesus monkey MSTd area and 
showed response to diverging, rotating and spiraling flow fields (Graziano, 
Andersen, & Snowden, 1994). 

5.2.1 An alternative approach based on the RF concept 

The approach described above can be applied for any flow model, 
although it would not always be clear when and where the model itself 
fails to be a good description of the actual optic flow – i.e. for the affine 
model, the requirement is that the moving scene must be roughly planar. 
Another possible choice is: 
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where X�  is the flow model, which is linear in its parameters Ci. Φ(x, ti) 
are vector functions parameterized by ti, which are determined a priori – 
Φ(x, ti) are sometimes called basis fields bearing a resemblance with the 
more traditional basis functions used in standard approximation problems. 
As before, a combination of equation (30) and (34) yield a scalar equation: 
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Note that notation has been simplified by dropping the image 

coordinates x and y. Pre-multiplying by the log-polar Jacobian matrix 
converts equation (35) to the log-polar domain: 
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and, 
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One might wonder why this approach is RF based. By analyzing the 

solution – the coefficient Ci – we can note that each value is actually a 
weight factor of the corresponding vector field. In practice, a Ci represents 
the response of a particular vector feature detector, tuned for optimally 
detecting a particular flow pattern in a particular image region – i.e. each 
basis field represents a receptive field. By combining many basis fields, the 
total flow can be reconstructed, though other interpretations are still 
possible. For instance, some particular detectors can be directly liked to 
reflex-like actions as, for example, a fast avoidance behavior to looming 
stimuli (Gandolfo, Sandini, & Bizzi, 1996). 
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5.3 Stabilization index 

Stabilization performances can be evaluated either by estimating 
image motion through optic flow processing or by using a sort of 
correlation measure over time. In the latter case, the image stabilization 
index (ISI) could be defined as follows: ISIi=1-NCi, 
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The correlation measures the degree of similarity between two 

subsequent log-polar images (Ii and Ii-1). The symbols µi and µi-1 indicate 
the corresponding image mean values. Better stabilization performance is 
mapped to lower values of ISI. 

5.4 Color segmentation 

Color segmentation allows the robot to extract the position of objects 
from visual information. Though very simple, it offers several advantages 
in terms of robustness. Object position itself can be used in position-based 
feedback control loops, as shown in section 3.1. 

In general terms, a color segmentation procedure, should identify the 
“principal” object color and separate it from that of the background – 
imagine for the moment that the color of the object is sufficiently different 
from that of the whole scene. An appropriate color representation provides 
a more efficient way of dealing with color information. This is to say that 
the first step of the color processing is the conversion of RGB information 
to some other representation – in our case hue, saturation, and value 
(HSV). The HSV transform allows separating brightness information – 
contained in the V component – from color related information (mostly hue 
and saturation). 

A cueing procedure is applied to initially locate the object of interest; 
in our case, a motion detection procedure has been used. In practice, with 
the robot initially still, a temporal differencing processing detects a 
potential target for tracking; a histogram of moving pixels in HS space is 
then constructed in order to group the pixels belonging to the object. 

That is, the region of the histogram representing the moving object 
can be located around the histogram maximum, and isolated by a region 
growing procedure. This basically determines which part of the color space 
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represents the target, under the assumptions that the object has a 
dominant color with a sufficient number of pixels. All these conditions are 
checked at run time by the algorithm. 

A second histogram regarding the background pixels is built, and 
updated online for segmentation purposes – if the two histograms differ 
enough, that is the object can be reliably distinguished from the 
background, the proper color segmentation is started. This last stage is 
carried out by simply checking whether a pixel belongs to the object 
histogram. Once all pixels are checked, the position of the object is 
computed by estimating the center of mass of such pixels belonging to the 
object (i.e. those which passed the checking phase). 

Figure 29 shows an example of the color segmentation procedure; the 
upper panel (a) shows the result of the processing, applied over a 32×64 
(=2048) pixel log-polar image: the left image is the original image 
remapped into the Cartesian space; the right image illustrates the 
segmented region. The lower panel (b) shows the corresponding HS 
histograms: the background on the left and the object on the right. 

All the computation can be easily carried on in real-time (i.e. 25 Hz) 
without resorting to any specialized hardware. From the software point of 
view, the update of the background histogram over time allows the robot to 
adapt rapidly to changes in the background color and, consequently, adds 
generality to the approach. As can be noted in Figure 29, there are no 
particular requirements in terms of background texturing, i.e. the systems 
performs equally well whether or not the background is cluttered. 

5.5 The learning module: a growing neural network 

In this section we introduce an incremental algorithm to train a class 
of networks that are interesting from both the biological plausibility and 
the statistical viewpoint. It inherits aspects from both the Growing Neural 
Gas (GNG) model (Fritzke, 1995), and the SoftMax basis function 
networks (Morasso & Sanguineti, 1995). The GNG is an unsupervised 
network model, which learns topologies. A set of units connected by edges 
is distributed in the input space (a subset of Nℜ ) with an incremental 
mechanism, which tends to minimize the mean distortion error. For this 
reason the distortion error is locally accumulated and a new unit is 
inserted near the unit with maximum error. At every learning step a 
subset of units (the winner and its neighbors) is moved following a 
Hebbian learning rule. Among its properties, GNG is also able to adapt to 
locally varying dimensionality depending indeed on the input data set. A 
detailed description of the algorithm can be found in (Fritzke, 1994). 



Appendix 

 

 127 

 

 

(a) 

 

(b) 

Figure 29 Color processing. The upper row (a) shows a typical 
image from the robot’s point of view: original image (left) and 
color segmented image (right). All the processing is carried out in 
the log-polar domain; images are mapped back to the Cartesian 
space for visualization purposes. The lower row (b) contains the 
HS histograms: background (left) and object (right). Note that, as 
the histograms do not overlap, segmentation can be performed 
reliably. Hue values range from 0 (red) to 360. Saturation ranges 
from 0 (gray level) to 1 (full color). The V component has not been 
used for segmentation purposes in order to enhance robustness to 
changes in illumination. 

A SoftMax function network  consists of a single layer of processing 
elements (PEs) characterized by a receptive field centered on a preferred 
vector. Each unit’s activation function Ui is a SoftMax function whose 
analytic expression is: 
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where G(•) is a Gaussian function and ci is the center of the activation 
function. Here the function Ui has its maximum. Benaim and Tomasini 
(Benaim & Tomasini, 1991) proposed a Hebbian learning rule for the 
optimal placement of PEs: 
 

)(x,c)Uc(x� iiii −= 1  (40) 

 
where Nx ℜ∈  is an input pattern and 1  the learning rate. Indeed, a 
SoftMax network can learn a smooth non-linear mapping z=z(x). The 
reconstruction formula in this case is: 
 

∑≅
i

ii )U(x,cvz(x)  (41) 

 
where the parameters vi are the weights of the output layer and Mz ℜ∈ . 
In particular, considering an approximation case, this formula can be 
interpreted as a minimum variance estimator (Specht, 1990). The learning 
rule is: 
 

)(x,c)Uv(z� iiii −= 2  (42) 

 
This schema has been used to model cortical maps (Durbin & 

Mitchison, 1990). The normalizing factor of U can be seen as a lateral 
inhibition mechanism (Morasso & Sanguineti, 1995). 

It is now evident how to combine the two self-organizing map 
previously illustrated to obtain an incremental and plastic network model 
with the best features of both techniques. The resulting model will be 
characterized by the effectiveness, typical of the GNG, in the distribution 
of the units within the n-dimensional input space and by the strength 
approximation and interpolation properties of SoftMax functions networks. 
We devised a heuristic criterion in order to self-tune variances. At each 
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learning step the variance of the winning unit and its neighbors is updated 
using the following rule: 
 

22 ˆ
ii dk ⋅=σ  (43) 

 
where 2ˆ

id  is the mean squared distance from the unit i and its neighbors, 
and k is a positive constant. It is worth noting that the formula is largely 
similar to that suggested by Fritzke in (Fritzke, 1994). However, a scaling 
factor (represented by k) has been added to guarantee a substantial 
overlap of the basis function tails. 

The complete algorithm is the following (supervised learning): 
 

1. Start with two units a, b at random positions ca, cb and with two 
associated output vectors va, vb. Let A be the set of units and 
C=A×A the set of connections between them. A is initialized as 
A={a,b} and consequently C contains the connection between a and 
b. 

2. Generate an input data pair (ξ,ζ), with ξ∈ℜN, ζ∈ℜM, and ζ = f(ξ). 
3. Find the nearest unit (winner) and the second nearest unit: s1, s2. 
4. If a connection between s1 and s2 does not exist already, create it, 

and set its age to zero (i.e C = C ∪ {(s1, s2)}). 
5. If g(ξ) is the output of the network, add the squared distance 

between the actual output and the desired one to the accumulated 
error of the winner. 
 

∑=
i

iii )c(Uv)g( ,ξξ  (44) 

Ui described by equation (39)  
 

6. Move s1 and its neighbors towards (ξ,ζ) and update the respective 
variances using equation (43). 
 

iii )Uc(c −=∆ 1η  (45) 
  

iii )Uv(v −=∆ ςη2  (46) 
 

7. Increment the age of all the connections (in C) emanating from s1. 
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8. Remove connections with an age larger than amax. Remove all units 
with no emanating connections. 

9. If the overall number of input samples is an integer multiple of a 
parameter λ and an error criterion is satisfied (see description 
below) insert a new unit r between the one with maximum 
accumulated error q and its neighbors with maximum accumulated 
error f with the appropriate variance. 
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10. Decrease the accumulated error of q and f by a fraction α. 
11. Set the accumulated error of the new unit equal to half of the sum 

of accumulated errors of q and f. 
12. Decrease accumulated error of all units by a fraction β. 
13. If a stopping criterion is not yet fulfilled, continue from step 2. 

 
 

The estimation of the error and the relative condition (step 9) needs 
special mention. In fact, one of the most challenging problems concerning 
these networks is that of tuning the network growth. If we were able to 
estimate the error on-line, we could tailor the units insertion/removal 
mechanisms to the current approximation request. We propose the 
following estimation rule: 
 

)()1( 111 ξζψψ gee tt −−+= −  (49) 

and,  
)()1( 1212 −− −⋅−+= tttt eeee ψψ ��  (50) 

 
The behavior of te  follows that of the instantaneous error )(ξζ g−  
although with a sort of memory. In fact, it is a low pass filtered version of 
the raw error signal. ψi=1,2 are positive constants, which determine the 
filters cut-off frequency. te�  is an estimate of the derivative of the error. 
The on-line measures have been used to block the insertion of new units 
according to the following conditions: 
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1thresholdet <  (51) 
and,  

2thresholdet >�  (52) 

 
The derivative of the error was checked and insertion was allowed if, 

and only if, it was approximately zero – i.e. the error itself does not 
decrease anymore. We would like also to point out that te  can be computed 
over a test set bigger than and/or different to the training set, hence 
providing an independent estimate of network performances. It could be 
used to validate the network model itself and it makes sense to tune the 
network growth rate on the basis of it (if used in this sense, it provides a 
sort of cross-validation mechanism). 

5.6 The force field approach to motor control 

Isolated skeletal muscles act like non-linear visco-elastic actuators 
whose length-tension properties are modulated by neuromuscular 
activation (Rack & Westbury, 1969). For the scope of the present work, 
however, a simplified model (Kandel et al., 1991) has been used to express 
the torque exerted by a muscle on each joint: 
 

( )0qqa −−= κ  (53) 
 
where q0 is the actuator’s resting position, a the activation value which 
modulates the overall stiffness � (i.e. the spring constant of the muscle). 

Assuming this model, a possible procedure for coding motor 
commands is the so-called force field approach proposed by Mussa-Ivaldi 
and Bizzi (Gandolfo & Mussa-Ivaldi, 1993), (Mussa-Ivaldi & Giszter, 1992), 
(Mussa-Ivaldi et al., 1993), (Mussa-Ivaldi, 1997). According to this theory, 
the neuromuscular torque exerted by each actuator can be described by 
means of a torque field: 
 
( )a,q  (54) 

 
where q is the vector of generalized coordinates, a is the activation value 
and � is the generalized torque field. In the case of a multi-joint structure 
(such as a limb) the overall torque is expressed by: 
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( )∑=
i

ii a,q
 

(55) 

 
where ai are the control parameters. 

From the mechanical point of view, the system controlled by these 
actuators is passive. Consequently, it has a stable Equilibrium Point (EP) 
in its state space ( )qq �, . The EP is i) the point where the torque field 
described by equation (55) is zero; ii) the intersection of the actuators’ 
angle-tension curves. If we apply the torques described by equation (55) to 
the multi-joint structure, its state will eventually reach the EP (at 
equilibrium). Thus, the EP can be thought of as the point toward which the 
configuration is aiming at each instant of time. 

In theory, specification of the EP suffices in driving the system to a 
given configuration. On the other hand, experimental results in animals 
and humans (Mussa-Ivaldi et al., 1993) support a rather different view. In 
fact, it seems that shifting the EP smoothly from the start to the end, 
rather than suddenly moving it to the target position, causes the limb to 
move. The sequence of EPs defines what is called a “virtual trajectory” 
(Hogan, 1985). It is worth noting that, the arm trajectory is different from 
the virtual trajectory – in other words it is like pulling a toy car with a 
rubber band: the trajectory in space of the pulling hand is different from 
the trajectory of the car, because of the stretching of the rubber band. 

The simplification – and in some sense the feasibility – of this schema 
comes from the experimental observation that any position of the EP in the 
arm configuration space (and consequently its motion) can be obtained by 
a linear combination of a small number of motor primitives each 
represented as a torque field (the so-called “basis fields” (Mussa-Ivaldi, 
1992), (Mussa-Ivaldi et al., 1993)). In our model, each motor primitive is a 
structure, which activates a single or a group of actuators. It is actually a 
synergy, which combines (linearly) the effect of a set of actuators by 
activating them synchronously by means of only one control parameter. 
The following torque field describes the primitives: 
 

( ) ( )∑=
i

jijijj CC ,, qIqT  (56) 

where �i is the ith actuator field, Cj the activation value and: 
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Figure 30 Two exemplar basis fields represented as torque fields 
in joint coordinates. Ordinate and abscissa show joint position 
(Babybot’s joint 7 and 8 – shoulder and elbow respectively) in 
degrees. Arrows point to the common EP of the two joints. The 
actual resting position of each actuator q0 was defined 
beforehand. 
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Tj are exactly the basis fields as shown in Figure 30. The total field T is 
expressed by the following: 
 

( ) ( ) ( )ji
j i

ji
j

ij CC ,, qIqTqT ∑∑∑ ==  (58) 

 
We designed the connections between actuators and primitives 

(through Iij) a priori. In our case, the basis fields are constant and 
embedded into the system. Given this assumption, the task of the 
controller is to combine the basis fields by providing, for each point of the 
configuration space, a set of control parameters Cj. A schematic diagram of 
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the controller was shown in Figure 23 (section 3.7) in the case of 4 basis 
fields and 2 joints. 

A further simplification, allowed by the force field approach, comes 
from the fact that control parameters are not dependent on any particular 
frame of reference (Mussa-Ivaldi & Giszter, 1992). This is easily shown 
converting equation (58) into extrinsic coordinates. Let x=�(q) be the 
direct kinematics mapping of the arm and JΛ its Jacobian. For any 
configuration where JΛ is not singular we can write: 
 

FJ =−
Λ

T  (59) 
 
where T−

ΛJ  is the transposed inverse Jacobian, � the torque vector and F 
the corresponding force vector in extrinsic coordinates. Substituting 
equation (59) in equation (58) and considering linear actuators (as in 
equation (53)) yields: 
 

∑ −
Λ

−
Λ =

j
j

T
j

T C TJTJ  (60) 

 
where FTJ =−

Λ
T  is the total force field and jj

T FTJ =−
Λ  are the basis 

fields in extrinsic coordinates. Substituting yields: 
 

∑=
j

jjC FF  (61) 

 
Equation (61) shows that the control coefficients Cj are invariant 

under coordinates transformation (for a discussion of the underlying 
conditions, see (Mussa-Ivaldi & Giszter, 1992)). A similar result applies for 
the redundant case (where JΛ is not invertible), depending on the motor 
primitives considered (Gandolfo & Mussa-Ivaldi, 1993). Given these 
results, it is correct to freely exchange torque fields generated by actuators 
with force fields applied to the arm end-point because the two 
representations are indeed equivalent. Furthermore, this approach allows 
us: i) to embed the kinematic parameters in the resulting force fields 
(Hogan, 1985); ii) to represent the activation of a synergy of muscles as a 
force field, consequently several joints can be controlled by using only one 
control parameter – it is clear that in this case a multi-joint motion is still 
behaving as a single degree of freedom, though it is then easy to represent 
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“innate” motor synergies and reflexes. Figure 30 and Figure 31 show two 
exemplar basis fields as used in our experiments; Figure 30 shows two 
torque fields in joint coordinates, while Figure 31 plots the same two fields 
converted in Cartesian coordinates. 

 

Figure 31 Two exemplar basis fields represented in Cartesian 
coordinates (see also Figure 30). Ordinate and abscissa represent 
the plane where the arm motion has been constrained – see 
experimental session on section 3.7. 

5.6.1 From the EP to the activation values 

Up to now we have not addressed the problem of generating the 
appropriate activation values, so that the resulting force field converges to 
a desired equilibrium point. Following the procedure suggested by Mussa-
Ivaldi and colleagues (Mussa-Ivaldi & Giszter, 1992), the problem can be 
formulated as a function approximation problem by using a finite set of 
basis functions: 
 

∑ ∑≈
j i

ijijC IT  (62) 

where T is the desired resulting total field, and � is the basis fields. The 
continuous problem can be converted into a discrete one by sampling the 
input space Q in k points. In other words, if we know the desired total field 
in k points, it is possible to compute the best approximation of that field by 
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using a linear combination of basis fields. Equation (62) can be rewritten 
as: 
 

∑ ∑≈
j i

kijijk C )()( qIqT  (63) 

 
where qk is the set of sampling points. If the number of sampling points, K, 
times the number of joints, N, is greater than the number of unknowns, J, 
a least squares approach allows us to determine the vector C that best 
approximates the desired total field. 
A particular desired force field is the converging pattern with a single EP. 
This represents a position controller; by varying the resting point position, 
it is possible to smoothly control the motion of the robot’s end-point as 
discussed before. An example of the converging pattern, as used in our 
implementation, is shown in Figure 32. 

 

Figure 32 Exemplar converging force field as employed by 
Babybot’s controller. The 7 vectors together with the knowledge 
of the basis fields, allow us to recover the activation values, from 
there a simulation of the spring-like actuators allow computing, 
for each time step, a corresponding torque vector. The torque 
vector eventually is converted to the appropriate currents, which 
drive the motors. 
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5.7 The technological corner-shop 

This section, deals with the software architecture of the Babybot. The 
robot code is based on a standard known as DCOM (acronym for 
Distributed Component Object Model), which allows working with 
“components” in an object-oriented framework and, furthermore, allows 
running the objects across a network. The key aspect of the standard is the 
“componentization”. Just to have an idea, imagine you have to build a 
circuit, what you do nowadays is to buy an off-the-shelf implementation – 
that is an IC – and use it without worrying much about its actual 
implementation (e.g. an NAND gate). You just plug it to whatever 
application as far as it adheres to a standard in terms of electrical 
compatibility. 

With software components you basically apply the same sort of 
paradigm. DCOM components have to adhere to a “binary standard” and, 
in doing so they guarantee they can be plugged in whatever software 
application. Of course, the price to pay is that the standard is even stricter 
than a usual programming language, in the sense that the interface 
toward the external world must be strictly determined. 

The main concept behind a DCOM object is that of “interface”. An 
interface is the specification of how the object presents itself to the 
external world. The interface has to be standardized, and in fact, there is a 
descriptive language to write interfaces – i.e. IDL (Interface Description 
Language). Once the interface is defined, the object functionality can be 
implemented by using whatever programming language (the standard is 
independent of the language). Just to clarify, consider that an interface is 
not a class, it is not an object, it is immutable, and that clients interact 
only through pointer to interfaces. There is no way for a client to access the 
real object implementation – in DCOM the interface is the only access 
port. 

Another peculiarity of the DCOM architecture is the identification of 
objects. In practice, each interface is signed with a “globally unique 
identifier” (GUID). This signature is what matters when instantiating an 
object, so when requesting a particular interface, we are assured that the 
right object will be created. Furthermore, this feature deals also with the 
problem of versioning; its “unique” signature allows recognizing an older 
version of the same object. Consequently, clients can appropriately handle 
this situation, and even recognize a newer version of the same kind of 
object. 

Because, the standard is at the binary level, location transparency is 
guaranteed. For the client there is no way to distinguish between a local 
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object and a remote one. Of course, if the object is on the local machine, it 
could be faster – a local object can be instantiated as in-process. Code 
reusability comes with the framework; it is possible to reuse code and, as 
in object-oriented practice, to use objects inside other objects. Finally, 
though unusual, the transport layer can be customized and data of any 
type can be efficiently sent through different network mediums. 

How does this influence Babybot’s architecture? From the software 
point of view, the use of components allows layering of code, and creating a 
separation from the “low level handling of hardware resources” (e.g. frame 
grabbers, control boards, etc) and the “high level implementation” (e.g. 
control loops, learning, etc). In this sense, once a component, for instance 
the neural network algorithm, is designed it may be reused throughout the 
system. Furthermore, we can really design a “distributed system” with a 
uniform programming environment (in spite of the OS – DCOM is an open 
standard). This can be seen as a “coarse grain” parallel system, where the 
smallest unit is a single PC. Those PCs can be easily connected through a 
fast Ethernet, or even a Gigabit network if this were the requirement. 
Flexibility and expandability are easily obtained by connecting a new 
machine to the network. 

Objects, in this scenario, are distributed across machines and, 
consequently, at any moment any object can access every other object in 
the system with ease. This development platform takes, in some sense, the 
opposite approach to the current engineering practice. Where many control 
systems are centralized – either on a single machine or on a single bus 
system – the Babybot’s architecture is distributed and connected through a 
“relatively slow” (if compared to a bus) network. Where others used real-
time OS, we used a soft real-time OS. Where synchronicity and tight 
scheduling is an issue, we employed an asynchronous control system, 
where nothing about timing is granted. 

The schematics below (Figure 33) show how the system is put together 
and what the machine roles are within the control structure. In particular, 
Babybot is presently controlled by four PCs, one mounting frame grabbers 
for visual processing, a second one dedicated to the head control, and a 
third to the arm control. The fourth machine is employed for monitoring 
purposes and does not carry out any relevant processing. 
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Figure 33 The Babybot distributed architecture. Presently, it 
consists of four PCs connected through a 100Mbit/s Ethernet 
link. Some of them are equipped with frame grabbers, axis 
control boards, and ADCs. From the software point of view, the 
adopted framework allows uniform programming and object 
distribution across machine boundaries. In practice the whole 
system can be seen as a unique processing machine where 
internal boundaries are actually as thin as possible. 
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Table of illustrations 
Box 1 The experimental setup. The experimental setup consists of a five 

degrees of freedom robot head (designed and realized at LIRA-Lab), 
and an off-the-shelf six degrees of freedom robot manipulator (an 
Unimation Puma260), both mounted on a rotating base: i.e. the torso. 
The kinematics resembles that of the upper part of the human body 
although with less degrees of freedom. From the sensory point of 
view, the Babybot is equipped with two space-variant cameras 
(Sandini & Tagliasco, 1980), (Sandini, Braccini, Gambardella, & 
Tagliasco, 1981), microphones for acoustic localization, an inertial 
sensor simulating the vestibular system (Panerai & Sandini, 1998), 
and propioceptive information through motor encoders. The robot is 
controlled by a set of PCs – ranging from Pentium II to Pentium III 
processors – each running Windows NT and connected by a fast 
Ethernet link. In order to provide the necessary interface with the 
hardware (i.e. sensors and motors) some machines are equipped with 
motion control boards, frame grabbers, AD converters, etc. In 
particular, one machine controls the robot arm and the torso, another 
one the head, and a third computer performs the visual processing. 
The software adheres to DCOM, a standard, which allows running 
objects among the various machines. The Babybot kinematics is 
shown on the right panel of the picture below. The dashed lines 
indicate joint’s axes numbered from q1 to q12 respectively. ................ 13 

Box 2 Konczak and coworkers (Konczak, Borutta, Topka, & Dichgans, 
1995) followed nine young infants longitudinally from 4 to 15 months 
of age. They analyzed arm kinematics and dynamics in order to 
determine which learning procedure might underlay the acquisition 
of goal-directed reaching. The main results of this study can be 
summarized as follows: i) the amplitude of joint torques do not vary 
systematically with age – thus early reaching kinematics is not 
conditioned by the inability to generate appropriate torques; ii) 
external forces exploitation emerges only at about 9 months of age, 
that is an important component of proper limb control is acquired 
with experience; iii) there is a clear trend in the evolution of torque 
timing, which might reflect yet another kind of learning process – 
important for proper trajectory generation; iv) it seems conceivable 
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that learning is “unsupervised”, which might also reflect a sort of 
optimization based learning. The latter point is a crucial one; in fact, 
the economy of the movement could be a suitable “cost function”, 
whose minimization would lead to the observed hand kinematics in 
adults. As an example, the picture above shows the progression 
towards a stable kinematic pattern and the straightening of the 
trajectory. Trajectories are projected onto a vertical plane: the 
starting point is on the bottom left corner of the image, and the 
stationary target is toward the upper right corner – see bottom row 
(adapted from (Konczak & Dichgans, 1997)). ...................................... 28 

Box 3 Learning the closed loop Jacobian matrix as described in section 3.1. 
The relevant components of the two matrices controlling the eyes are 
plotted with respect to time. The point here is that the learning 
process is convergent. In general, considering a discrete-time case: . 58 

Box 4 Emergence of goal directed eye movements. We recorded several eye 
movement trials, with the robot working unrestrained – i.e. the task 
was simply to foveate some visually identified target – targets 
appeared randomly within the robot’s field of view. The results from 
the first stage are plotted below, where abscissa and ordinates 
represent the image plane, and different graphical signs mark 
trajectories (the target position at each control step – 40ms period). 
As expected all the trajectories are converging to the fovea. This plot 
was obtained after the first stage of the development process as 
described in section 3.1. It is worth noting that in this case the 
movements are still quite slow, and the number of “points per 
trajectory” is high. ................................................................................. 59 

Box 5 An exemplar trajectory after learning. Note as the first three steps 
are enough to reduce the retinal error to less than five pixels, 
afterwards the target remains in the fovea. This plot has been 
obtained after learning of the closed loop controller was completed 
and the saccade maps almost converged to a stable configuration. The 
two sets of points are relative to the left and right eye. In this case, it 
is clear that, the target appeared on the left side of the robot. .......... 62 

Box 6 Animal vestibulo-ocular reflex. In animals with fixed eyes, like many 
insects and some birds, compensatory head or body movements 
produce retinal image stabilization. Primates and many vertebrates 
with an efficient oculo-motor apparatus, rely mostly on compensatory 
eye-movements. As a matter of fact, the “hardware” triggering 
compensatory motor responses is common to many biological species. 
A wide range of mechano-neural transducers, functionally equivalent 
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to rotation- and translation-sensitive mechanisms, are found in many 
species (Wilson & Jones, 1979). One can speculate about the 
advantages of these particular motion sensing “transducers”, but 
nevertheless it remains that such a particular design solution has 
been naturally selected to deal with the image stabilization problem. 
In primates, the mechanism controlling the direction of gaze on the 
basis of inertial information is called Vestibulo-Ocular Reflex (VOR). 
It is subdivided into angular VOR (AVOR) – generating oculo-motor 
responses to angular head motion – and translational VOR (TVOR) – 
generating responses to linear head motion (Paige, 1991), (Schwarz, 
Busettini, & Miles, 1989). In the case of the AVOR, three ring-shaped 
sensors (called semi-circular canals) sense angular velocities along 
three perpendicular directions. In the case of the LVOR, the sensing 
is performed by the otoliths organs, which sense linear movements in 
horizontal and vertical directions, and orientation of the head with 
respect to gravity (Kandel et al., 1991). The vestibular reflexes are 
known to operate in open-loop, are very rapid and work best for high 
frequency movements of the head (Keller, 1978), (Benson, Guedry, & 
Melvill Jones, 1970), (Wilson & Jones, 1979). On the other hand, the 
visual reflexes, like the Opto-Kinetic Reflex (OKR), operate in closed 
loop, they are slower and respond better for lower frequencies of head 
movements (Baarsma & Collewijn, 1974), (Micheal & Jones, 1966). 
The human sensory apparatus is shown below................................... 79 

Box 7 Learning the vestibulo-ocular compensation. The plots below show 
how the compensatory eye commands are acquired. The robot is 
stimulated manually by random rotation of the torso. This generates 
both inertial and visual information. The neural network combines 
the two sources of information, and a compensatory command is 
generated in order to minimize the optic flow. The first plot shows the 
inertial sensor signal and the generated motor command (eye 
velocity) just at the beginning of training – both signals are 
normalized in the range ±1; abscissa is time expressed as control 
cycles (40ms). The motor command in this first stage steadily 
increases because compensation is not yet effective. On a second plot, 
the same quantities are displayed after some training has taken 
place. In this case, compensatory motor response is still growing, but 
at a slower rate. ..................................................................................... 87 

Box 8 Learning the vestibulo-ocular compensation: the VOR map. The 
graph below shows the VOR network output after about 10000 
learning steps. Note that because of the dependence on the optic flow, 
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the map allows taking into account the visual input appropriately. In 
practice, the system generates a higher (amplitude) motor command 
in situations where the optic flow is higher – i.e. when the retinal slip 
is high, it is reasonable to use a higher stabilization command. There 
is also a dependence on the inertial signal as expected...................... 88 

Box 9 Learning the vestibulo-ocular compensation: minimizing the optic 
flow. In order to evaluate the learning process, we analyzed the ratio 
between the inertial information (i.e. the stimulus) and the optic flow 
(the stabilization performance). The rationale is that if the network is 
behaving correctly the optic flow should, on average, decrease as 
learning progresses. The analysis consisted of plotting the optic flow 
versus the inertial signal. This operation was repeated for 300 
sample-long portions of data, extracted at different consecutive 
instants of time over the training period. The slope of the linear 
fitting of those data gives an indication of the ratio between stimuli 
and stabilization. The two pictures below show this analysis 
graphically for an exemplar set of 300 points (top), and for different 
portions of data (each of them 300 points long). As learning 
progresses the slope decreases showing that the optic flow is 
effectively minimized. ........................................................................... 89 

Box 10 The Asymmetric Tonic Neck Reflex. The stimulus for the ATNR is 
the turning motion of the head. This head turn triggers a complex 
bilateral synergy. The infant’s arm is extended to the side the infant 
is looking, effectively bringing the hand into the field of view. The 
contralateral arm is flexed as part of crossed extensor reflex spanning 
both homologous limbs. Thus, this multi-muscle synergy, coupling 
arm and head movements, provides an effective mean of linking 
visual and proprioceptive maps. The picture below shows the ATNR 
in two 3-month-old twins. Note the typical “fencer” position with one 
arm flexed and the other arm extended. The ATNR can be elicited up 
to the 4th postnatal month. ................................................................... 95 

Box 11 Bizzi and colleagues’ experiment. By electrically stimulating a few 
sites in the frog’s spinal cord, Bizzi and coworkers showed that the 
limb movement could be coded in terms of “force fields” and an 
Equilibrium Point (EP). The experiment consisted in exposing the 
spinal cord (as shown in figure E below) in order to implant an 
electrode; the frog’s limb was connected to a force sensor. The limb 
was moved passively to different positions within its workspace and 
the forces with and without stimulation were recorded (see panel A 
and B). The position of the electrode was kept constant for an entire 
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set of measurement. Force samples were interpolated, as shown in 
panel C, in order to get a continuous approximation of the underlying 
force field (the EP was identified as the point where the field is equal 
to zero). It was surprising that among all possible fields, many of the 
measured ones were of convergent type with a single EP. By 
stimulating different sites, the experimenters identified about four 
different fields. It has been shown also that the vast majority of limb 
movements can be coded by just combining these fields linearly. This 
is even more surprising given the non-linearity of actuators and 
neural responses. This led to the hypothesis that limb placement can 
be obtained by moving the EP, this is turn might be obtained by a 
linear combination of the four identified fields (which are termed 
“basis fields”). Panels D and E show the position of a force field with 
respect to the limb workspace. Adapted from (Mussa-Ivaldi et al., 
1993)..................................................................................................... 100 

Box 12 Reaching trajectories. This experiment was performed to illustrate 
the performance of the proposed approach. It describes the learning of 
ballistic reaching movements toward static visual targets. In order to 
test the performance of the system at different learning stages, the 
position in the arm’s workspace of three targets was calibrated 
beforehand by manually positioning the end-effector at target center 
and storing the corresponding joint angle values measured by the 
encoders. Each target consisted of a piece of cardboard about 5×5cm 
in size. During the training the target of the reaching task was 
manually moved by the experimenter over the arm’s workspace while 
the reaching behavior was continuously activated. From time to time 
training was suspended and performance evaluated. During the 
evaluation phase, the three targets in the calibrated positions were 
activated one at a time and the trajectory of the arm stored. The 
reaching error was measured by computing the Euclidean distance 
between the pre-calibrated target positions and the position of the 
end-effector at the end of the reaching movement. At least 30 trials 
(10 for each target) were executed and the average error and 
standard deviation were computed. During this evaluation phase the 
map update was stopped and the noise term removed. The reaching 
error before and after 51 trials, and after 134 trials are reported in 
the following table: .............................................................................. 105 

Box 13 Reaching lookup table. The figure below shows one component of 
the reaching lookup table after more than 1000 reaching trials. In 
order to display it (see sketch at the bottom of this box), the following 
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procedure has been applied: i) the input domain has been divided into 
a regular grid (for a total of 11×11×12 cubes); ii) 12 slices of varying 
“version angle” are plotted as 11×11 2D maps; iii) the color intensity 
represents the output of the map controlling joint 6 (shoulder); iv) the 
outputs of all units falling into the same cube have been averaged. 
The output is the position of the EP in joint space, which is expressed 
in radians. ............................................................................................ 111 

Box 14 Reaching trajectories. In the 3D case we recorded the trajectory of 
the arm end-point. In addition, we recorded the gaze direction, from 
which it is possible to recover the position of the fixation point in 
space. The two quantities have been plotted during a reaching 
movement in order to illustrate quantitatively the behavior of the 
robot. Moreover, the position of the fixation point provides also an 
estimate of the target position. In fact, whenever the retinal error is 
below a small threshold, we can assume that the position of the 
fixation point is indeed the position of the target. The simple wire-
frame model represents the robot. Small circles indicate joints; solid 
lines are the links. Concerning the fixation point, two different marks 
can be distinguished: the cross marks represent the time instants 
when tracking was of smooth pursuit type; whereas, the small 
squares are instead related to saccadic control................................. 112 

Box 15 Reaching trajectories: top view. As in Box 14, two trajectories are 
shown. Two different marks can be distinguished: the cross marks 
represent the time instants when tracking was of smooth pursuit 
type; whereas, the small squares are related to saccadic control. ... 114 

Box 16 Reaching trajectories: two representative trajectories of the robot 
behavior. As before, two different marks can be distinguished: the 
crosses mark smooth pursuit control; whereas, the small squares are 
related to saccadic control. Note that in the topmost picture the end-
point and fixation position almost coincide. ...................................... 115 

 
Figure 1 The pattern of interconnections in the Babybot. This schematic is 

the block diagram of Babybot’s controller. The yellow blocks are those 
where learning and adaptation take place. Not all areas are active 
from the beginning. The blue central block is the robot mechanical 
plant – i.e. the system dynamics. Green blocks are processing related 
areas either visual or motor. Orange marked triangles are gain of PD 
controllers. Many of them are tuned beforehand. ............................... 20 

Figure 2 The pattern of interconnections in the macaque (adapted from 
(Van Essen & Deyoe, 1995)). Van Essen and coworkers pointed out 
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that visual processing in primates involves dozens of different areas, 
and both forward and backward connections, with the former, 
perhaps, carrying out the processing per-se, and the latter type 
mostly implementing a sort of “flow control” structure – this view is 
oversimplified anyway. Connections are both hierarchical and 
concurrent, so processing is both serial and parallel at the same time.
................................................................................................................ 21 

Figure 3 The developmental stages. The diagram above approximately 
shows the interleaving of the developmental stages; abscissa 
represents time. The first step is the acquisition of the closed loop 
gains; reflex-like modules control the arm sub-system. After a while, 
learning of the saccade control begins. Whatever movement of the 
robot also stimulates the inertial sensor: this information is used to 
tune the VOR. Eventually the eye-head coordination is acquired 
together with a more effective head-arm coordination map............... 35 

Figure 4 Gazing and reaching. Two trajectories are shown, the fixation 
point and the arm end-point respectively. The simple wire-frame 
model represents the robot. Small circles indicate joints; solid lines 
are the links. Concerning the fixation point, two different marks can 
be distinguished: the crosses represent the time instants when 
tracking was of smooth pursuit type, the small squares are related to 
saccadic control. Note that the arm end-point follows the motion of 
the fixation point up to the moment when the target is too far away to 
be reached. ............................................................................................. 36 

Figure 5 Two views of the same trajectory plot shown in Figure 4. The 
upper panel is the lateral view; the lower plot represents the top 
view. As before, fixation point and arm trajectories are shown. The 
fixation point motion is described by either cross marks (when smooth 
pursuit is active) or square marks (saccadic control). ........................ 37 

Figure 6 A neural network (RBF) over-fits the data. In this case, a very 
limited training set was used. The network has more units than 
training points and consequently cannot properly approximate the 
data. ....................................................................................................... 43 

Figure 7 Results of the performance test of three learning algorithms. 
Abscissa represents noise (i.e. the probability of taking a “greedy” 
action versus an explorative one), ordinates the number of successful 
trials out of 5000 control steps. These results endorse the hypothesis 
that the solution to the control problem actually lies in a sub-region of 
the whole control/state space – there are in practice “wrong” regions 
of the state space, which do not need to be explored. In this case an 
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algorithm such as the closed-loop or the inverse model based one 
performed comparatively better than a “random explorer”. In terms of 
performance the “inverse model” schema is running two orders of 
magnitude better than the “random explorer”. ................................... 46 

Figure 8 A cartoon drawing illustrating the effect of constraining the state 
space. In this case, dimensionality is reduced because the problem 
itself is inherently two-dimensional. Furthermore, another principle 
is shown: though the initial formulation is made on ℜ3, the actual 
problem has its own precise limits – i.e. it is defined on a limited set 
of points. On top of this, the learner can apply a variable resolution-
coding schema, thus maximally exploiting a limited amount of 
resources. ............................................................................................... 48 

Figure 9 The developmental stages. The diagram above roughly shows the 
interleaving of the developmental stages; abscissa represents time. 
The first step is the acquisition of the closed loop gains; reflex-like 
modules control the arm sub-system. After a while, learning of the 
saccade control begins. Whatever movement of the robot also 
stimulates the inertial sensor: this information is used to tune the 
VOR. Eventually the eye-head coordination is acquired together with 
a more effective head-arm coordination map. ..................................... 56 

Figure 10 The eye control schema – simplified. It consists of a closed loop 
and a feed-forward secondary loop. The loop using the inverse 
Jacobian is derived from a classical visual servoing approach. The 
secondary loop consists of an inverse model (indicated by “Map”). It is 
activated whenever necessary – retinal error greater than a threshold 
– and generates a fast motion of the eyes in order to foveate the 
target. The goal of the network is to learn the inverse model. λ is a 
positive constant gain. It is tuned in order to obtain stability of the 
closed loop system. The input to the robot controller is a velocity 
command. A low level controller (PID) generates the motors’ driving 
torques �. The block identified by “Saccade” is the governing logic (i.e. 
the threshold mechanism issuing the “start” signal for the fast 
motion). .................................................................................................. 61 

Figure 11 A hypothetical eye-head coordinated movement. The left panel 
(A) represents the initial situation preceding a saccade: a target 
indicated by the big “A” character appears within the robot’s field of 
view. The middle sketch indicates that even before any actual motion 
is started the robot computes the final eye positions; this efferent 
signal is the used to determine the required neck rotation. Once the 
appropriate commands are computed they are fed into the head low-
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level controllers, though because of the different inertias and 
programmed accelerations the eyes get to the target before the head 
motion is completed. On the other hand, because of the inertial sensor 
and the VOR the whole motion remains coordinated and eventually 
the head/eye system reaches a stable configuration as shown in panel 
(C). .......................................................................................................... 63 

Figure 12 The neck control schema. It employs the same working principle 
of the eye controller. However there are a few important differences. 
First, there is not direct visual feedback, on the contrary, eye 
positions drive the movement of the head – the PID controller has to 
move the head in order to maintain a symmetric vergence 
configuration as much as possible. Second, the saccade-like 
movement is based on the prediction of the eye positions at the end of 
the saccade – i.e. efferent copy. ∆q5 and ∆q4 are the output of the eye 
maps; they are combined with the actual eye positions to get a 
prediction of the eyes’ orientation, this eventually allows estimating 
the required head rotation.................................................................... 64 

Figure 13 Robot motor performances. The upper plot shows the moving 
window average of the residual retinal error (i.e. at the end of a 
saccade). The lower plot is the standard deviation of the same 300 
samples. Abscissas represent the number of trials. Note also that the 
error is computed over the space-variant geometry of the retinal 
layout; consequently they should have been plotted on an exponential 
scale rather than the linear one to take into account the compression 
due to the logarithmic sampling........................................................... 74 

Figure 14 Two views of the left eye map. The “+” sign represents the most 
recent 300 samples of the training set, and the circles the position of 
the unit’s centers. The plot has been obtained after about 90000 steps 
performed using the most recent 300 samples from the training set. 
The input space (x,y) is the image plane in Cartesian coordinates 
(bear in mind that the actual data are acquired in the space variant 
log-polar plane described in section 5.1), the output (the height of the 
surface plot) is the angle required to foveate a target appearing in the 
corresponding (x,y) image position....................................................... 77 

Figure 15 The head control map. It is obtained after about 30000 control 
cycles. In this case the output is already the required velocity 
command (approximately the angle multiplied by the control rate), 
the input is the predicted position of the two eyes as described in 
section 3.3. The bottom panel shows a 2D plot of the neural network. 
The “+” signs are the training samples, and circles stands for the 
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positions of the units; the solid lines represent the contour lines. Note 
also that the upper-right quadrant is empty, because it corresponds to 
divergent-eye configurations. ............................................................... 78 

Figure 16 Geometry of the head-eye system showing the parameters 
relevant for the inertial and visual measures. This is the reference 
model for the kinematic analysis of the stabilization as described in 
text. P is the gaze point at distance d from the head rotational axis 
(i.e. the neck). b is the interocular distance or baseline. .................... 80 

Figure 17 The simple method for image stabilization. The angular sensor 
measures the rotation of the head. Vision, in parallel, senses the 
retinal slip. The two sources of information are linearly combined 
(using gain GAVOR and GOKR) and fed to the head control system. The 
inertial information is processed open loop. ........................................ 82 

Figure 18 Adaptive tuning of compensatory gains. The compensatory gain 
of the eyes is tuned according to distance of fixation. The adaptive 
gain module simply replaces the constant one of the previous scheme 
(Figure 17). ............................................................................................ 83 

Figure 19 Learning compensation commands: VOR gain tuning. In order to 
generate an appropriate stabilization command, inertial information 
(from the sensor) and retinal slip (from optic flow) are combined. The 
neural network is responsible for building such association. The 
teaching signal is the optic flow itself, which has to be minimized for 
stabilization to be effective. It is worth stressing that for the schema 
to work, the robot must be interacting with a real environment; that 
is the system evaluates on-line performance (the residual optic flow) 
to update the network’s parameters. ................................................... 84 

Figure 20 Position and velocity information during a gaze redirection 
experiment. From top to bottom: the left eye position, the head 
position, the inertial sensor output, and the gaze position are shown. 
The head velocity sensed by the inertial sensor is used to generate 
compensatory eye movements. The end of the saccadic part of the eye 
movement is marked with a ‘*’ symbol. ............................................... 91 

Figure 21 Visual parameters computed during gaze redirection. From top 
to bottom: target retinal error (left eye), image stabilization index 
(ISI) for the left eye, target retinal error (right eye), and ISI (right 
eye). The overshoot is measured as the difference between the 
minimum (‘*’ symbol) and the maximum retinal error (‘+’ symbol) 
after the saccade. The time interval required for the ISI to fall below 
a stable threshold of 0.3 is delimited by two ‘*’ symbols. ................... 92 
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Figure 22 Parameters measuring stabilization performance during 
coordinate eye-head movements. Top: retinal error overshoot: the 
inertial and non-inertial case. Bottom: time interval required for the 
ISI to fall below the 0.3 threshold. ....................................................... 93 

Figure 23 Controller structure: motor primitives, represented by torque 
fields are combined (weighted by C1, C2, C3, and C4). The overall field 
“guides” the arm end-point toward the EP.......................................... 99 

Figure 24 The overall arm’s control scheme. The position of the head (qhead) 
queries the map that “computes” the activation vector for the arm. 
This stage is followed by a trajectory generation that interpolates 
linearly between activation vectors. The resulting force field is then 
computed and used to generate the torques, which drive the arm 
motors. ................................................................................................. 103 

Figure 25 The trajectory showed a bell-shaped velocity profile. On the left, 
the trajectory of the arm end-point: abscissa and ordinate represent 
the plane where the arm motion was constrained – bear in mind it 
was a 2D experiment. The dashed line is the actual trajectory 
sampled at 40Hz, the solid line is the “virtual trajectory”. In spite of 
the virtual trajectory that moves directly to the target, the actual 
motion showed an overshoot. On the right, the hand speed has a bell-
shaped profile. Note the two bumps corresponding to the first large 
“transport phase” and a second corrective movement. Time is 
expressed in control cycles (25ms), and speed in meters per second.
.............................................................................................................. 108 

Figure 26 The arm control schema: 3D reaching experiment. This schema 
roughly resembles Figure 24 apart from the two “yellow” blocks which 
carry on the “redundancy reduction” and the computation of the arm 
activation values starting from the equilibrium point position. ...... 110 

Figure 27 The log-polar mapping. The upper row (a) shows a log-polar or 
cortical image as acquired through the Giotto Camera (Sandini et al., 
1998) a CMOS realization of the log-polar mapping at the sensor level 
(this image is 76×128 pixels). The image on the right is the 
corresponding remapped retinal image. The lower panel (b) shows – 
albeit simplified – how retinal pixels map onto cortical pixels. For 
instance, the innermost circle (on the left) map to the leftmost column 
(on the right) representing the fovea, on the contrary radii map to 
rows in the cortical image................................................................... 120 

Figure 28 An example of log-polar mapping, note as radial structures in 
the flower (petals) map to horizontal structures in the log-polar 
image. Circles, on the other hand, map to vertical patterns. 
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Furthermore, note as the central part of the flower occupies about 
half of the corresponding log-polar image. ........................................ 121 

Figure 29 Color processing. The upper row (a) shows a typical image from 
the robot’s point of view: original image (left) and color segmented 
image (right). All the processing is carried out in the log-polar 
domain; images are mapped back to the Cartesian space for 
visualization purposes. The lower row (b) contains the HS 
histograms: background (left) and object (right). Note that, as the 
histograms do not overlap, segmentation can be performed reliably. 
Hue values range from 0 (red) to 360. Saturation ranges from 0 (gray 
level) to 1 (full color). The V component has not been used for 
segmentation purposes in order to enhance robustness to changes in 
illumination. ........................................................................................ 127 

Figure 30 Two exemplar basis fields represented as torque fields in joint 
coordinates. Ordinate and abscissa show joint position (Babybot’s 
joint 7 and 8 – shoulder and elbow respectively) in degrees. Arrows 
point to the common EP of the two joints. The actual resting position 
of each actuator q0 was defined beforehand. ..................................... 133 

Figure 31 Two exemplar basis fields represented in Cartesian coordinates 
(see also Figure 30). Ordinate and abscissa represent the plane where 
the arm motion has been constrained – see experimental session on 
section 3.7. ........................................................................................... 135 

Figure 32 Exemplar converging force field as employed by Babybot’s 
controller. The 7 vectors together with the knowledge of the basis 
fields, allow us to recover the activation values, from there a 
simulation of the spring-like actuators allow computing, for each time 
step, a corresponding torque vector. The torque vector eventually is 
converted to the appropriate currents, which drive the motors....... 136 

Figure 33 The Babybot distributed architecture. Presently, it consists of 
four PCs connected through a 100Mbit/s Ethernet link. Some of them 
are equipped with frame grabbers, axis control boards, and ADCs. 
From the software point of view, the adopted framework allows 
uniform programming and object distribution across machine 
boundaries. In practice the whole system can be seen as a unique 
processing machine where internal boundaries are actually as thin as 
possible................................................................................................. 139 
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