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If the human mind was simple enough to understand, we’d be toosim-
ple to understand it.

Emerson Pugh

. . . questo grandissimo libro [della natura] che continuamente ci sta
aperto innanzi agli occhi (io dico l’universo), non si può intendere se
prima non s’impara a intender la lingua, e conoscer i caratteri né quali
è scritto. Egli è scritto in lingua matematica, e i caratterison triangoli,
cerchi, ed altre figure geometriche, senza i quali mezzi è impossibile a
intendere umanamente parola; senza questi è un aggirarsi vanamente
per un oscuro laberinto.

Galileo Galilei
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Abstract

In this thesis we analyze the topics of adaptation and learning in the context of
computer vision. Until now the ability of humans to adapt andlearn how to solve
new tasks from their own experience remain impossible to replicate in an artificial
system. Even if computers can beat humans on small, constrained domains, the
generality of the human mind has no counterpart in the digital world.

The keys to understand and replicate a brain in a robot, couldbe to try to
discover the general principles that govern our internal algorithms and to formalize
them mathematically, and then to implement them in software.

If it is true that our brains are the product of an long processof adaptation to the
environment, we could be able to “predict” our biology studying the world itself.

In this thesis we will show that, on one hand, it is possible tolearn basic features
of the processing of the neurons of the primary visual cortexfrom the row visual
data and, on the other hand, we can learn such a high level visual skills as object
classification.

The obtained results support the idea that these two aspectsare critical for
the comprehension of biological intelligence, and, hence,for creating an artificial
cognitive agent.
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Chapter 1
Introduction

Contents
1.1 Adaptation and learning . . . . . . . . . . . . . . . . . . . 14

1.2 Putting things in context . . . . . . . . . . . . . . . . . . . 15

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I F we consider the aim to survive like a problem to solve, we can realize that
animals and humans have already efficiently solved this problem using differ-
ent means. Evolution on one hand has shaped bodies to solve different tasks,

on the other hand has created minds able to solve new problemsas they arise in
everyday life.

The ultimate goal of Artificial Intelligence (AI) is considered to build an arti-
ficial agent with cognitive abilities: how is it related to the above considerations?
What is an agent? What is cognition? Already Alan Turing had considered the
difficulties of such definitions, and invented the idea of an operative test as a mean
to evaluate artificial intelligence: requirement for an intelligent agent is to behave
in such a way to fool a human interrogator, hence to be indistinguishable from a
human. Thus it is easier to define the intelligence in relation to humans, instead of
giving an absolute definition. Another way to try to define intelligence could be in
the context of the tasks that a cognitive agent should be ableto solve. But if we
focus on specific abilities of humans and animals that we wantto replicate, it is
easy to find examples of softwares that are even better of their biological counter
parts,e.g. chess softwares. An interesting observation on this has been done by
Douglas Hofstadter (Hofstadter, 1999):

It is interesting that nowadays, practically no one feels that sense of
awe any longer - even when computers perform operations thatare in-
credibly more sophisticated than those which sent thrills down spines
in the early days. [...] There is a related “Theorem” about progress
in AI: once some mental function is programmed, people soon cease

13



14 CHAPTER 1. INTRODUCTION

to consider it as an essential ingredient of “real thinking”. The in-
eluctable core of intelligence is always in that next thing which hasn’t
yet been programmed. This “Theorem” was first proposed to me by
Larry Tesler, so I call it Tesler’s Theorem:“AI is whatever hasn’t been
done yet”.

Thus the aim of creating an intelligent machine should be seen under another
view: to create something that is ableto solve and learn to solvedifferent problems
that it can meet in its environment. This different view offers us also the possibility
to move the focus from theperformancesto the reasons. That is, it is more im-
portant to understand why,e.g., the human retina has a spatial variant resolution,
instead of focusing on gaining few percent points on an object recognition task.
In the first case we could understand more general conditionsthat rules biological
beings and that, if replicated in a computer, could make possible a quantum leap in
the performances.

Borrowing ideas from another field, we could say that making intelligent arti-
facts can be seen like making mechanical flying machines. We really should take
the time to understand how biological systems have solved the problem, even if
we do not want to make an airplane with feathers. In fact the correct solution to
mechanical flight was to take only a minimum amount of information from ob-
servation of birds and then figure out how to use available technology to make a
machine fly. This scientific solution was clearly better thanthe prescientific idea
that certain substances or forms could naturally rise or sink according to their es-
sential properties (like in the Icarus legend in which bird-like wings give men the
power of flight).

Thinking about the Tesler’s “Theorem”, one big differencesbetween the most
advanced artificial intelligence achievements and what animals and humans can do,
could be the ability to solve problems, and generalizing from previous experience.
Computer can be programmed to solve specific tasks or to learnto classify certain
stimuli with a specific algorithms, but each problem requires a different method,
that often uses specific information of the problem. Often this prior information
is the result of a deep analysis done by the programmer, and not by the program
itself. Again, the difference is the learning of living being is guided by general
principles, that allow them to extractautonomouslyall the necessary information
to solve specific tasks.

1.1 Adaptation and learning

If learning and adaptation seem to be the two key aspects thatshould be addressed
to replicate the intelligent behaviors of animals and humans, however it is true that
these cognitive abilities have sense only in relation to their particular needs and to
ambient in which they live. It has no much sense to talk about adaptation without
also considering what is the object of this adaptation. An agent can be seen as
continuously adapting to the world, as perceived by its, andits own body can be
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considered just as a special part of the world. Same reasoning can be done in a
deeper level, taking into consideration the functional role of neurons and neural
systems. A long standing hypothesis states that sensory systems are matched to the
statistical properties of the signals to which they are exposed (Barlow, 1961).

The difference between adaptation and learning is quite narrow in a digital
agent. We could consider the first as a product of a design process that has decided
which abilities should be innate, and on which build more complex ones, through
the second. Also in living beings we can do a similar distinction, in fact the ex-
pression Nature vs Nurture indicates the debate about the relative importance of an
individual’s innate qualities (“nature”) versus personalexperiences (“nurture”) in
determining or causing individual differences in physicaland behavioral traits. In
the same way we should distinguish between the innate abilities that a robot should
have ready to be used, preprogrammed, and the abilities thatit should be able to
learn.

A first impulse would be to consider most of our high abilitiesas innate, but
this is not the true. For example the same “concept of object”seems to develop
across the first6 months after birth (Johnson, 2005). In fact, it seems that infants
are born without any means to perceive occlusion and, hence,no knowledge of
objects. This example tells us that, maybe, most of the cognitive abilities, that we
would like to see in an artificial machine, can be learnt from the experience, given
enough time and an appropriate set of core abilities.

To summarize with an example, we are able to manipulate objects because we
have hands, because we can learn how to use our hands, and because the world is
made of objects.

1.2 Putting things in context

The human visual and attentive system will be taken as a case study. We can see,
by analyzing the visual system, a clear example of how the evolution has shaped
the bodies of many mammals. Typical visual tasks require both high acuity and a
wide field of view. High acuity is needed for recognition tasks and for controlling
precise visually guided movements. A wide field of view is needed for search
tasks, for tracking multiple objects, being aware of possible source of dangers,
etc. A common trade-off found by evolution in biological systems is to sample
parts of the visual field at a high enough resolution (fovea) to support the first set
of tasks, and to sample the rest of the field at an adequate level to support the
second set. This is seen in animals with foveate vision, suchas humans, where
the density of photoreceptors on the retina is highest at thecenter and falls off
dramatically toward the periphery. This space-variant visual system requires them
to move their eyes, three times a second on average, in order to position their foveae
onto interesting locations of the visual space. This allowstaking a series of small
“snapshots” at very high-resolution. The fact that this is the only way that allows
clear “vision” implies the existence of an attention systemwhich, at any moment
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Figure 1.1: The relation between action, attention and experience.

in time, selects the point to fixate next. This leads to two sorts of questions: i)
how to move the eyes efficiently to important locations in thevisual scene, and ii)
how to decide what is important and, as a consequence, where to look next. It is
important to answer these questions to understand that there are two mechanisms
that act at the same time. One is hard-coded in the brain, the other one has been
learnt through the experience and the interaction with the world. In fact there are
things that attract our attention instinctively,e.g. rapid change in the scene (Yantis
and Jonides, 1984), and some other that are learnt from the experience,e.g. the
image features that attract the attention of a radiologist viewing an X-ray image
(Mylers-Worsleyet al., 1988). In general it has been shown that scanpaths for an
individual are modified by the task presented (Yarbus, 1967).

From these considerations about the spatial density of the photoreceptors, the
need for an active vision and, hence, for a mechanism of visual attention, we clearly
see that the physiology of vision has shaped not only the way in which the image
are scanned but our entire perception. In fact the external world is sensed continu-
ously instead of maintaining and updating some complicatedinternal model. This
idea has been summarized by O’Regan as: “The world as an outside memory”
(O’Regan, 1992). The sentence remarks the fact that it is important to consider
the problem of vision, and perception in general, deeply rooted in the physical
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world. Given that, for example, changes in the world seem to be easily detectable,
it is cheaper to store in memory a rough representation of theexternal world, di-
rectly accessing to it when a detailed information is neededand to keep track of
the changes.

Moreover, it has no sense to talk about perception without talking about action,
so it is logical to think that our perception is biased versusa representation that is
useful to act on physical objects. In the case of visual attention this corresponds
to ask if the attention is deployed on objects (object-based) or on space locations
(space-based). This idea is supported by the discovery in monkeys of a class of
neurons (mirror neurons) which not only fire when the animal performs an action
directed to an object, but also when it sees another monkey orhuman performing
the same action on the same object (Fadigaet al., 2000). Indeed, this tight coupling
of perception and action is present in in visual attention too. In fact, it has been
shown in (Fischer and Hoellen, 2004) that more object-basedattention is present
during a grasping action, than space-based one. But how can we attend to objects
before they are recognized? To solve this contradiction Rensink (Rensink, 2000b;
Rensink, 2000a) introduced the notion of “proto-objects”,that are volatile units of
visual information that can be bound into a coherent and stable object when ac-
cessed by focused attention and subsequently validated as actual objects. In fact, it
is generally assumed that the task of grouping pixels into regions is performed be-
fore selective attention is involved by perceptual organization and Gestalt grouping
principles (Palmer and Rock, 1994).

All the above considerations can be summarized in the block diagram of Figure
1.1.

1.3 Thesis outline

The main focus of this thesis will be the development of abilities related to the
visual system, in a biological inspired way. Starting from the above considerations
various example of learning and adaptation will be taken under considerations. The
thesis is organized as follows. Chapter 2 presents a method to adapt to the statistics
of the world, learning second order relations between different edge detectors, and
hence learning some of the Gestalt principles. Chapter 3 addresses the problem of
modeling active vision, through the use of a proto-object based attentive system.
In Chapter 4 an online algorithm for classification is presented, with a detailed
mathematical analysis of his theoretical foundations. Finally, in Chapter 5 there is
an application of a supervised learning procedure on an object categorization task.
In the last chapter we draw the conclusions and discuss the future work. Finally
in the Appendix there are some mathematical details that were not reported in the
main text.
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Chapter 2
Learning Association Fields

Contents
2.1 Gestalt laws, statistics and neurons . . . . . . . . . . . . . . 20

2.2 Learning from natural images . . . . . . . . . . . . . . . . 22

2.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Using the fields . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

THE term “grouping” (or “segmentation”) is a common concept in the long
research history of perceptual grouping by the Gestalt psychologists. In
particular the Gestaltists tended to view their grouping phenomena as an

illustration of the perceiver imposing a seemingly arbitrary (albeit systematic) or-
ganization upon the stimuli (e.g. (Wertheimer, 1923)). Nowadays the more typi-
cal view of such grouping demonstrations would be that they reflect non-arbitrary
properties within the stimuli (similarity, common motion,etc.), which the visual
system exploits heuristically because these properties are likely to reflect divisions
into distinct objects in the real world. In particular theseproperties work because
they reflect characteristics of the real world. In this senseit should be possible to
learn these heuristic properties, that is, it should be possible to adapt to the statis-
tics of natural images, learning the properties of the visual world. These properties
can be then exploited to have a more efficient representation, e.g. (Buccigrossi and
Simoncelli, 1999), and to complete missing information (Hyvärinenet al., 2001).

Previous studies have shown that it is possible to learn certain properties of the
responses of the neurons of the visual cortex, as for examplethe receptive fields of
complex and simple cells, through the analysis of the statistics of natural images
and by employing principles of efficient signal encoding from information theory,
e.g. (Bell and Sejnowski, 1997). Here we want to go further and consider how the
output signals of ‘complex cells’ are correlated and which information is likely to

19



20 CHAPTER 2. LEARNING ASSOCIATION FIELDS

be grouped together. We want to learn ‘association fields’, which are a mechanism
to integrate the output of filters with different preferred orientation, in particular
to link together and enhance contours. We used static natural images as training
set and the tensor notation to express the learned fields. Finally we tested these
association fields in a computer model to measure their performance.

This chapter is organized as follows: section 2.1 introduces the idea of the link
between the Gestalt laws and the statistics of the world. Section 2.2 contains a
description of the method, and section 2.3 describes a first set of experimental re-
sults and a method to overcome problems due to the non-uniform distribution of
the image statistics. In section 2.4 we show the fields computed with this last mod-
ification and finally in sections 2.5 and 2.6 we show the performance of the fields
in edge detection on a database of natural images and we draw some conclusions.

2.1 Gestalt laws, statistics and neurons

The goal of perceptual grouping in computer vision is to organize visual primitives
into higher-level primitives thus explicitly representing the structure contained in
the data. The idea of perceptual grouping for computer vision has its roots in the
well-known work of the Gestalt psychologists back at the beginning of the last cen-
tury who described, among other things, the ability of the human visual system to
organize parts of the retinal stimulus into “Gestalten”, that is, into organized struc-
tures. They formulated a number of so-called Gestalt laws (proximity, common
fate, good continuation, closure,etc.) that are believed to govern our perception. It
is logical to ask if these laws are present in the statistics of the world.

On the other hand it has been long hypothesized that the earlyvisual system
is adapted to the input statistics (Barlow, 1961). Such an adaptation is thought
to be the result of the joint work of evolution and learning during development.
Neurons, acting as coincidence detectors, can discover anduse regularities in the
incoming flow of sensory information, which eventually represent the Gestalt laws.
It has been proposed that, for example, the mechanism that link together the ele-
ments of a contour is rooted in our biology, with neurons withlateral and feedback
connections implementing these laws.

There is a large body of literature about computational modeling of various
parts of the visual cortex, starting from the assumption that certain principles guide
the neural code ((Simoncelli and Olshausen, 2001) for a review). In this view it
is important to understand why the neural code is as it is. Bell and Sejnowski
(Bell and Sejnowski, 1997), for example, demonstrated thatit is possible to learn
receptive fields similar to those of simple cells starting from natural images. In
particular they demonstrated that it is possible to reproduce these receptive fields
hypothesizing the sparsity and independence of the neural code. In spite of this,
there is very little literature on learning an entire hierarchy of features, that is not
only the first layer, and possibly starting from these initial receptive fields.

A step in the construction of this hierarchy is the use of ‘association fields’
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Figure 2.1: Sample input image from the Berkeley Segmentation Database. All the
images were converted to grayscale before using the proposed method.

(Field et al., 1993). In the literature, association fields are often hand-coded and
employed in many different models with the aim to reproduce the human perfor-
mance in contour integration. These fields are supposed to resemble the pattern of
excitatory and inhibitory lateral connection between different orientation detector
neurons as found, for instance, by Schmidtet al. (Schmidtet al., 1997). In fact,
Schmidt has shown that cells with an orientation preferencein area 17 of the cat
are preferentially linked to iso-oriented cells. Furthermore, the coupling strength
decrease with the difference in the preferred orientation of pre- and post-synaptic
cell. Models typically consider variations of the co-circular approach (Grossberg
and Mingolla, 1985; Guy and Medioni, 1996; Li, 1998), that istwo oriented el-
ements are part of the same curve if they are tangent to the same circle. Others
(Vonikakis et al., 2006) have considered exponential curves instead of circles ob-
taining similar results.

Our question is whether it is possible to learn these association fields from the
statistics of natural images. One of the first publication addressing second order
relations of edge-like structures in images is from Krüger (Krüger, 1998). Then
different authors have used different approaches to try to “learn” this fields: using
a database of tagged images (Elder and Goldberg, 2002; Geisleret al., 2001), using
motion as an implicit tagger (Prodöhlet al., 2003) or hypothesizing certain coding
properties of the cortical layer (Hoyer and Hyvärinen, 2002).

Our approach is similar to to one of Sigmanet al. (Sigmanet al., 2001), which
uses images as the sole input. Further, we aim to obtain precise association fields,
useful to link contours in a computer model.
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2.2 Learning from natural images

We assume the existence of a first layer that simulates the behavior of the complex
cells; in this paper we do not address the issue on how to learnthem since we are
interested in the next level of the hierarchy. Using the output of this layer we want
to estimate the mean activity around points with a given orientation. For example
it is likely that if a certain image position contains a horizontal orientation, then
the adjacent pixels on the same line would be points with an orientation almost
horizontal.

To have a precise representation of the orientations and at the same time some-
thing mathematically convenient we have chosen to use the tensor notation. Second
order symmetric tensors can capture the information about the first order differen-
tial geometry of an image. Each tensor describes both the orientation of an edge
and its confidence for each point. The tensor can be visualized as an ellipse, whose
major axis represents the estimated tangential direction and the difference between
the major and minor axis the confidence of this estimate. Hence a point on a line
will be associated with a thin ellipse while a corner with a circle. Consequently
given the orientation of a reference pixel, we estimate the mean tensor associated
with the surrounding pixels. The use of the tensor notation give us the possibility
to exactly estimate the preferred orientation in each pointof the field and also to
quantify its strength and confidence.

We have chosen to learn a separate association field for each possible orienta-
tion. This is done for two main reasons:

• It is possible to find differences between the association fields. For example,
it is possible to verify that the association field for the orientation of 0 degrees
is stronger than that of 45 degrees.

• For applications of computer vision, considering the discrete nature of digital
images, it is better to separate the masks for each orientation, instead of
combining the data in a single mask that has to be rotated leading to sampling
problems. The rotation can be done safely only if there is a mathematical
formula that represents the field, while on the other hand we are inferring
the field numerically.

We have chosen to learn 8 association fields, one for each discretized orienta-
tion. The extension of the fields is chosen to be of 41x41 pixels taken around each
point. It should be noted that even if we quantized the orientation of the (central)
reference pixel to classify the fields, the information about the remaining pixels
in the neighbor were not quantized, differently to (Geisleret al., 2001; Sigman
et al., 2001). There is neither a threshold nor a pre-specified number of bins for
discretization and thus we obtain a precise representationof the association field.

Images used for the experiments were taken from the publiclyavailable database
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Figure 2.2: Complex cells output to the image in figure 2.1 for0 degrees filter of
formula (2.1).

(Berkeley Segmentation Database1 (Martin et al., 2001)) which consists of 300
color images of 321x481 and 481x321 pixels; 200 of them were converted to black
and white and used to learn the fields, collecting 41x41 patches; an example image
from the dataset is shown in figure 2.1.

2.2.1 Feature extraction stage

There are several models of the complex cells of V1, but we have chosen to use
the classic energy model (Morrone and Burr, 1988) on the intensity channel. The
response is calculated as:

Eθ =
√(

I ∗ f e
θ

)2
+
(
I ∗ f o

θ

)2 (2.1)

wheref e
θ andf o

θ are a quadrature pair of even and odd-symmetric filters at orien-
tationθ. Our even-symmetric filter is a Gaussian second-derivative, and the corre-
sponding odd-symmetric is its Hilbert transform. In figure 2.2 there is an example
of the output of the complex cells model for the 0 degrees orientation.

Then the edges are thinned using a standard non-maximum suppression algo-
rithm. This is equivalent to finding edges with a Laplacian ofGaussian and zero
crossing. The outputs of these filters are used to construct our local tensor repre-
sentation.

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench/, last access 19/02/2007.
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2.2.2 Tensors

In practice a second order tensor is denoted by a 2x2 matrix ofvalues:

T =

[
a11 a12

a21 a22

]
(2.2)

It is constructed by direct summation of three quadrature filter pair output mag-
nitudes as in (Knutsson, 1989):

T =
3∑

k=1

Eθk

(
4

3
n̂T

k n̂k −
1

3
I

)
(2.3)

whereEθk
is the filter output as calculated in (2.1),I is the 2x2 identity matrix and

the filter directionŝnk are:
n̂1 = (1, 0)

n̂2 =
(

1

2
,
√

3

2

)

n̂3 =
(
−1

2
,
√

3

2

) (2.4)

The greatest eigenvalueλ1 and its corresponding eigenvectore1 of a tensor
associated to a pixel represent respectively the strength and the direction of the
main orientation. The second eigenvalueλ1 and its eigenvectore1 have the same
meaning for the orthogonal orientation. The differenceλ1 − λ2 is proportional to
the likelihood that a pixel contains a distinct orientation.

2.3 Preliminary results

We have run our test only for a single scale, choosing theσ of the Gaussian filters
equal to 2, since preliminary tests have shown that a similarversion of the fields is
obtained with other scales as well. Two of the obtained fieldsare in figures 2.3 and
2.4. It is clear that they are somewhat corrupted by the presence of horizontal and
vertical orientations in any of the considered neighbors and by the fact that in each
image patch there are edges that are not passing across the central pixel. On the
other hand we want to learn association field for curves that do pass through the
central pixel. Geisleret al. (Geisleret al., 2001) used a human labeled database of
images to infer the likelihood of finding edges with a certainorientation relative to
the reference point. On the other hand, Sigmanet al. (Sigmanet al., 2001) using
only relative orientation and not absolute ones, could not have seen this problem.
In our case we want to use unlabeled data to demonstrate that it is possible to learn
from raw images and, as mentioned earlier, we do not want to consider only the
relative orientations, but rather a different field for eachorientation. We believe that
this is the same problem that Prodöhlet al. (Prodöhlet al., 2003) experienced using
static images: the learned fields supported collinearity inthe horizontal and vertical
orientations but hardly in the oblique ones. They solved this problem using motion
to implicitly tag only the important edges inside each patch. A similar approach is
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Figure 2.3: Main directions for the association field for theorientation of 0 degrees
in the central pixel.

Figure 2.4: Main directions for the association field for theorientation of 67.5
degrees in the central pixel.
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used by (Fitzpatrick and Metta, 2003) to disambiguate the edges of a target object
from the other of the environment.

2.3.1 The path across a pixel

The neural way to solve the problem shown earlier is thought to be the synchrony
of the firing between nearby neurons: if stimuli co-occur, then the neurons syn-
chronize (Grayet al., 1989). Inspired by this we considered in each patch only
pixels that belong to a curve that goes through the central pixel. In this way the
gathered data will contain only information about curves connected to the central
pixel. Note that we select curves inside each patch, not inside the entire image.
The simple algorithm used to select the pixels in each patch is the following:

1. put central pixel of the patch in a list;

2. tag first pixel in the list and remove it from the list. Put surrounding pixels
that are active (non-zero) in the list;

3. if the list is empty quit otherwise go to 2.

With this procedure we remove the influence of horizontal andvertical edges that
are more present in the images and that are not removed by the process of av-
eraging. On the other hand, we are losing some information, for example about
parallel lines, that in any case should not be useful for the enhancement of con-
tours. Note that this method is completely parameter free; we are not selecting the
curves following some specific criterion, instead we are just pruning the training
set from some kind of noise. It is important to note that this method will learn the
bias present in natural images versus horizontal and vertical edges (Coppolaet al.,
1998), but it will not be biased to learnonly these statistics, as in Prodöhlet al.
(Prodöhlet al., 2003) when using static images.

2.4 Results

We tested the modified procedure on the database of natural images and also on
random images (results not shown), to verify that the results were not an artifact
due to the method.

In figures 2.5, 2.6 there are respectively the main orientations, their strengths
(eigenvalues) and the strengths in the orthogonal directions of the mean estimated
tensors for the orientation of 0 degrees of the central pixel. Same for figures 2.7
and 2.8 for 67.5 degrees. The structure of the obtained association field closely
resembles the fields proposed by others based on collinearity and co-circularity. We
note that the size of the long-range connection far exceeds the size of the classical
receptive field. We note also that the noisier regions in the orientation corresponds
to very small eigenvalues so they do not influence very much the final result.
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Figure 2.5: Main directions for the association field for theorientation of 0 degrees
in the central pixel, with the modified approach.
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Figure 2.6: Difference between the two eigenvalues of the association field of fig-
ure 2.5.
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Figure 2.7: Main directions for the association field for orientation of 67.5 degrees,
with the modified approach.
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Figure 2.8: Difference between the two eigenvalues of the association field of fig-
ure 2.7.
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Figure 2.9: Comparison of the decay for the various orientations. On the y axis
there are the first eigenvalues normalized to a maximum of 1, on the x axis is the
distance from the reference point along the main field direction.

While all the fields have the same trend, there is a clear difference in the decay
of the strength of the fields. To see this we have considered only the values along
the direction of the orientation in the center, normalizingthe maximum values to
one. Figure 2.9 shows this decay. It is clear that fields for horizontal and vertical
edges have a wider support, confirming the results of Sigmanet al. (Sigmanet al.,
2001).

2.5 Using the fields

The obtained fields can be used with any existing model of contour enhancement,
but to test them we have used the tensor voting scheme proposed by Guy and
Medioni et al. (Guy and Medioni, 1996). The choice is somewhat logical consid-
ering to the fact that the obtained fields are already tensors. In the tensor voting
framework points communicate with each other in order to refine and derive the
most preferred orientation information. Differently to the original tensor voting
algorithm we don’t have to choose the right scale of the fields(Lee and Medioni,
1999) since it is implicitly in the learnt fields. We comparedthe performances of
the tensor voting algorithm using the learned fields versus the simple output of the
complex cell layer, using the Berkeley Segmentation Database and the methodol-
ogy proposed by Martinet al. (Martin et al., 2004; Martinet al., 2001). We can
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Figure 2.10: Comparison between tensor voting with learnedfields (PG label) and
the complex cell layer alone (OE label).

see the results in figure 2.10: there is a clear improvement using the tensor voting
and the learned association fields instead of just using the simulated outputs of the
complex cells alone. An example of the results on the test image in 2.1, after the
non-maximum suppression procedure, are shown in figures 2.11 and 2.12.

2.6 Discussion

Several authors have studied the mutual dependencies of simulated complex cells
responses to natural images. The main result from these studies is that these re-
sponses are not independent and they are highly correlated when they are arranged
collinearly or on a common circle. In this chapter we have presented a method
to learn precise association field from natural images. A bio-inspired procedure
to get rid of the non-uniform distribution of orientations is used, without the need
of a tagged database of images (Elder and Goldberg, 2002; Geisler et al., 2001),
the use of motion (Prodöhlet al., 2003) or supposing the cortical signals sparse
and independent (Hoyer and Hyvärinen, 2002). The learned fields were used in a
computer model, using the tensor voting method, and the results were compared



2.6. DISCUSSION 31

Figure 2.11: Test image contours using the complex cell layer alone.

Figure 2.12: Test image contours using tensor voting with the learned fields. Notice
the differences with the image 2.11: the contours are linkertogether and the gaps
are reduced. Especially on the contour of back of the tiger the differences are
evident.

using a database of human tagged images which helps in providing clear numerical
results.

However the problem of learning useful complex features from natural images
could in any case find a limit beyond these contour enhancement networks. At
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least the knowledge of class to which the images belong is necessary as in (Fidler
et al., 2006), that have used a similar method to learn class specific combinations
of basic features. Moreover theusefulnessof a feature is not directly related to
image statistics but supposes the existence of an embodied agent acting in the
natural environment, not just perceiving it. In this sense in the future we would
like to link strategies like the one used by Nataleet al. (Nataleet al., 2005) and
the approach described here, to link the first stages of unsupervised learning, to
reduce the dimensionality of the inputs, to other stages of supervised learning for
the definition of the extraction of useful features for a given task.
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A S said in the Introduction, one of the first steps of any visual system is
that of locating suitable interest points, “salient regions”, in the scene, to
detect events, and eventually to direct gaze toward these locations. In the

last few years, object-based visual attention models have received an increasing
interest in the literature, the problem, in this case, beingthat of creating a model
of “objecthood” that eventually guides a saliency mechanism. We present here an
object-based model of visual attention and show its instantiation on a humanoid
robot. The robot employs action to learn and define its own concept of objecthood.

The chapter is organized as follows: section 3.1 contains anintroduction on
the modeling of human visual attention. Section 3.2 describes the experimental
setup used in the experiments. Section 3.3 details the robot’s visual system and the
implementation. Section 3.4 introduces the probabilisticobject model and shows
how this is used for object recognition. Finally in sections3.5 and 3.6 we show
experimental results and we draw some conclusions.

3.1 Computational models of visual attention

One way to study the phenomenology of visual attention is using the paradigm of
visual search task. In such tasks the observer must tell the presence or absence of a
target object among a number of other objects, “distractors”. A dominant tradition

33
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in visual search was initiated with a seminal paper by Treisman and Gelade (Treis-
man and Gelade, 1980). They argued that some primary visual properties allow a
search in parallel across large displays. In such cases the target appears to ‘pop out’
of the display. For example there is no problem in searching for a red item amongst
distractor items coloured green, blue or yellow. In other cases, the paradigmatic ex-
ample being a ‘feature conjunction’ search for a target thatis both green and a cross
when distractors include red crosses and green circles, thetask is much more diffi-
cult, suggesting the use of a different search strategy. Treisman and Gelade argued
that in the pop-out tasks preattentional mechanisms permitrapid target detection,
in contrast to the conjunction task, which was held to require a serial deployment
of attention over each item in turn. They introduced an experimental paradigm that
differentiated the different types of searches, measuringthe time taken for an ob-
server to make a speeded two choice decision concerning the presence or absence
of a target in a visual display. Half of the displays contained a target and in the re-
maining the target was absent. The critical independent variable was the number of
displayed items. Thesearch functionshows how the response time depends on this
variable. The traditional interpretation of the search function is that the display-
size-dependent increases shown in the search functions forconjunction searches
come about through an item by item serial scan of covert attention through the dis-
play. If the display does not contain a target, it is assumed that every item in the
display is scanned before a target-absent response is given. If the search is self-
terminating in displays that do contain a target, then on average half the display
items must be scanned before the target is found. This dichotomy serial/parallel
has suggested the division of the attention in two stages: one ‘preattentive’ that is
traditionally thought to be automatic, parallel, and to extract relatively simple stim-
ulus properties, and other ‘attentive’ serial, slow, with limited processing capacity,
able to extract more complex features. The ‘preattentive’ stage by definition is
traditionally thought to precede the subsequent ‘attentive’ stage, with the latter by
definition depending on the attentional state of the observer. Moreover, Treisman
and Gelade proposed a model called Feature Integration Theory (FIT) (Treisman
and Gelade, 1980), to justify their findings. The preattentive stage is modeled by
a set of low-level feature maps that are extracted in parallel on the entire input im-
age, than they are combined together by a spatial attention window operating on a
master saliency map (Figure (3.1)).

The Treisman and Gelade’s model is a representative of a class of models
(space-based theories) that holds that attention is allocated to a region of space,
with processing carried out only within a certain spatial window. Attention in this
case could be directed to a region of space, even in absence ofa real target. The
most influential evidences for the spatial selection come from the experiments of
Posneret al. (Posneret al., 1980) and Downing and Pinker (Downing and Pinker,
1985). In a pointing experiment, they showed that anticipating the appearance of a
target with a cue (for example an arrow) sped up the response of the subject. The
opposite occurred, that is the subject’s response was significantly slowed down,
when the cue was in the wrong direction (invalid cue). This means that attention
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Figure 3.1: A simple schematization of the FIT model.

might be directed to a region of space even in absence of a realtarget. Moreover on
invalid cues, the response slowed down monotonically as thedistance between the
cue and the actual target increased. These results suggest that attention is deployed
as a spatial gradient, centered on a particular location. Hence this theory consid-
ers attention as a “spotlight”, an internal eye or a sort of “zoom lens”; attention is
deployed as a spatial gradient, centered on a particular location.

On the other hand there is a recent literature on the so-called ‘object-based’ vi-
sual attention, that represents the result of a fertile new cross-talk between two tra-
ditionally separate research fields, one concerning visualsegmentation and group-
ing processes, and the other concerning selective attention. Object-based attention
theories argue that attention is directed to an object or a group of objects, to pro-
cess specific properties of the selected objects, rather than regions of space. There
is a growing evidence both from behavioral and from neurophysiological studies
that shows, in fact, that selective attention frequently operates on an object based
representational medium in which the boundaries of segmented objects, and not
just spatial position, determine what is selected and how attention is deployed (see
(Scholl, 2001) for a review). This reflects the fact that the visual system is op-
timized for segmenting complex scenes into representations of (often partly oc-
cluded) objects to be used both for recognition and action, since perceivers must
interact with objects and not with disembodied spatial locations. For example, at-
tention to one part of an object confers an attentional advantage to other parts of
that object (Eglyet al., 1994). Similarly, attention to one aspect of an object (e.g.
its shape) enhances the cortical response to other aspects of that object (e.g. its
color or motion); thus, all the attributes of an attended object seem to be bound to-
gether into a single entity. This concept holds even when theattended and ignored
objects are spatially superimposed. O’Cravenet al. (O’Cravenet al., 1999) have
observed the effects of object-based attention using fMRI.In this study, observers
looked at a display containing a sequence of semitransparent images of spatially
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superimposed faces and houses. At any given moment, either the house or the face
moved with an oscillatory motion. Observers were asked to decide whether the
currently visible house (or face) matched the one immediately preceding it; this
required them to attend closely to the relevant object type.A spatial ’spotlight of
attention’ could not select one of the two superimposed objects; it would neces-
sarily select both or neither. The researchers found that activity in face- and house
selective cortical regions mirrored the subject’s state ofattention (despite the fact
that both a house and a face were present in the scene at all times), indicating that
object-based selection was possible in this task. As predicted by an object-based
account, all of the features of the attended object were selected, and the features of
the ignored object were (relatively) suppressed.

Finally, another classification can be made depending on which cues are actu-
ally used in modulating attention. Bottom-up information,which comes only from
the input image, includes basic features such as color, orientation, motion, depth,
and their conjunction thereof. A feature or a stimulus catches attention if it differs
from its immediate surrounding in some dimensions and the surround is reason-
ably homogeneous in those same dimensions. However, in attention, higher-level
mechanisms are involved as well. A bottom-up stimulus, for example, may be ig-
nored if attention is already focused elsewhere (Yantis, 1998). In this case attention
is also influenced by top-down information relevant to the particular task at hand
which is not necessarily available in the image (Yarbus, 1967).

In the literature a number of attention models that follow the first hypothesis
have been proposed (Milaneseet al., 1995; Sela and Levine, 1997; Ittiet al., 1998),
most of them being derived from Treisman and Gelade’s FIT. Moreover the model
proposed by Ittiet al. (Itti et al., 1998) is considered the state of the art, and, with
some modifications, has been also implemented on humanoid robots,e.g. (Breazeal
et al., 2001). An important alternative model is given by Sun and Fisher (Sun and
Fisher, 2003), which propose an combination of object-and feature-based theories.
Presented with a manually segmented input image, their model is able to replicate
human viewing behavior for artificial and natural scenes. The limit of the model
is the human segmentation of the images: it supposes the use of information that
could be not available in the preattentive stage, that is before the objects in the
image are recognized.

For a complete review on this topic see (Itti and Koch, 2001a).

3.1.1 A proto-object based model of visual attention

The proposed model starts from the considerations that the human visual system
extracts basic information from the retinal image in terms of lines, edges, local
orientation etc. Vision though does not only represent visual features but also the
thingsthat such features characterize. In order to segment a scenein items, objects,
that is to group parts of the visual field as coherent wholes, the concept of “object”
must be known to the system.

The ‘objects’ which we will be concerned with are segmented perceptual units.
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In particular, there is an intriguing discussion underway in vision science about ref-
erence to entities that have come to be known as “proto-objects” or “pre-attentive
objects” (Rensink, 2000b; Rensink, 2000a; Pylyshyn, 2001), since they need not
to correspond exactly with conceptual or recognizable objects. These are a step
above the mere localized features, possessing some but not all of the characteris-
tics of objects. Instead, they reflect the visual system’s segmentation of current
visual input into candidate objects (i.e. grouping together those parts of the retinal
input which are likely to correspond to parts of the same object in the real world,
separately from those which are likely to belong to other objects). They were intro-
duced by Rensink in his interpretation of change blindness:observers were blind
to big changes in a scene when a blank screen was shown for a fewmilliseconds
before for the modified image (Rensinket al., 1997)

The visual attention model proposed considers these first stages of the human
visual processing, and employs a concept of salience based on proto-objects de-
fined as blobs of uniform color in the image. Since we are considering an embod-
ied system we will use the output of an instantiation of the model to control the
fixation point of a robotic head. Moreover, through action, the attention system
can go beyond proto-objects (Metta and Fitzpatrick, 2003).In fact, once an object
is grasped, the robot can move and rotate it to build a statistical model of the fea-
tures belonging to it, constructing a representation as a collection of proto-objects
and their relative spatial locations. This internal representation then generates a
top-down signal that bias attention toward known objects; as an example we will
show how the top-down influence can be used to direct the attention of the robot to
spot a specific object among other similar items lying on a table.

The proposed object-based model of visual attention integrates bottom-up and
top-down cues; in particular, top-down information works as a priming mechanism
for certain regions in the visual search task (i.e. when the robot seeks for a known
object in the environment).

3.2 Setup

The experiments reported here were carried out on a robotic platform called Baby-
bot. This is a humanoid upper torso which consists of a head, an arm and a hand.
The head has 5 degrees of freedom, two of which control the neck pan and tilt,
whereas the other three actuate two eyes to pan independently and tilt on a com-
mon axis. The arm is the well known Unimate PUMA 260, an industrial manip-
ulator with 6 degrees of freedom; the hand (designed and realized at LIRA-Lab)
has 5 fingers for a total of 6 degrees of freedom. From the pointof view of the
sensors, the head is equipped with two space-variant cameras (Sandiniet al., 2000)
and two microphones for visual and auditory feedback. Proprioceptive information
is provided to the robot by optic and magnetic encoders mounted on all joints of
the head, arm and hand. More details about the Babybot can be found in (Natale,
2004).
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Figure 3.2: The robotic setup, Babybot. The experimental setup consists of a five
degrees of freedom robot head, and an off-the-shelf six degrees of freedom robot
manipulator, both mounted on a rotating base:i.e. the torso. The kinematics re-
sembles that of the upper part of the human body although withless degrees of
freedom.

3.3 The model

In Figure 3.3 there is a block diagram of the model; the input is a sequence of
color log-polar images (Schwartz, 1977; Sandini and Tagliasco, 1980). The use
of log-polar images comes from the observation that the distribution of the cones,
i.e. the photoreceptors of the retina involved in diurnal vision, is not uniform. This
distribution seems to influence the scanpaths during a visual search task and so
it has to be taken into account to better model overt visual attention (Wolfe and
Gancarz, 1996). In addition, the lower resolution of the periphery of the field of
view reduces the images’ size and thus reduces the computational load.
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Figure 3.3: Block diagram of the model. The input image is first separated in
the three color opponency maps, than edges are extracted. A watershed transform
creates the clusters of uniform or uniform gradient of color(blobs). The saliency is
defined on the blobs, and not on single pixels, taking into account top-down biases.

3.3.1 Log-polar images

The log-polar mapping is a model of the topological transformation of the primate
visual pathways from the retina to the visual cortex. Cones have a higher den-
sity in the central region called fovea (approximately 2◦ of the visual field), while
they are sparser in the periphery. Consequently, the resolution is higher and uni-
form in the center while it decreases in the periphery, moving away from the fovea.
Moreover the cartesian image from the retina is deformed on the cortex through a
transformation that can be well described as a logarithmic-polar (log-polar) map-
ping (Schwartz, 1977).

The main advantage of log-polar sensors is related to the small number of pix-
els and the comparatively large field of view. In fact the lower resolution of the
periphery reduces the images’ size and thus reduces the computational load of the
visual processing, while the high resolution center can be used for standard visual
algorithms (Sandini and Metta, 2002).

From the mathematical point of view the log-polar mapping can be expressed
as a transformation between the polar plane(ρ, θ) (retinal plane), the log-polar
plane(η, ξ) (cortical plane) and the Cartesian plane(x, y) (image plane), as follows
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Figure 3.4: Log-polar transform of an image.

(Sandini and Tagliasco, 1980):
{

η = q · θ
ξ = loga

ρ
ρ0

(3.1)

whereρ0 is the radius of the innermost circle,1/q is the minimum angular resolu-
tion of the log-polar layout and(ρ, θ) are the polar co-ordinates. These are related
to the conventional Cartesian reference system by:

{
x = ρ · cosθ
x = ρ · sinθ

(3.2)

Figure 3.4 shows a Cartesian image and its log-polar counterpart as derived
from Equations (3.1) and (3.2). It is worth noting that the flower’s petals, that have
a polar structure, are mapped vertically in the log-polar image. Circles, on the other
hand, are mapped horizontally. Furthermore, the stamens that lie in the center of
the image of the flower, occupy about half of the corresponding log-polar image
(the cortical magnification).

3.3.2 Feature extraction

As a first step the input image at timet is averaged with the output of a color quan-
tization procedure (see later) applied to the image at timet−1. This is to reduce the
effect of the input noise. The red, green, blue channels of each image are then sep-
arated, and the yellow channel is constructed as the arithmetic mean of the red and
green channels. Successively these four channels are combined to generate three
color opponent channels, similar to those of the retina. Each channel, normally in-
dicated asR+G−, G+R−, B+Y −, has a center-surround receptive field (RF) with
spectrally opponent color responses. That is, for example,a red input in the center
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of a particular RF increases the response of the channelR+G− , while a green one
in the surrounding will decrease its response. The spatial response profile of the
RF is expressed by a Difference-of-Gaussians (DoG) over thetwo sub-regions of
the RF, “center” and “surround”. A response is computed as there was a RF cen-
tered on each pixel of the input image, thus generating an output image of the same
size of the input. This operation, considering for example the R+G− channel is
expressed by:

R+G−(x, y) = α · R ∗ gc − β ·G ∗ gs (3.3)

The two Gaussian functions,gc andgs , are not balanced: the ratioβ/α is chosen
equal to 1.5, consistent with the study of Smirnakiset al. (Smirnakiset al., 1997).
The unbalanced ratio preserves the achromatic information: that is, the response of
the channels to a uniform gray area is not zero. Hence the model does not need to
process achromatic information explicitly since it is implicitly encoded, similarly
to what happens in the human retina’s P-cells (Billock, 1995). The ratioσs/σc, the
standard deviation of the two Gaussian functions, is chosenequal to 3. To be noted
that by filtering a logpolar image with a standard space-invariant filter leads to a
space-variant filtered image of the original cartesian image (Mallot et al., 1990).
Edges are then extracted on the three channels separately using a generalization
of the Sobel filter due to (Liet al., 2003), obtainingERG(x, y), EGR(x, y) and
EBY (x, y). A single edge map is generated combining the tree outputs:

E(x, y) = max {|ERG(x, y)| , |EGR(x, y)| , |EBY (x, y)|} (3.4)

The log-polar transform has the side effect of sharpening the edges near the fovea
due to the magnification factor of the mapping; this is compensated multiplying
each pixel by a factor which is exponential on the eccentricity.

3.3.3 Proto-objects

It has been speculated, that synchronizations of visual cortical neurons might serve
as the carrier for the observed perceptual grouping phenomenon (Eckhornet al.,
1988; Grayet al., 1989). The differences in the phase of oscillation among spatially
neighboring cells are believed to contribute to the segmentation of different objects
in the scene. We have used a watershed transform (rainfalling variant) (Vincent and
Soille, 1991; De Smet and Pires, 2000) on the edge map to simulate the result of
this synchronization phenomenon and to generate the proto-objects. The intuitive
idea underlying this method comes from geography: a topographic relief is flooded
by water, watershed are the divide lines of the domains of attraction of rain falling
over the region. In our view the watershed transform simulates the parallel spread
of the activation on the image, until this procedure fills allthe spaces between
edges. Differently from other similar methods the edges themselves will never be
tagged as blobs and the method does not require complex membership functions
either. Moreover the result does not depend on the order in which the points are
examined like in standard region growing (Wan and Higgins, 2003). As a result,
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Figure 3.5: Filtering the image on the left with a Differenceof Gaussians with
the size of positive lobe equal to the size of the circle in themiddle, we obtain
the image on the right. Smaller blobs will be depressed whilelarger ones will be
depressed in their centers.

the image is segmented into blobs with either uniform or uniform gradient of color.
Hence from the choice of the feature maps come our definition of proto-objects as
closed areas of uniform color of the image. Each blob is tagged with the average of
the color of the pixels within its area (this leads to a sort ofcolor quantized image).
The result is blurred with a Gaussian filter and stored: this will be used to perform
a time-smoothing by simple averaging with the frame at timet + 1 to reduce the
effect of noise and increase the temporal stability of the blobs. After an initial
startup time of about five frames, the number of blobs and their shape stabilize. If
movement is detected in the image (as difference between twoconsecutive frames)
then the smoothing procedure is halted and the bottom-up saliency map becomes
the motion image.

As already mentioned above, a feature or a stimulus catches the attention of
the system if it differs from its immediate surrounding. We chose to compute the
bottom-up salience as the Euclidean distance in the color opponent space between
each blob and its surrounding. The size of the spot or focus ofattention is not
constant: it changes depending on the size of the objects in the scene. To account
for this fact the greater part of the visual attention modelsin literature uses a multi-
scale approach filtering with some type of “blob” detector (typically a difference
of Gaussian filter) at various scales (Itti and Koch, 2001a).We reasoned that this
approach lacks continuity in the choice of the size of the focus of attention (see
for example Figure (3.5)). We propose instead to dynamically vary the region of
interest depending on the size of the blobs. That is the salience of each blob is
calculated in relation to a neighborhood proportional to its size. In our implemen-
tation we consider a rectangular region 3 times the size of the bounding box of the
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blob as surrounding region, centered on each blob. The choice of a rectangular
window is not incidental, rather it was chosen because filters over rectangular re-
gions can be computed efficiently by employing the integral image as in (Viola and
Jones, 2004).

The bottom-up saliency is thus computed as:

Sbottom−up =
√

∆RG2 + ∆GR2 + ∆BY 2 (3.5)

∆RG = 〈R+G−〉blob − 〈R+G−〉surround (3.6)

∆GR = 〈G+R−〉blob − 〈G+R−〉surround (3.7)

∆BY = 〈B+Y −〉blob − 〈B+Y −〉surround (3.8)

where〈〉 indicates the average of the image values over a certain area(indicated in
the subscripts). The top-down influence on attention is, at the moment, calculated
in relation to the task of visually searching for a given object. In this situation
a model of the object to search in the scene is given (see Section 3.4) and this
information is used to bias the saliency computation procedure. In practice, the
top-down saliency map is computed as the Euclidean distancein the color opponent
space, between each blob’s average color and the average color of the target:

Stop−down =
√

∆RG2 + ∆GR2 + ∆BY 2 (3.9)

∆RG = 〈R+G−〉blob − 〈R+G−〉object (3.10)

∆GR = 〈G+R−〉blob − 〈G+R−〉object (3.11)

∆BY = 〈B+Y −〉blob − 〈B+Y −〉object (3.12)

with a notation similar to the one above. Blobs that are too small (1/550 of image
area) or too big (1/4 of the image area) are discarded from thecomputation of
salience and will not be considered as possible candidates to be part of objects.
The blob in the center of the image (currently fixated) is alsoignored because it
cannot be the target of the next fixation. The total salience is simply calculated as
the linear combination of the top-down and bottom-up contributions:

S = ktd · Stop−down + kbu · Sbottom−up (3.13)

and normalized in the range 0-255. The center of mass of the most salient blob is
selected for the next saccade.

An example of the intermediate and final maps of bottom-up salience is shown
in Figure 3.6. All the computations are done on log-polar images, but input and
output images are shown remapped to cartesian for clarity.

3.3.4 Inhibition of return

In order to avoid being redirected immediately to a previously attended location, a
local inhibition is transiently activated in the saliency map. This is called “inhibi-
tion of return” (IOR) and it has been demonstrated in human visual psychophysics.
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+

Figure 3.6: Example of model maps.

Posner and Cohen (Posner and Cohen, 1984), for example, demonstrated that the
IOR does not seem to work in retinal coordinates but it is instead represented in
an allocentric reference frame. Together with Klein (Klein, 1988), they proposed
that the IOR is required to allow an efficient visual search bydiscouraging shift-
ing the attention toward locations that have already been inspected. Static scenes,
however, are seldom encountered in real life: objects move and a “tagging system”
that merely inhibited environmental locations would be almost useless in any real
situation. Tipper (Tipper, 1991) was among the firsts to demonstrate that the IOR
could be attached to moving objects, and this finding has beenreplicated and ex-
tended ever since (Abrams and Dobkin, 1994; Gibson and Egeth, 1994; Tipper,
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1994). These results bring to the conclusion that in humans the inhibition of return
works by anchoring tags to objects as they move; in other words this process seems
to be coded in an object-based reference frame.

Our system implements a simple object-based IOR. A list of the last five posi-
tions visited (Wolfe, 2003) is maintained in a head-centered coordinate system and
updated with a FIFO (First In First Out) policy. The positionof the tagged blob is
stored together with the information about its color. When the robot gaze moves —
for example by moving the eyes and/or the head — the system keeps track of the
blobs it has visited. These locations are inhibited only if they show the same color
seen earlier: so in case an inhibited object moves or its color changes, the location
becomes available for fixation again.

3.4 Learning about objects

State of the art models of visual attention are usually used as sort of filters for
object recognition systems, as in,e.g., (Walther and Koch, 2006). In such systems
the attention model and the object recognition one live in two different worlds,
that is, they work on two different representations of the input images and few or
none of the computation done by the first stage is used by the second one. Here
we will show an attempt to build an object recognition systemon the same basis
of the visual attention, that is on the concept of proto-objects; it is clear that the
performances will heavily depend on their definition. In Section 3.3.3 we said that
the proto-objects are defined as closed areas of uniform color, hence the object
representation is a collection of areas of uniform colors. The proposed method is
just a proof of concept, for better object recognition systems see Chapter 5.

We assume the robot has already grasped the object; this can happen because
a collaborative human has given the object to the robot or because it has au-
tonomously grasped the object (even by chance initially). Both solutions are valid
bootstrapping behaviors for the acquisition of an internalmodel of the object.
When the robot holds the object it can explore it by moving androtating it. Objects
are represented by the blobs generated by the visual attention system and their rela-
tive positions (neighboring relations). The model is created statistically by looking
at the same object for some time from different points of view. A histogram of the
number of times a particular blob is seen is used to estimate the probability that
the blob belongs to the grasped object. In the following, we use the probabilistic
framework proposed by Schiele and Crowley (Schiele and Crowley, 1996). We
want to calculate the probability of the object O given a certain local measurement
M . This probabilityP (O|M) can be calculated using Bayes’ formula:

P (O|M) =
P (M |O)P (O)

P (M)
(3.14)

where: P (O) the a priori probability of the objectO, P (M) the a priori proba-
bility of the local measurementM , andP (M |O) is the probability of the local
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measurementM when the object O is fixated. In the following experiments we
only carried out a detection experiment for a single object,there are consequently
only two classes, one representing the object and another representing the back-
ground. Not knowingP (O) andP (¬O) we set them to0.5, in this way we do
MAP estimation. Since a single blob is not discriminative enough, we considered
the probabilities of observing pairs of blobs instead. To simplify the probability
estimation (the number of possible combinations) we have chosen to observe only
pairs composed of the central blob (taken as reference) and one surrounding blob
as the local measurementM :

P (M |O) = P (Bi|Bc and (Bi adjacent Bc)) (3.15)

whereBi is the i-th blob that surrounds the central blobBc that belongs to the
objectO. That is, we exploit the fact the robot is fixating the object and assume
the central blob will be constant across fixations. The colorof the central blob
will be stored and used to bias the visual search (see Section3.3.3). The proba-
bilities P (M |¬O) are estimated during the exploration phase by considering the
blobs not adjacent to the central blob. The local measurements are considered
independent because they refer to different blobs, so we factorize the total proba-
bility P (M1, · · · ,MN |O) in the product of the probabilitiesP (Mi|O). An object
is considered ’found’ if the probabilityP (O|M1, · · · ,MN ) is greater than a fixed
threshold. When the object is found after visual search, a figure-ground segmen-
tation is attempted: each blob is selected if it is adjacent to the central recognized
blob and if its probability to belong to the object is greaterthan0.5. In practice,
we estimate the probability of all blobs adjacent to the central blob to belong to the
object. This procedure, although requiring the “active participation” of the robot
(through gazing) is faster than estimating all probabilities for all possible pairs of
blobs of the fixated object. Estimation of the full joint probabilities would require a
larger training set than the one we were able to use in our experiments. Our exper-
imental scenario required the construction of the object model on the fly with the
shortest possible exploration procedure, which naturallyleads to estimating prob-
abilities with few samples. It is likely that many bins in thehistograms, used to
estimate probabilities, are empty. To overcome this problem we have used a prob-
ability smoothing method. In particular we employed as zerocount smoothing the
Lidstone’s law of succession:

P (M |O) =
count(M ∧O) + λ

count(O) + νλ
(3.16)

for aν valued problem. Withλ = 1 and a two valued problem (ν = 2), we obtain
the well-known Laplace’s law of succession. Following the results of Kohaviet
al. (Kohavi et al., 1997), we chooseν = 1/n wheren is equal to the number of
images utilized during the training phase. A first use of the system is to create a
visual model of the hand of the robot (a special object). By relying on this model
the robot can distinguish the grasped object from parts of the hand that might still
be visible.
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Figure 3.7: Some example images during exploration phase (1-3) and related seg-
mentations (4-6) used to build the statistical model of the object. Note how the
parts not of the object are not always detected, so their estimated probability to
belong to the object will be low.

Looking for airplane…

Is it the airplane? Color segmentation Full segmentation

Saliency map

Moving…

Figure 3.8: The flow chart of the visual search of an object (the toy airplane),
recognition and segmentation. The saliency map is generated using the information
about the color blue of the toy.
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Object Recognition Number of saccades
rate when recognized

Toy car 94% 3.19 ± 2.17
Toy airplane 88% 3.02 ± 2.84

Table 3.1: Performance of the recognition system measured from a set of 50 trials.

3.5 Results

The behavior of the robot during the learning phases is shownin Figure 3.7: all the
blobs bordering the central one (blue) are used for learningthe visual appearance
of the object. Two examples of the saliency map are shown in Figure 3.9: in 3.9.4
there is a purely bottom-up (ktd = 0, kbu = 1 in Equation (7)) map which is
the result of the processing of the scene in 3.9.1; in 3.9.5 there is a purely top-
down (ktd = 1, kbu = 0) map output after the processing of 3.9.2. In the latter
the robot was instructed to search for the toy airplane. After a saccade on the
object and a successfully recognition the figure-ground segmentation is shown in
Figure 3.9.6. The center of mass of the segmented object is used to guide the
grasping action of the robot. Even if the result is not visually perfect, it has all
the information to guide a manipulation task. In fact the perceptual system is not
intended as stand alone, but strictly coupled with the action counterpart; however
the segmented image could be improved with a stage of refinement of the borders.
We have tested the attention system while guiding the recognition and grasping of
objects in the Babybot. In table 3.5, results are shown when using a toy car and a
toy airplane as target objects; 50 training/visual search sessions were performed for
each object. The first column shows the recognition rate, thesecond the average
number of saccades (mean± standard deviation) it takes the robot to locate the
target in case of successful recognition.

In order to compare the performance of the system with the state of the art
model of Itti, we have done a comparison test of the bottom-upattention using the
database of images by Itti and Koch (Itti and Koch, 2001b) (color images with an
emergency triangle and relative binary segmentation masksof the triangle), which
is freely available on the Internet1. First, the original images and segmentation
masks are cropped to a square and transformed to the log-polar format (252x152
pixels) (see Figure 3.10.1 and Figure 3.10.2 for the cartesian remapped images).
To simulate the presence of a static camera, the images are presented to the system
continuously and, after five “virtual” frames, the bottom-up saliency map is con-
fronted with the mask. In49% of the images a point inside the emergency triangle
is selected as the most salient (see an example in Figure 3.10.3). It is worth noting
that a direct comparison with the results of Itti and Koch, bycounting the number
of false detection before the target object is found, is not possible since after each

1http://ilab.usc.edu/imgdbs/, last access 19/02/2007.
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Figure 3.9: Example saliency maps. In (4) there is the bottom-up saliency map of
the image (1). In (5) the top-down saliency map of (2), while searching for the blue
toy airplane. Image (6) is the figure-ground segmentation ofthe image in (3), after
having recognized the object.

Figure 3.10: Result on a static example image taken from the database by Itti and
Koch. Image (1) is the log-polar input image; image (2) is thebinary mask used for
to verify the correct localization of the target object and image (3) is the saliency
map generated by the system.

saccade the log-polar image is heavily deformed.

3.6 Discussion

We have presented the implementation of a visual attention system employing both
top-down and bottom-up information. It runs in real time on astandard Pentium
class processor and it is used to control the overt attentionmechanism of a hu-
manoid robot. This eventually gives rise to a different sortof problems compared
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to the more typical implementations that only generate scanpaths on static im-
ages. The algorithm divides the visual scene in color blobs;each blob is assigned a
bottom-up saliency value depending on the contrast betweenits color and the color
of the surrounding area. The robot acquires information about objects through
active exploration and uses it in the attention system as a top-down primer to con-
trol the visual search of that object. The model directs the attention on the proto-
object’s or segmented object’s center of mass (see Section 3.3.3 and Section 3.5),
similarly to the behavior observed in humans. In fact it has been observed that
the first fixation to a simple shape that appears in the periphery tends to land on
its center of gravity (Melcher and Kowler, 1999). When the camera moves, a new
blob will appear in the image center. This active behavior simplifies the segmen-
tation and the recognition task since there will always be a blob in the center that
will be segmented from the background. A similar approach has been taken by
Sun and Fisher (Sun and Fisher, 2003) but the main differencewith this work is
that they have assumed that a hierarchical set of perceptualgroupings is provided
to the attention system by some other means and considered only covert attention.
On the other hand, our system has been shown in practice to be useful in guiding
a humanoid robot in selecting objects to be grasped, by helping the visual search
and recognition task. Moreover the framework introduced isgeneral enough to
work with other additional feature maps, extending the watershed transform to ad-
ditional dimensions in feature space (e.g. local orientation) thus providing new
ways of both segmenting and recognizing objects. As future work we want to in-
tegrate the associative fields learnt from natural images (see previous Chapter) to
obtain better proto-objects.
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THERE are many machine learning approaches that aim to reproduce the
performances of humans, for example, in classification tasks. Generally
speaking, considering the supervised learning framework,some samples

with their labels (the identification of the class to which they belong) are fed to the
machine as input. After a training on the given examples, themachine should be
able to indicate the class of an unseen sample, possibly indicating also the predic-
tion’s degree of confidence. The training phase often consists in finding an optimal
separating surface in the input space between the samples ofdifferent classes (Duda
et al., 2000). In general, it is possible to separate two clouds of points in infinite
ways and different machine learning algorithms are defined by different optimality
criterions.

Support Vector Machines (SVMs) are one of these methods, rooted in statistical
learning theory. In the SVM framework the classification is done maximizing the
margin separating both classes while minimizing the classification errors. One of
their most interesting characteristics is that the solution achieved during training is
sparse. This means that a few samples are usually considered “important” by the

51
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algorithm (the so-calledsupport vectors) and give account of the complexity of the
classification/regression task.

It is natural to ask if humans use a similar internal method tolearn from exam-
ples and to classify new stimuli. At least for face recognition task, it is possible to
answer to this question, in fact it has been demostrated thatusing SVM the distance
of a face to the separating hyperplane is an almost perfect predictor of the human
classification performance (Grafet al., 2006). In that study SVM resulted the best
candidates to model human internal classification algorithms, while the prototype
classifier, as well as its piecewise linear extension seemedto be least adapted for
the task. Moreover the prototype classifier behaved in the least human-like manner.
Hence it seems that algorithms such as the SVM better capturethe human inter-
nal face space. A classification algorithm using the center of the classes, such as
for the prototype classifier, seems thus less adapted to model human classification
behavior than a classifier maximizing the margin between theclasses such as the
SVM.

Even if SVM has been applied to different domains with excellent results and
it seems to be close to human learning algorithm, it has the disadvantage to “grow”
for ever. That is the number of support vectors grows proportionally with the num-
ber of training samples, thus it is impossible to have a lifelong training like in
humans. Due to the big number of support vectors they can be upto 50 slower
of other specialized approaches with similar performances(Burges and Schölkopf,
1996). Given that both the training and testing time crucially depend on the number
of support vectors, and it is then very important to keep it small. In recent literature
this has become a key issue in order to speed up SVMs without losing accuracy.
We propose a new algorithm called Online Independent Support Vector Machines
(OISVM), an incremental way of building the minimal solutions, based upon linear
independence in the feature space. Experiments reveal thatour machines achieve a
dramatic reduction in the number of support vectors withoutlosing accuracy, and
mathematically assuring to reach a limit in the number of support vectors.

This chapter is structured as follows: in Section 4.1 and 4.2we introduce SVM
and their mathematical background, then in Section 4.3 there is a review of the
relevant literature; in Section 4.4 some considerations onthe sparseness of SVM
solutions are stated. In Section 4.5 then, we describe OISVM; in Section 4.6 we
show some experimental results, and lastly in Section 4.7 conclusions are drawn.

4.1 Support Vector Machines

In a number of research fields as diverse as, e.g., bioinformatics, data mining and
robotics, it is crucial to be able to reconstruct an unknown function given a finite
set of samples and the values the function assigns them. Given this very general
problem, statistical learning theory (Vapnik, 1998; Poggio and Smale, 2003) can
tell us how close our approximation is to the original function, and give us an indi-
cation of how well it will work. Usually, a set of samples of the unknown function
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is available, and then a machine learning algorithm is employed to interpolate the
data.

Introduced in the early 90s by Boser, Guyon and Vapnik (Boseret al., 1992),
Support Vector Machines(SVMs) are a class of machine learning algorithms deeply
rooted in Statistical Learning Theory (Vapnik, 1998), ableto classify data taken
from an unknown probability distribution, given a set of training examples. As
opposed to analogous methods such as, e.g., artificial neural networks, they have
the main advantages that(a) training is guaranteed to end up in a global minimum,
(b) their generalization power is theoretically well founded,(c) they can easily
work with highly dimensional, non-linear data, and(d) the solution achieved is
sparse. Due to these good properties, they have been now extensively used in, e.g.,
speech recognition, object classification and function approximation (Cristianini
and Shawe-Taylor, 2000). On the other hand, one of their maindrawbacks is their
alleged inability to cope with large datasets (Keerthiet al., 2006).

4.1.1 The importance of online learning

Yet, in most real-life applications, datasetsare large, for example when online
learning must be performed. Online learning is a scenario inwhich training data is
provided one example at a time, as opposed to the batch mode inwhich all exam-
ples are available at once (see (Laskovet al., 2006) and citations therein). In fact,
the classical approach to machine learning is to use all the available data at once,
train on this data and then use the trained machine. Note thatafter the predictor
is obtained, it stays fixed and is not updated as new data arrive. In contrast, an
on-line prediction algorithm can take advantage of the factthat the training set is
augmented one sample at a time and continues to update and improve the model as
more data arrive. Hence, in the case of, e.g., non-stationary data, online algorithms
will generally perform better since ambiguous information(i.e., whose distribu-
tion varies over time) is present, and couldn’t possibly be taken into account by the
batch algorithm. Online algorithms allow to incorporate additional training data,
when it is available, without re-training from scratch. Moreover using online learn-
ing it is possible to exploit to possibility of active learning algorithms,e.g. (Li and
Sethi, 2006), that actively select the new data point that will be added to the train-
ing set. Active learning algorithm are known to require lesssamples to converge to
a good solution (Dudaet al., 2000). This last topic is very interesting if seen in the
light of the tight coupling between action and perception (see Section ).

Moreover in an online setting there is no guarantee that the flow of data will
ever cease; therefore, applying SVMs here looks appealing but weneed a way
to cope with large datasets. One of the keys to the problem seems to lie in the
sparseness of their solution. That an SVM solution issparsemeans that usually
just a few samples account for its complexity; in fact, SVMs can be seen as a way
of compressing data by selecting “the most important” samples (support vectors,
SV) among those in the training set. Keeping the number of SVssmall without
losing accuracy is therefore a major challenge. This is evenmore relevant since
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a recent result (Steinwart, 2003) shows that this number grows indefinitely with
the number of training samples, and the testing time — a central issue in online
learning, since one might want to test in real time — crucially depends on it.

Following related literature, we propose a method of selecting support vectors
based uponlinear independence in the feature space: support vectors which are
linearly dependent on already stored ones are rejected, anda smart, incremental
minimization algorithm is employed to find the new minimum ofthe cost function.
Our experiments indicate that SVMs employing this idea, that we will call Online
Independent Support Vector Machines(OISVMs), do not grow linearly with the
training set but reach a limit size and then stop growing,while keeping the full
accuracy of standard SVMsin the case of finite-dimensional feature spaces and
with a negligible loss in accuracy in the infinite-dimensional case.

4.2 Background Mathematics

Assume{xi, yi}li=1, with xi ∈ R
m andyi ∈ {−1, 1}, is a set of samples drawn

from an unknown probability distribution; we want to find a function f(x) such
that sgn(f(x)) best determines the category of any future samplex. Assuming
the data are linearly separable, according to the standard approach, aseparating
hyperplanein R

m is sought for:

f(x) = w · x + b (4.1)

with w ∈ R
m andb ∈ R. In this case, the hyperplane must respect the constraints

yi(w · xi + b) − 1 ≥ 0, for all i = 1, . . . , l (from now on, this will be implicit
whenever a subscripti appears free in a formula). In the general, more likely and
realistic case in which the data are not linearly separable,we introducel slack
variablesξi and rather require thatyi(w ·xi +b)−1+ξi ≥ 0, with ξi ≥ 0. In order
to find such a hyperplane, we wish to maximize the hyperplane’s distance from
both groups of samples (margin), minimizing at the same time the values of the
slack variables. The margin is easily determined to be2

||w|| , so we are left with the
problem of minimizing||w|| andξi subject to the above constraints. The problem
is then usually solved minimizing the following expression:

min
w,b

(
||w||2 + C

l∑

i=1

ξp
i

)
(4.2)

subject to the constraints

yi(w · xi + b) ≥ 1− ξi (4.3)

ξi ≥ 0

whereC ∈ R
+ is an error penalty coefficient andp is usually1 or 2 (Cristianini

and Shawe-Taylor, 2000). Since both the problem and the constraints are convex,
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(4.2) and (4.3) can be compactly expressed in Lagrangian form by introducingl
pairs of coefficientsαi, µi and then minimizing the objective function

LP =
1

2
||w||2 −

l∑

i=1

αi (yi(w · xi + b)− 1 + ξi) + C
l∑

i=1

ξp
i −

l∑

i=1

µiξ
p
i (4.4)

subject to the constraints thatαi, µi ≥ 0. Using the KKT conditions (Cristianini
and Shawe-Taylor, 2000), that gives usnecessary and sufficientconditions forw, b
andαi to be be a solution, we obtain for the casep = 1

∂LP

∂w
= w −

l∑

i=1

αiyixi = 0⇒ w =
l∑

i=1

αiyixi (4.5)

∂LP

∂ξi
= C − αi − µi = 0 (4.6)

∂LP

∂b
=

l∑

i=1

αiyi = 0 (4.7)

αi (yi(w · xi + b)− 1 + ξi) = 0 (4.8)

ξi(αi − C) = 0 (4.9)

and forp = 2 the condition (4.9) disappears while condition (4.6) becomes

∂LP

∂ξi

= Cµi − αi = 0 (4.10)

Substituting Equation (4.5) in (4.1), gives

f(x) =
l∑

i=1

αiyix · xi + b (4.11)

An example of the optimal separating hyperplane for a simple2-dimensional
problem is shown in Figure 4.1.

Notice that, in the last Equation and in Equation (4.4), thex’s only appear in
the form of inner products; in order to boost the expressive power of SVMs then,
the xis are usually mapped to a highly, possibly infinite-dimensional space (the
feature space) via a non-linear mappingΦ(x); the core of the SVM becomes then
the so-calledkernel functionK such thatK(x1,x2) = Φ(x1) · Φ(x2). This idea
is calledkernel trickand is standard in SVM literature; it avoids the necessity of
explicitly knowingΦ (see section B in the Appendix for more details). Equation
(4.11) then becomes

f(x) =
l∑

i=1

αiyiK(x,xi) + b (4.12)
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Figure 4.1: Optimal linear separating hyperplane (in green), it corresponds to the
implicit curve defined byf(x) = 0, while the blue and red line corresponds to the
curves defined byf(x) = 1 andf(x) = −1. The support vectors are marked with
an ‘x’. The distance between the red and blue line is the margin. Notice how the
misclassified red sample is a support vector.

An example of the optimal separating hyperplane for the same2-dimensional
problem of Figure 4.1 is shown in Figure 4.2.

After training, that is after the minimization ofLP , some of theαis (actually
most of them in many practical applications) are zero; thosexis for which this
doesnot hold are somehow crucial to the solution and are calledsupport vectors,
hence the name of the approach. This phenomenon is known assparsenessof the
solution, meaning that only a subset of the training data is usually really needed
to build it. This is a quick account of SVMs — the interested reader is referred
to (Burges, 1998) for a tutorial, and to (Cristianini and Shawe-Taylor, 2000) for a
comprehensive introduction to the subject.

4.3 Previous work

An exact simplification of the decision function (4.12) is proposed in (Downset al.,
2001), based upon linear independence of the SVs in the feature space, performed
after the training is done. In particular they observed that if a support vector is
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Figure 4.2: Optimal separating hyperplane using a Gaussiankernel (in green). The
support vectors are marked with an ‘x’. The use of a non-linear kernel makes
possible to separate the two classes without misclassified samples.

dependent on the other support vectors in the feature space,i.e.

∃xk : K(x,xk) =
l∑

i=1,i6=k

ciK(x,xi) (4.13)

then the decision function (4.12) found after training can be written as

f(x) =
l∑

i=1,i6=k

αiyiK(x,xi) + αkyk

l∑

i=1,i6=k

ciK(x,xi) + b (4.14)

Hence it is possible to remove the dependent support vectorxk, update the other
coefficients, and obtain a new smaller representation of thedecision function, with-
out changing it in any way. Notice that the new coefficients may not respect the
KKT constraints.

This can be seen as a simple consequence of the fact that, if the feature space
has dimensionn, at mostn + 1 SVs are required to build the solution (Pontil and
Verri, 1998). The idea is useful in reducing the testing time, but it is unfeasible in
an online setting, since the simplification should be performed every time a new
sample is acquired. The same consideration applies,e.g., to the after-training sim-
plification proposed in (Nguyen and Ho, 2005). On the other hand, discarding from
the sample set the linearly dependent SVs will result in an approximation; other
methods to heuristically select a subset of the support vectors have been proposed,
e.g., in (Lee and Mangasarian, 2001; Keerthiet al., 2006; Wuet al., 2006). Besides
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this, these methods require the knowledge of the full training set, and therefore are
not suited for online learning.

In order to keep the solution compact without losing accuracy, the key is to
build a low-rank approssimation of the kernel matrix. Unsupervised rank reduction
methods have been proposed,e.g. (Baudat and Anouar, 2003), as well as supervised
ones,e.g. (Bach and Jordan, 2005), but no application of these ideas appears so far,
to the best of our knowledge, in online settings.

A different method has been proposed by Collobertet al. (Collobert et al.,
2006): they have used a non-convex formulation of the learning problem where
training errors are no longer support vectors thus dramatically reducing the growth
rate of the support vectors with the training samples. Anyway in the paper it is not
clear if the number of support vectors reaches a limit or if itwill grow indefenitely,
even if less than with standard SVM.

The exact solution to online SVM learning was given by Cauwenberghs and
Poggio in 2000 (Cauwenberghs and Poggio, 2000), but their idea has received little
attention in the community so far (Laskovet al., 2006).

4.4 Sparseness of the solution

The time required by an SVM to train and predict is, in turn, cubic and linear in
the number of support vectors (Keerthiet al., 2006). Moreover, a recent result
by Steinwart (Steinwart, 2003) indicates that the number ofsupport vectors,r, in-
creases linearly with the numberl of training samples (given a kernel functionK,
r tends to2BK l, whereBK is the smallest classification error achievable with the
kernel K). Therefore, although support vectors somehow code all theinforma-
tion required by the solution, their number grows indefinitely as the input space is
sampled. It is then highly desirable that the number of support vectors is kept as
small as possible, without losing accuracy. Surprisingly,even if the machine keeps
growing, usually the generalization power reaches a plateau after a while.

In general, the possibility to obtain an alternative, equivalent, and possibly
more compact representation of the SVM solution follows from the fact that the
solution of an SVM problem is not unique if the kernel matrixK, whereKij =
K(xi,xj), does not have full rank, which is equivalent to some of the support
vectors being linearly dependent on the othersin the feature space. In fact, as
pointed out in (Burges, 1998), given a vectorα solution of Equation (4.2) and
(4.3), considerδ that belongs to the null space ofK, orthogonal to the vector all
of whose components are1 and satisfing

∑l
i=1 δiyi = 0. If 0 ≤ αi + δi ≤ C then

α + δ is also a solution. However it is possible to show that the space of possible
solutions to an SVM problem is even larger. In fact using the Representer Theorem
(Kimeldorf and Wahba, 1970; Cox and O’Sullivan, 1990), Equation (4.5) can be
written as follows:
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w =
l∑

i=1

βixi (4.15)

for a set of generic coefficientsβi. Substituting Equation (4.15) in (4.4) and using
the kernel trick, we get

L′
P =

l∑

i,j

(
1

2
βi − αiyi

)
βjKij −

l∑

i=1

αi(byi − 1 + ξi) +
l∑

i=1

(C − µi)ξ
p
i (4.16)

Now, enforcing the KKT conditions onthis, more general version of the prob-
lem, one obtains that

∂L′
P

∂βi

=
l∑

i=1

(βi − αiyi)Kij = 0 (4.17)

Clearly, in order for (4.17) to hold, the vector whose components areβi−αiyi

must be in the null space ofK. Now if K has full rank, the null space only consists
of the null vector, and thereforeβi = αiyi (this particular result already appears in
(Keerthiet al., 2006)). Otherwise, there are infinite solutions to the SVM problem,
and theβis are not constrained at all: this agrees with Downset al.’s method and
generalizes it.

4.5 Online Independent Support Vector Classification

To avoid simplifying the solution each time a new sample is acquired, we need a
way to use independent SVs only. Hence, the main idea is to decouple the concept
of “basis” vectors, that is the vectorsxi that we constrain to be allowed to have aβi

different from zero in (4.15), from the samples used to find out the actual values of
theseβis. If the selected basis vectors span the same subspace as thewhole sample
set, the solution found will be equivalent — that is, we will not lose any precision.

Following Keerthiet al. (Keerthiet al., 2006) then, and inspired by the above
considerations, we explicitly choose a subset of the support vectors to form a basis
for the solution. In that paper, two heuristics are proposedto select an appropriate
subset of support vectors; we hereby proposeto online select the set of support
vectors that are linearly independent in the feature space and to build the solution
only using them. The solution found this way isthe sameas if using all the training
samples as basis set, that is the classical SVM formulation.No approximation
whatsoever is involved, unless one gives it up in order to obtain even less support
vectors. See below, especially Section 4.6, for a discussion on this point. Moreover
the training procedure is incremental, after each new sample the coefficients are
updated without recalculating the entire solution from scratch.

We assume that a set ofl training samples is available and that the machine has
been trained on them. The indexes of the vectors in the current basis are denoted
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by B, andxl+1 denotes the new sample under judgement. Since the procedureis
incremental, we also assume that the vectors indexed byB are linearly independent
in the feature space, that is, thatKBB has full rank. The algorithm can then be
summed up as follows:

• check whetherxl+1 is linearly independent from the basis in the feature
space; if it is, add it toB; otherwise, leaveB unchanged.

• incrementally re-train the machine.

In the following, the notationAIJ andvI , whereA is a matrix,v is a vector
andI, J ⊂ N denote in turn the sub-matrix and the sub-vector obtained from A
andv by taking the indexes inI andJ . The next two Subsections detail the linear
independence test and the training method.

4.5.1 Linear independence

In general, checking linear independence in a matrix is donevia some decompo-
sition, or by looking at the eigenvalues of the matrix; but here we want to check
whether asinglevector is linearly independent from a set of vectors which are al-
ready known to be independent. Inspired by the definition of linear independence
(Engelet al., 2002), we check how well the vector can be approximated by a linear
combination of the vectors in the set. Letdj ∈ R with j ∈ B; then let

∆ = min
d

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈B
djφ(xj)− φ(xl+1)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(4.18)

If ∆ > 0 thenxl+1 is linearly independent with respect to the basis, andl + 1
is added toB. In practice, we check whether∆ ≤ η whereη > 0 is a tolerance
factor, and we expect that larger values ofη lead to worse accuracy, but also to
smaller bases. As a matter of fact, ifη is set at machine precision then OISVMs
retain the exact accuracy of SVMs. Notice also that if the feature space has finite
dimensionn, then no more thann linearly independent vectors can be found, and
B will never contain more thann vectors.

Expanding equation (4.18) we get

∆ = min
d




∑

i,j∈B
djdiφ(xj) · φ(xi)− 2

∑

j∈B
djφ(xj) · φ(xl+1) + φ(xl+1) · φ(xl+1)





(4.19)
that is, applying the kernel trick,

∆ = min
d

(
dT KBBd− 2dT k + K(xl+1,xl+1)

)
(4.20)
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whereki = K(xi,xl+1) with i ∈ B. It is apparent from Equation (4.20) that the
range ofη is related to the kernel used; for example for Gaussian kernels ∆ ≤ 1
and hence good values ofη range in{0, 1}.

Solving (4.20), that is, applying the extremum conditions with respect tod, we
obtain

d̃ = K−1

BBk (4.21)

and, by replacing (4.21) in (4.20) once,

∆ = K(xl+1,xl+1)− kT d̃ (4.22)

In general it is possible to prove that, givenη > 0, the number of basis vectors
will reach a finite number and then will stop growing: this is obvious for finite
dimensional feature space but the same result holds also forinfinite dimensional
spaces (Engelet al., 2004).

Note thatB can be safely inverted since, by incremental construction,it is full-
rank. An efficient way to do it, exploiting the incrementality of the approach, is
that of updating it recursively:

K−1

BB ←




0

K−1

BB
...
0

0 · · · 0 0




+
1

∆

[
d̃

−1

] [
d̃T −1

]
(4.23)

whered̃ and∆ are already evaluated during the test. This method matches the one
used in Cauwenberghs and Poggio’s incremental algorithm (Cauwenberghs and
Poggio, 2000), in turn similar to on-line recursive estimation of the covariance of
sparsified Gaussian processes (Csató and Opper, 2001). Thanks to this incremental
evaluation, the time complexity of the linear independencecheck isO(|B|2), as
one can easily see from Equation (4.21).

To gain other insights to what is going on using this active sparsification method
consider the case in which a Gaussian kernel is used. Consider the expression
(4.18) withB = {i}, that is, as thei-th element is the only one in the base

∆i = min
di

||diφ(xi)− φ(xl+1)||2 (4.24)

Obviously∆i ≥ ∆,∀i ∈ B, so if ∆i ≤ η then we have that∆ ≤ η and the
samplel + 1 will not be added to the basis set. Remembering Equations (4.19)-
(4.22), last equation can be expanded in

∆i = K(xl+1,xl+1)−
K(xl+1,xi)

2

K(xi,xi)
(4.25)
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Figure 4.3: Classification problemfourclass. The support vectors selected by the a
standard SVM with gaussian kernel are circled.

If we consider the case in which the kernel is Gaussian we havethatK(x,x) =
1,∀x and we can write

∆i ≤ η ⇔ 1−K(xl+1,xi)
2 ≤ η

⇔ K(xl+1,xi) ≥
√

1− η

⇔ exp
(
−γ ||xl+1 − xi||2

)
≥
√

1− η

⇔ ||xl+1 − xi||2 ≤ −
1

2γ
log (1− η) (4.26)

Hence if at least one pointxi of the basis set is too near to the new pointxl+1,
it will be not added to the basis set. In other words when we usea Gaussian kernel,
fixing a certain value ofη implies imposing a minimum distance between the points
selected as basis vectors. An example of this is shown in Figures 4.3 and 4.4. In
this caseγ is equal to5 andη is 0.4, hence the minimum squared distance from
Equation (4.26) is≈ 0.0511, while the minumum distance for the support vectors
selected is≈ 0.0639.

4.5.2 Training the machine

The training method largely follows Keerthiet al. (Keerthi and DeCoste, 2005;
Keerthi et al., 2006), that we have adapted for online training. The algorithm
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Figure 4.4: Same problem of the figure 4.3. The circled samples are the ones
selected by our sparsification procedure as basis vectors. It is possible to see the
effect of the minimal distance imposed by the constantη.

directly minimizes problem (4.2) as opposed to the standardway of minimizing its
dual Lagrangian form, allowing to select explicitly the basis vectors to use. Let
D ⊂ {1, . . . , l}, settingp = 2 in (4.2) we can write it as an unconstrained problem

min
β

(
1

2
βT KDDβ +

1

2
C

l∑

i=1

max (0, 1− yiKi,Dβ)2
)

(4.27)

whereβ is the vector of the Lagrangian coefficients involved inf(x), analogously
to theαis in the original formulation. For convenience the bias termhas not been
included, but the analysis presented in this section can be simply extended to in-
clude it (see chapter A in the Appendix). Then, we explicitlysetD = B, assuring
thus that the solution to the problem is unique, sinceKBB is full rank by construc-
tion. Newton’s method as modified by Keerthiet al. (Keerthi and DeCoste, 2005;
Keerthiet al., 2006) can then be used to solve (4.27) after each new sample.When
the new samplexl+1 is received the method goes as follows:

1. use the current value ofβ as starting vector;

2. letol+1 = Kl+1,Bβ, if 1−yl+1ol+1 ≥ 0 stop: the current solution is already
optimal;
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3. letI = {i : 1−yioi > 0}whereoi = Ki,Bβ is the output of thei-th training
sample;

4. updateβ with a Newton step:β − γP−1g → β whereP = KBB +
CKBIKT

BI andg = KBBβ − CKBI (yI − oI);

5. let Inew = {i : 1 − yioi > 0} whereoi are ricalculated using newβ. If
Inew is equal toI stop; otherwiseI = Inew and go to step 4.

In Step4 above,γ is set to one, without any convergence problem. With this
choice the update ofβ is CP−1KBIyI → βnew. In order to speed up the algo-
rithm, we maintain an updated Cholesky decomposition ofP and a vector with the
productKBIyI : every time a sample enters or exits from the setI these two quan-
tities are updated. It turns out that the algorithm converges in very few iterations,
usually0 to 2; the time complexity of the re-training step isO(|B|l), as well as its
space complexity; hence, keepingB small will speed up the training time as well
as the testing time.

4.6 Experimental Results

In order to test the effectiveness of OISVMs with respect to standard SVMs, we
have chosen a set of databases commonly used in the machine learning community1

and have then run comparative tests on them. In order to checkour predictions
about the linear independence tolerance constant,η, we have chosen finite- and
infinite-dimensional kernels, namely polynomial kernels of degree1 (linear) and
cubic, and Gaussian kernel. We expect, in the finite-dimensional case,η to be
essentially irrelevant, and the machine to stop growing once a certain number of
l.i. support vectors have been found. This is exactly due to the feature space being
finite-dimensional, and therefore only a finite number of l.i. vectors can be found.
In the case of the infinite-dimensional kernel, we have run the OISVM with η at
different values, expecting, as foretold, bigger values ofη to cause the accuracy
to degrade, but also the size of the machine to remain smallerthan with smaller
values.

OISVM is implemented in Matlab hence CPU times cannot be used.
For each benchmark, we display the mean number of retained support vectors

on 10 random75%/25% train/test runs. We compare against LIBSVM (Chang
and Lin, 2001) (straight line), a standard SVM implementation. The coefficients
γ andC have been found by cross-validation and employed in both LIBSVM and
OISVMs. For the sake of comparison, LIBSVM has been also modified as sug-
gested by its Authors in order to setp = 2 in equation (4.2), therefore in the fol-
lowing it is called LIBSVM-2. In the case of finite-dimensional kernels, we only
show the performance of LIBSVM-2 against OISVMs withη at machine precision;

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets, last access
19/02/2007.
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Benchmark Classification % SVs % SVs
name rate loss vs. LIBSVM-2 vs. LIBSVM
Breast 0.47± 0.82 10.2 ± 0.87 22.1 ± 1.77
Diabetes −0.52± 2.1 40.2 ± 2.1 55.2 ± 2.73
German 0.40± 1.15 6.1± 0.23 9.2± 0.35
Heart −0.45 ± 1.01 10.3 ± 0.56 15.5 ± 0.94

Table 4.1: Comparison of OISVM and LIBSVM on standard benchmarks, solved
using a Gaussian kernel. For each benchmark, we report the difference in classi-
fication rate with respect to LIBSVM-2 and the percentage of the number of SVs
with respect to LIBSVM and LIBSVM-2. The values ofη for each dataset have
been chosen in order not to loose more than0.5% accuracy.
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Figure 4.5: Comparison of OISVM and LIBSVM on theDiabetesbenchmark, it is
solved using a homogeneous polynomial kernel with degree3.

in the case of the infinite-dimensional kernel, we show one curve for a value ofη
that guarantees a good trade-off between performance and sparseness.

Consider Figure 4.5: when all samples have been loaded, LIBSVM-2 has about
427 SVs, and LIBSVM about290, confirming the fact that the norm-2 formulation
is known to be less sparse of the norm-1. The kernel used is a homogeneous poly-
nomial with degree3 and the benchmark has8 features, therefore the dimension
of the feature space is

(
10

3

)
= 120 (see,e.g., (Burges, 1998)); and, as expected,

OISVM stops acquiring new SVs when there are exactly120, although it loads a
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Figure 4.6: Comparison of OISVM and LIBSVM on theAdult7 benchmark, it is
solved using a Gaussian kernel.

few more before reaching the limit, with respect to the otherapproaches. The accu-
racy (not displayed) is exactly the same of LIBSVM-2, because the two solutions
found are completely equivalent. Again, notice that, afterhaving acquired120
SVs, OISVM will never acquire any more ever, while keeping the same accuracy,
whereas the LIBSVMs do, as theoretically proved in (Steinwart, 2003).

Consider now Figure 4.6: the kernel used is Gaussian and the dimension of its
feature space is infinite. The benchmark is relevantly large(16100 samples) and
complex (123 features). Nevertheless, withη as small as0.1, at the end OISVM
has less than5% of the SVs used by LIBSVM-2 and less than8% with respect to
LIBSVM. The accuracy is0.063% ± 0.14 worse than that of LIBSVM-2.

Lastly, consider Table 4.1, which shows the very same data incompact form
for 4 more standard databases. OISVM attains a number of SVs whichis about
6% to slightly more than55% of LIBSVM, whereas the accuracy is basically the
same, being slightly better than LIBSVM in two cases (Diabetes, this time solved
via a Gaussian kernel, andHeart).

As a final remark, notice that in general the number of supportvectors chosen
by OISVMs could be higher than that obtained by SVMs. An example of this
phenomenon is visible in Figure 4.5, between x-values0 and150.
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4.7 Discussion

A new method is presented to keep Support Vector Machines small, called OISVMs
(Online Independent Support Vector Machines). OISVMs avoid inserting into their
kernel matrix support vectors which are linearly dependentof previous ones in the
feature space — in other words, the kernel matrix is always kept at full rank. The
primal SVM problem is then solved via an incremental algorithm which benefits
of the small size of the kernel matrix.

Experimental results show that(i) in the case of finite-dimensional kernels,
OISVMs attain the theoretical limit of linearly independent support vectors allowed
by the feature space;(ii) in the case of infinite-dimensional kernels, they dramati-
cally reduce the number support vectors at the price of a negligible degradation in
the accuracy. Notice that, in this latter case also, they canbe used to obtain full
precision, choosing the tolerance threshold to be equal to machine precision.
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Chapter 5
Object Recognition and
Categorization
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EARLY approaches to object recognition in static images were influenced pre-
dominantly by the idea of the create a faithful description of the world,
reconstructing the 3-D structure of objects as proposed by Marr (Marr,

1982). The difficulties to detect simple characteristics inimages like edges and
vertices have challenged these early models, favoring the recent idea of recogni-
tion systems that make use of viewpoint-dependent descriptions. Moreover there
is psychophysical evidence supporting these approaches (Tarr and Bülthoff, 1998).
In a view-based approach, each object is represented by a number of images taken
from different viewpoints, then these model images are compared to the test im-
ages. However objects can appear in images in different positions, orientations and
scales. Hence to reliably recognize objects, we should extract from the images fea-
tures that are independent from the translation, rotation and scale transformations.
Such an object recognition system should be used after a visual attention system,
that would select a region of the image at once (Walther and Koch, 2006). Similar
considerations can be done for a categorization system.

The reminder of the chapter is organized as follows: section5.1 contains a
description of the two state-of-the-art models for object recognition: the “standard
model” and the SIFT model. Section 5.2 describes the experimental results of a
comparison between the two methods. In section 5.3 we show how to improve
the performance of the standard model and finally in sections5.4 we draw some

69
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conclusions.

5.1 Two view-based models for object recognition

In the following two view-based state of the art models for object recognition and
categorization are compared: the so called “standard model” and the SIFT.

5.1.1 Standard Model

The so called “standard model” of object recognition has been proposed by (Riesen-
huber and Poggio, 1999) and then improved by (Serreet al., 2005). It can be
thought as the natural evolution of previous hierarchical model for object recogni-
tion (Fukushima, 1980; Lecunet al., 1998). In the model there are two types of
layers,cells, that are alternated in the hierarchy. The “simple cells” extract local
features from the previous level and are tuned to specific stimuli; the “complex
cells” pool a number of specific simple cells, to have a local form of invariance,
while simultaneously maintaining specificity to the stimuli. In particular the com-
plex cells use a MAX operation between the inputs, that seemsto have a biolog-
ical justification (Lamplet al., 2004). In the model two couple of layers of sim-
ple/complex cells are implemented, for a total of 4 layers. The first layer of simple
cells (S1) extracts local orientations with a set of Gabor filters with different scales
and orientations tuning. (Gabor filters, which are the product of a cosine grating
and a 2D Gaussian envelope, has been used to approximate the receptive field sen-
sitivity profile of orientation-selective neurons in primary visual cortex (Leventhal,
1991).) The layer of complex cells (C1) pools over a local neighborhood of space
and scale the outputs of the simple cells of the previous layer. The filters used
in layer S2, instead, are learnt directly from the images: a big number of random
patches of the output of C1, of different sizes, are taken while the system “sees”
different natural images. Each of those patches is set as a prototype of the S2 unit
which are radial basis function (RBF) units. That is the output of i-th unit S2

exp

(
−||X −Ci||2

2σ2

)
(5.1)

at all the spatial positionsX. The last layer of complex cells, C2, pools the max-
ima over all the scales and locations. Hence the output of thesystem is a feature
vector of size equal to the number of S2 detectors, which is independent of the
size of the input image. Hence the output of the system, in thelimit of the digital
implementation, is not carrying any information about the scale or the location of a
certain local image feature. The system is purely feed-forward, without any feed-
back connections (Behnke, 2003), and consequently it is only appropriate to model
fast decisions of object presence or absence (Hunget al., 2005). We have used the
Matlab source code of the model that is available of the website of the authors1, the

1http://cbcl.mit.edu/software-datasets, last access 19/02/2007.
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only modification that we have made is to setσ in Equation (5.1) dependent on the
size of the patches, as proposed in (Mutch and Lowe, 2006), because it improves
the performances at no additional computational cost. At the end of the model
there is an SVM trained to classify the extracted features inobject classes.

Beside the SVM classifier, the other non-fixed part of the system are the filters
of the S2 layer, that can be thought as adapting to the images statistics. In fact uni-
formly sampling a stochastic variable, we obtain another random variable that has
more or less the same probability density function of the original one. In section
5.3 we will discuss with greater details about the disadvantages of this method.
Note that it is possible to learn class specific detectors, that are expected to have
better performances on a single class, or universal detectors, that are expected to
work equally well on all the possible image classification tasks. In the latter case a
set of generic natural images is used to learn the filters. In the following tests we
have used the set of universal features available on the website of the Authors.

5.1.2 SIFT

The Space Invariant Feature Transform (SIFT) (Lowe, 1999) are descriptors of sta-
ble image patches (keypoints) designed to be invariant to local image transforma-
tions as rotations, scale warpings, illumination changes and noise. Here an object,
like in the standard model, is coded as a combination of SIFT points. The SIFTs
have been shown to excel in the re-detection of a previously seen object under new
image transformations.

Usually single SIFTs are matched one to the other and the class of the observed
object is decided with the majority of the votes. Instead in our comparison we have
decided to use an SVM classifier, like in the standard model. In this way, it is
possible to have a fair comparison with the standard model and, at the same time,
to enhance the generalization power of the SIFT. The input tothe SVM are sets of
SIFT point, each being a vector inR128 (the standard SIFT descriptor). Given that
for each image a different number of SIFT can be found, each set associated with
each image will have a variable number of points. Hence a special kernel must be
used to calculate the scalar product between sets, and we have chosen the Matching
Kernel proposed by Wallravenet al. (Wallravenet al., 2003) (see also section B.2
in the Appendix). This kernel has been designed to match set of features of variable
dimensions, in particular it has been used to match SIFT features, and it can also
take into account the spatial information of each points. Wehave chosen not to
use this possibility in order to give to the classifier the same type of information
produced by the standard model. Note that no adaptation whatsoever is the model;
even if prior information about the images has been implicitly used in the design
of the optimal way to detect the keypoints and to code them.

The original software made by Lowe has been used2.

2http://www.cs.ubc.ca/~lowe/keypoints/, last access 19/02/2007.
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Figure 5.1: Sample images from the Caltech-101 database. Inthe first row they
are taken, respectively from the classAirplanes, Car side, Faces, LeavesandMo-
torbikes; this subset has been used to compare the standard model and the SIFT.
In the second row there are example images from the other categories (Elephant,
Gramophone, Umbrella, Yin YangandIbis). Note that all the images are of differ-
ent sizes, but in the test they have been normalized to have all the same height of
140 pixels, and the width has been rescaled proportionally.

5.2 Results on a categorization task

The Caltech datasets, containing 101 objects plus a background category (used as
the negative set) and available athttp://www.vision.caltech.edu3, has
been used for our tests. These datasets contain the target object embedded in a
large amount of clutter and the challenge is to learn from unsegmented images and
discover the target object class automatically. We have tested both approaches on a
subset of the 101-object datasets plus an additional leaf database as in (Serreet al.,
2005) for a total of five datasets. Example images of these datasets are shown in
Figure 5.1.

The system was trained with15 examples from the each object class. From
the remaining images, we extracted50 images for each category to test the sys-
tem’s performance, averaging over5 random splits. All images were normalized
to 140 pixels in height (width was rescaled accordingly so that theimage aspect
ratio was preserved) and converted to gray values before processing like in (Serre
et al., 2005); this was done also for the images used with the SIFT, to have a fair
comparison.

The parameters of the Matching Kernel and theC, for the classification with
SIFT have been found with 5 random splits of 15/50 images for training/testing,
for each category. Instead for the standard model a linear SVM has been used, with
a value ofC equal to1, as in (Serreet al., 2005). In fact the dimensionality of the
input space is big enough compared to the number of training samples to have a
separable problem, so the value ofC is not critical. The paradigm of “one-vs-all” is

3Last access 19/02/2007.
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Database Classification rate Classification rate
name SIFT standard model
Airplane 92.00 ± 3.16 87.2± 5.40
Car side 88.80 ± 4.15 94.80 ± 3.35
Faces 88.40 ± 3.29 94.80 ± 3.03
Leaves 90.80 ± 3.35 88.80 ± 6.72
Motorbikes 88.40 ± 7.27 92.00 ± 5.48

Overall 89.68 ± 2.66 91.52 ± 1.61

Table 5.1: Comparison of SIFT and standard model classification performances on
a subset on the 101-Caltech database. The mean classification rates± standard
deviation are shown for each datasets, on5 random splits15/50 of training/test
images.

used for the multi-class classification. The performances using 5 different random
splits is summarized in table 5.2.

It is interesting to see that there is not a clear winner between the two methods.
In fact the standard deviation are too high to say that there is a real difference
between the performances. It is also interesting to note that the two methods appear
complementary in their performances: it seems that easy datasets for one method
are difficult for the other and vice versa. These results are in opposition with the
result of (Serreet al., 2005), that claim that the C2 features are better than SIFT
features in the same classification task. In our opinion the main difference is that
they do not use the right classifier for the SITFs. Indeed it ispossible to obtain
similar results using an appropriate classifier as the SVM plus the Matching Kernel.
These findings make us believe that the classifier is the most critical part of an
object recognition system, given two equally good feature extraction systems. As
a further example of this claim, (Mutch and Lowe, 2006) have demonstrated that it
is possible to gain more than3% of classification performance with the supervised
feature selection method in (Mladenić et al., 2004).

5.3 Adapting the features through selection

In the spirit of adapting the feature extraction system to the image statistics, we
want to address the possibility to select only a subset of thefeatures extracted by
the system. As in the learning of association fields (see Chapter 2) we are inter-
ested in using an unsupervised strategy, at least to select asubset of the available
information, that could then refined using external (supervised) knowledge in later
stages.

Given than the test time required to test a new point is proportional to the
number of features that must be calculated on each image, reducing the number of
features will proportionally reduce the testing time. On the other hand it is possible
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that removing some of the features we improve also the classification performance.
In fact in the machine learning literature it is well known that a classifier with a
small number of informative features can work better than a classifier with tons
of redundant or useless features. In general given a certainclassification task it
is possible to select some of the features that have more information and discard
redundant or even useless ones (Mladenić et al., 2004). Considering the case of
online learning, it is not easy to select the features knowing the labels, that is in
a supervised way, because the samples are available only oneat time. An optimal
feature selection could be done only after having acquired enough samples, but in
this way the online behaviour would be disrupted.

In the following we introduce a simple algorithm to select a subset of feature
in unsupervised way. The results will show that the subsets selected will be always
better than a random selection.

5.3.1 Unsupervised feature selection for SVM

Consider the case of a linear SVM or in general any learning algorithm that depends
on the scalar products in the input space. Let the case in which two features are
identical, in this case we could remove one of the two and multiply the other by2:

∃p, q : ap = aq∀a ∈ R
n ⇒ (5.2)

⇒ a · b =
n∑

i=1

aibi =
∑

i6=p,q

aibi + 2apbp = (5.3)

=
∑

i6=p,q

aibi +
√

2ap

√
2bp (5.4)

Hence it is the same as being in a space withn − 1 dimensions, with one of them
multiplied by a factor of

√
2. In general to have good results in machine learning

it is important to give to all the input features the same importance, regardless of
the input range. This is the reason because the range of the inputs are usually nor-
malized to have the same maximum-minimum ranges or to have the same standard
deviations. But in the case of two features identical this isimpossible, because
the extra weight is not in the feature itself but in the duplication. The case of a
repeated feature can appear trivial, but it can be the case that two features carry
the same information even if they are not exactly the same. Consider the case
of two features, corresponding to the indexp andq, that has a correlation index
approximately equal to 1. In this case we can write

r(ap, aq) ≈ 1∀a ∈ R
n ⇒ ap ≈ αaq + β (5.5)

If we remove the mean from all the features and normalized them to have unitary
standard deviation thenβ can be considered0 andα ≈ 1, and we can write again

n∑

i=1

aibi ≈
∑

i6=p,q

aibi +
√

2ap

√
2bp (5.6)
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The same happens if the correlation is approximatively−1. Given the above con-
siderations we claim that the presence of the correlated features can worse the clas-
sification performance, and removing some of them can improve the classifier and,
at the same time, speed up the system because less features need to be computed.
This is, again, similar to the idea proposed by Barlow that the neural responses are
statistically independent, because the redundancy in the sensory input is removed
by early sensory systems (Barlow, 1961).

Notice that this somewhat different from applying Principal Component Anal-
ysis (PCA) because it is true the with PCA redundant featuresare removed, but no
gain in speed is obtained because the principal components are linear combination
of all the original features, so all the features must be calculated in any case.

Hence we propose to build the reduced set of uncorrelated features starting
from the sample correlation matrix between all the input features. We consider
only the absolute values of the sample correlation matrix, because positive and
negative correlations count in the same way. Then iteratively select the most cor-
related couple of features and discard one of them. In particular we have chosen
to discard between of the two, the feature that has the smallest sum of the sample
correlations with the other features. The rationale behindthis approach is to keep
the features that are mostly uncorrelated with the other. The row and column as-
sociated with the removed feature are removed from the sample correlation matrix
and the removed feature is tagged as numbern. Then the second removed feature
is tagged as numbern− 1 and so on, until all the rows and columns of the matrix
are removed. At the end, the tag associated with each featurewill give a sort of
ranking of the uniqueness of the information carried by thatparticular features. Of
course if there is a feature containing pure noise, uncorrelated to the other features
it will be ranked as the most important. However this is a limit intrinsic to any
unsupervised feature selection: without knowing the labels it is impossible to un-
derstand if the noise is useless to the classification task. It could be the case that
the output is only function of the noise,e.g. the label of the sample being equal to
the sign of the noise.

Then we select increasingly sets of features, considering the ranking obtained
from the above method. For example the first set has the features from number1 to
number100, the second from1 to 200 and so on until the last set that contains all
the features. The performance of the method is confronted with a baseline obtained
using a random ranking of the features, and building the samesets of increasing
sizes.

Note that even if a big number of input samples is needed to estimate the sample
correlation matrix, their labels are not needed. Hence the selection takes place
before the learning phase, thus it can be used in an online learning framework.

The feature selection method proposed works very well with the random fea-
tures collected during the training phase by the standard model. It is worth to note
that sampling randomly an input space we select more points in the areas more
densely populated. Samples that are near in the input space it very likely that will
be highly correlated. Hence the feature set randomly selected will contain many
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Figure 5.2: Classification performances using the unsupervised feature selection
method proposed, compared with a random selection of subsets of features, on 5
different 15/50 training/test splits.

similar features belonging to the most common image patches. On the other hand
it also is very likely that these very common features will have low discriminative
power in a classification task, because they are present in all the classes. Note that
the use of random features has been proposed even by others,e.g. (Nowaket al.,
2006), and it is very likely that this method could be appliedsuccessfully to other
object recognition system.

The validity of the proposed method is demonstrated by the tests done on the
101-Caltech database using the standard model and a linear SVM.

5.3.2 Results

As in Section 5.2 the system was trained with15 examples from the each object
class, this time using all the 102 classes. From the remaining images, we extracted
50 images for each category to test the system’s performance, averaging over5
random splits. The images were preprocessed as described in5.2. The kernel used
is linear and the parameterC is equal to 1.

In Figure 5.2 there is the comparison between the random selection of fea-
tures and the proposed method. As said above, using less features that the total
it is possible to increase the accuracy of the classifier, at the same time reducing
the computational cost. In this case it is possible to gain approximatively1% of
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Figure 5.3: Difference of classification performances between the random method
and the proposed method.

classification performances, having2.5 times less features and, hence,2.5 times
faster.

Moreover selecting a subset of features with the proposed method isalways
better than selecting a random subset. This can be seen clearly in Figure 5.3 where
it is plotted the difference in the performances between thetwo methods. Of course
when all the features are selected the performances of the two methods are exactly
the same, being equal to the performances of the system without any feature selec-
tion.

Analyzing Figure 5.2, we can see that the rate of improvementadding more
random features is very slow. This suggest that adding more features is unlikely to
be the right way to improve the performances. This can be explained from the fact
that new features are likely to bring redundant information, correlated to already
added features. At the same time unique and independent features, being more
rare, will have a small weight (see Equation 5.6).

We have also combined OISVM (see Chapter 4) with the random feature se-
lection and the unsupervised feature selection, and the results are shown in Table
5.2. The kernel used in the classification task is linear, hence the dimensionality
of the feature space is equal to the dimensionality of the input space, that is to the
number of features used. We can see that using OISVM the number of support
vectors is more or less equal to the dimensionality of the space (the difference is
due to numerical approximations), while using standard SVMthe number of SVs



78 CHAPTER 5. OBJECT RECOGNITION AND CATEGORIZATION

100 300 600 1000
Feature sel. 1518 ± 0.8 1518 ± 2.8 1518 ± 1.8 1520 ± 2.1
Random features 1519 ± 1.7 1521 ± 2.6 1521 ± 3.1 1520 ± 2.1
OISVM η = 0, f. sel. 100± 0 302 ± 3.0 602± 3.3 1008 ± 2.1
OISVM η = 0, random 101 ± 2.2 310 ± 3.8 611± 5.5 1006 ± 1.5

Table 5.2: Mean number of support vectors for different numbers of features. The
number of SVs for the unsupervised feature selection and random selection are
more or less the same, while for OISVM it is exactly equal to the number of fea-
tures because a linear kernel is used.

is independent from the number of features. Moreoverη is set to0, so the solution
obtained is exactly the same of the one obtained with SVM. Considering the the
time to evaluate the linear kernel function is proportionalto the number of features,
we obtain a speed-up of6.25 times combining OISVM and the feature selection
method.

5.4 Discussion

A comparison of two state of the art algorithms for object categorization has been
made, stressing the importance of the learning part. The performance between the
two methods are not statistically significant, given that the classifier has been cor-
rectly tuned. Hence it seems that learning is critical subsystem, given two equally
good feature extraction systems.

Moreover, talking about the possibility to make the featureextraction system
adapt to the statistics of input image, an unsupervised feature selection system has
been introduced. The method is able to improve the performance of the classifier
and at the same time to speed up the system. Object of the future work will be the
integration of the model of visual attention system proposed in Chapter 3 with one
of these models for object recognition.



Chapter 6
Conclusions

In this thesis we have presented some studies on the topics oflearning and adapta-
tion in computer vision.

Starting from raw images, we have shown that it is possible toadapt to the
statistics of the world to have a better internal coding and to complete missing
information in the input. Going up in the visual hierarchy, we have taken under
consideration the mechanism of visual attention. Remembering the link between
perception and action, and the simple fact that every biological system has an aim,
we have proposed a proto-object based model of visual attention. Hence the model
does not work on disembodied locations or meaningless pixels but with perceptual
groupings that are the building blocks of the concept of visual object. Moreover the
idea of proto-object has then been exploited to build an object recognition system,
coupled with the attentive system.

Considering learning, we have introduced a new general online algorithm based
on SVM, able to produce very sparse solutions retaining almost all the accuracy
of the original SVMs. This different formulation of the SVM guarantees a finite
number of support vectors, regardless of the number of training samples.

We have than applied this algorithm to an object classification task. We have
also shown the advantages of adapting the feature extraction stage to the input
statistics, gaining speed and classification accuracy at the same time.

The obtained results support our idea that learning and adaptation are critical
for the comprehension of biological intelligence, and, hence, for creating an artifi-
cial cognitive agent.
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Appendix A
How to include the bias term in
OISVM

The formulation is exactly with the following substitutions:
[

KBB 0
0 0

]
→ K ′

BB (A.1)

[
KBI
1

]
→ K ′

BI (A.2)

where1 is a row vector of all1, with |I| elements.
[

β

b

]
→ β′ (A.3)

With these substitutions the regularization term1

2
β′T K ′

DDβ′ is equal to1

2
βT KDDβ,

while the output of thei-th training sampleo′i = K ′
i,Bβ′ is equal toKi,Bβ + b.

Notice thatKBB in Equation (4.21) is always the same, and it is not changed
by the use of a bias term.
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Appendix B
Kernels for SVM

To understand what is a kernel can be useful to directly buildit passing through an
explicit formulation of the functionΦ. Considerx ∈ R

2 andΦ : R
2 → R

3

Φ(x) =




x2
1√

2x1x2

x2
2


 (B.1)

We have that

Φ(x) · Φ(y) = x2
1y

2
1 + 2x1x2y1y2 + x2

2y
2
2 =

= (x · y)2 (B.2)

Hence it is possible to calculate the scalar product in the new space without know-
ing explicitly the functionΦ. In some other cases it is not possible to work withΦ
because the space induced by the kernel is infinite dimensional as for the Gaussian
kernel

K(x,y) = exp
(
−γ ||x− y||2

)
(B.3)

B.1 Some notes on polynomial kernels

One of the most used kernel is the polynomial one

K(xi,xj) = (xi · xj + c)p (B.4)

In many text and publications often it is written without theconstant termc (even
in LIBSVM the default value forc is 0). It is obvious that the homogeneous poly-
nomial kernel function, that is withc = 0, will be even or odd, depending on the
degreep. Maybe it is not so obvious that the entire decision or regression function
found by an SVM very likely will also be odd or even! In fact theSVM solution,
both in regression and classification, can be written as

f(x) =
∑

βiK(x,xj) + b =
∑

βi (xi · xj)
p + b (B.5)
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If the bias termb is 0 then f(x) is even or odd, depending onp, being linear
combination of odd or even functions.

B.2 The local matching kernel

Denoting withI = {Ii}ni=1
andL = {Li}mi=1

two sets of local features associated
with two images, we define

K(I,L) =
1

N

M∑

i=1

K̂ (Ipi
,Lqi

) (B.6)

M = min(N,max(m,n)) (B.7)

where

K̂ (Ipl
,Lqk

) = exp
(
−γ ||Ipl

− Lqk
||2
)

(B.8)

K̂ (Ip1
,Lq1

) ≥ K̂ (Ii,Lj) (B.9)

K̂ (Ip2
,Lq2

) ≥ K̂ (Ii,Lj) i /∈ {p1} j /∈ {q1} (B.10)

K̂ (Ip3
,Lq3

) ≥ K̂ (Ii,Lj) i /∈ {p1, p2} j /∈ {q1, q2} (B.11)

· · · (B.12)

K̂ (IpM
,LqM

) ≥ K̂ (Ii,Lj) i /∈ {p1, · · · , pM−1} j /∈ {q1, · · · , qM−1} (B.13)

pi 6= pj, qi 6= qj ∀i, j = 1, · · · ,M (B.14)

andN andγ are parameters of the kernel. This definition is slightly different from
the definition given in (Wallravenet al., 2003), but it has better performances1.
The idea behind this formulation is to consider theM best matching couples of
local features, without considering the ones that we have already matched, starting
from the best couple. Even if this kernel is non-Mercer (Boughorbelet al., 2004),
it has been largely used with good performances in various object recognition and
classification tasks.

1Personal communication by B. Caputo.
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