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If the human mind was simple enough to understand, we’d beitne
ple to understand it.

Emerson Pugh

... questo grandissimo libro [della natura] che continusteei sta

aperto innanzi agli occhi (io dico I'universo), non si pudeindere se
prima non s’impara a intender la lingua, e conoscer i caiatéequali

é scritto. Egli € scritto in lingua matematica, e i caratsem triangoli,

cerchi, ed altre figure geometriche, senza i quali mezzi ®asipile a
intendere umanamente parola; senza questi é un aggiraiineste
per un oscuro laberinto.

Galileo Galilei
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Abstract

In this thesis we analyze the topics of adaptation and legrini the context of
computer vision. Until now the ability of humans to adapt #&wtn how to solve
new tasks from their own experience remain impossible tbaae in an artificial
system. Even if computers can beat humans on small, camstr@iomains, the
generality of the human mind has no counterpart in the digitald.

The keys to understand and replicate a brain in a robot, coeltb try to
discover the general principles that govern our interrgthms and to formalize
them mathematically, and then to implement them in software

If it is true that our brains are the product of an long proadsslaptation to the
environment, we could be able to “predict” our biology stundythe world itself.

In this thesis we will show that, on one hand, it is possible#on basic features
of the processing of the neurons of the primary visual cofitesa the row visual
data and, on the other hand, we can learn such a high levell\gkills as object
classification.

The obtained results support the idea that these two aspesteritical for
the comprehension of biological intelligence, and, hefmecreating an artificial
cognitive agent.
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animals and humans have already efficiently solved thislpnolising differ-

ent means. Evolution on one hand has shaped bodies to stibmrenl tasks,
on the other hand has created minds able to solve new prolasriteey arise in
everyday life.

The ultimate goal of Artificial Intelligence (Al) is consided to build an arti-
ficial agent with cognitive abilities: how is it related toetiabove considerations?
What is an agent? What is cognition? Already Alan Turing hadsered the
difficulties of such definitions, and invented the idea of perative test as a mean
to evaluate artificial intelligence: requirement for arelfigent agent is to behave
in such a way to fool a human interrogator, hence to be imgjsishable from a
human. Thus it is easier to define the intelligence in retetiohumans, instead of
giving an absolute definition. Another way to try to defineelligence could be in
the context of the tasks that a cognitive agent should betatdelve. But if we
focus on specific abilities of humans and animals that we wangplicate, it is
easy to find examples of softwares that are even better afltf@ogical counter
parts,e.g chess softwares. An interesting observation on this haa dene by
Douglas Hofstadter (Hofstadter, 1999):

I F we consider the aim to survive like a problem to solve, we eatize that

It is interesting that nowadays, practically no one feelt #ense of
awe any longer - even when computers perform operationsitban-

credibly more sophisticated than those which sent thrilsr spines
in the early days. [...] There is a related “Theorem” abowigpess
in Al: once some mental function is programmed, people sease

13



14 CHAPTER 1. INTRODUCTION

to consider it as an essential ingredient of “real thinkinghe in-
eluctable core of intelligence is always in that next thifgak hasn't
yet been programmed. This “Theorem” was first proposed to yne b
Larry Tesler, so | call it Tesler's TheorerfAl is whatever hasn’t been
done yet".

Thus the aim of creating an intelligent machine should be seeler another
view: to create something that is albtesolve and learn to sohwdifferent problems
that it can meet in its environment. This different view offes also the possibility
to move the focus from thperformancego thereasons That is, it is more im-
portant to understand wheg.g, the human retina has a spatial variant resolution,
instead of focusing on gaining few percent points on an ébjwognition task.
In the first case we could understand more general conditi@igules biological
beings and that, if replicated in a computer, could makeiplesa quantum leap in
the performances.

Borrowing ideas from another field, we could say that makirigliigent arti-
facts can be seen like making mechanical flying machines. éAkyrshould take
the time to understand how biological systems have solvegthblem, even if
we do not want to make an airplane with feathers. In fact theecb solution to
mechanical flight was to take only a minimum amount of infotiora from ob-
servation of birds and then figure out how to use availablbrielogy to make a
machine fly. This scientific solution was clearly better thla@ prescientific idea
that certain substances or forms could naturally rise d¢ aotording to their es-
sential properties (like in the Icarus legend in which Hike-wings give men the
power of flight).

Thinking about the Tesler’s “Theorem”, one big differenbetween the most
advanced artificial intelligence achievements and whahals and humans can do,
could be the ability to solve problems, and generalizingnfirevious experience.
Computer can be programmed to solve specific tasks or to teadassify certain
stimuli with a specific algorithms, but each problem reguiaedifferent method,
that often uses specific information of the problem. Oftaa frior information
is the result of a deep analysis done by the programmer, anblynihe program
itself. Again, the difference is the learning of living bgifs guided by general
principles, that allow them to extraatitonomoushall the necessary information
to solve specific tasks.

1.1 Adaptation and learning

If learning and adaptation seem to be the two key aspectshioaild be addressed
to replicate the intelligent behaviors of animals and husnaowever it is true that
these cognitive abilities have sense only in relation tdr therticular needs and to
ambient in which they live. It has no much sense to talk abdaptation without
also considering what is the object of this adaptation. Aenagan be seen as
continuously adapting to the world, as perceived by its, isdwn body can be
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considered just as a special part of the world. Same reagaain be done in a
deeper level, taking into consideration the functionaérof neurons and neural
systems. A long standing hypothesis states that sensdgnsysre matched to the
statistical properties of the signals to which they are sgdaBarlow, 1961).

The difference between adaptation and learning is quiteowain a digital
agent. We could consider the first as a product of a desigrepsabat has decided
which abilities should be innate, and on which build more ptax ones, through
the second. Also in living beings we can do a similar distorgtin fact the ex-
pression Nature vs Nurture indicates the debate about ldia/ecimportance of an
individual’s innate qualities (“nature”) versus persopaperiences (“nurture”) in
determining or causing individual differences in physiaatl behavioral traits. In
the same way we should distinguish between the innateiabitliat a robot should
have ready to be used, preprogrammed, and the abilitiest thiaduld be able to
learn.

A first impulse would be to consider most of our high abilitesinnate, but
this is not the true. For example the same “concept of objse#ims to develop
across the firsé months after birth (Johnson, 2005). In fact, it seems thanis
are born without any means to perceive occlusion and, herwé&nowledge of
objects. This example tells us that, maybe, most of the tiwgrabilities, that we
would like to see in an artificial machine, can be learnt frowe éxperience, given
enough time and an appropriate set of core abilities.

To summarize with an example, we are able to manipulate shErause we
have hands, because we can learn how to use our hands, andéddoa world is
made of objects.

1.2 Putting things in context

The human visual and attentive system will be taken as a ¢adg 9Me can see,
by analyzing the visual system, a clear example of how théutga has shaped
the bodies of many mammals. Typical visual tasks requir hah acuity and a
wide field of view. High acuity is needed for recognition tasid for controlling
precise visually guided movements. A wide field of view is dexb for search
tasks, for tracking multiple objects, being aware of pdssiburce of dangers,
etc A common trade-off found by evolution in biological systems to sample
parts of the visual field at a high enough resolution (foveaupport the first set
of tasks, and to sample the rest of the field at an adequatéteseipport the
second set. This is seen in animals with foveate vision, sischumans, where
the density of photoreceptors on the retina is highest at#meer and falls off
dramatically toward the periphery. This space-variantaisystem requires them
to move their eyes, three times a second on average, in orgesttion their foveae
onto interesting locations of the visual space. This alltaking a series of small
“snapshots” at very high-resolution. The fact that thishis bnly way that allows
clear “vision” implies the existence of an attention systtich, at any moment
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— Input image Task
Features extraction Past experience
(through interaction)
Top-down
Proto-objects priming
Saliency Figure-ground

computation segmentation

— Saccade Object recognition —

Figure 1.1: The relation between action, attention and rexipee.

in time, selects the point to fixate next. This leads to twdssof questions: i)
how to move the eyes efficiently to important locations invfsial scene, and ii)
how to decide what is important and, as a consequence, wihéwek next. It is
important to answer these questions to understand tha #rertwo mechanisms
that act at the same time. One is hard-coded in the brain,tbe® one has been
learnt through the experience and the interaction with tbddw In fact there are
things that attract our attention instinctivedyg rapid change in the scene (Yantis
and Jonides, 1984), and some other that are learnt from {merierce,e.g the
image features that attract the attention of a radiologmsivmg an X-ray image
(Mylers-Worsleyet al, 1988). In general it has been shown that scanpaths for an
individual are modified by the task presented (Yarbus, 1967)

From these considerations about the spatial density oftibeopeceptors, the
need for an active vision and, hence, for a mechanism of hatention, we clearly
see that the physiology of vision has shaped not only the wayhich the image
are scanned but our entire perception. In fact the exterodbhvis sensed continu-
ously instead of maintaining and updating some complicatteatnal model. This
idea has been summarized by O’'Regan as: “The world as ardeutsemory”
(O’'Regan, 1992). The sentence remarks the fact that it i®fitapt to consider
the problem of vision, and perception in general, deeplyawdon the physical
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world. Given that, for example, changes in the world seenetedsily detectable,
it is cheaper to store in memory a rough representation oéxternal world, di-
rectly accessing to it when a detailed information is neeatedi to keep track of
the changes.

Moreover, it has no sense to talk about perception withdkingabout action,
so it is logical to think that our perception is biased verauspresentation that is
useful to act on physical objects. In the case of visual atterthis corresponds
to ask if the attention is deployed on objects (object-bpsean space locations
(space-based). This idea is supported by the discovery imkeys of a class of
neurons ihirror neurong which not only fire when the animal performs an action
directed to an object, but also when it sees another monkbyrman performing
the same action on the same object (Faéigal., 2000). Indeed, this tight coupling
of perception and action is present in in visual attentiom ttm fact, it has been
shown in (Fischer and Hoellen, 2004) that more object-baseuhtion is present
during a grasping action, than space-based one. But how eaitend to objects
before they are recognized? To solve this contradictionsR&n(Rensink, 2000b;
Rensink, 2000a) introduced the notion of “proto-objectet are volatile units of
visual information that can be bound into a coherent andestalbject when ac-
cessed by focused attention and subsequently validatersd abjects. In fact, it
is generally assumed that the task of grouping pixels irgoores is performed be-
fore selective attention is involved by perceptual orgatamn and Gestalt grouping
principles (Palmer and Rock, 1994).

All the above considerations can be summarized in the bl@gam of Figure
1.1.

1.3 Thesis outline

The main focus of this thesis will be the development of &b8irelated to the
visual system, in a biological inspired way. Starting frdra ibove considerations
various example of learning and adaptation will be takerencdnsiderations. The
thesis is organized as follows. Chapter 2 presents a medhendkipt to the statistics
of the world, learning second order relations between iffeedge detectors, and
hence learning some of the Gestalt principles. Chapter Badés the problem of
modeling active vision, through the use of a proto-objedelaattentive system.
In Chapter 4 an online algorithm for classification is présdnwith a detailed
mathematical analysis of his theoretical foundationsalymnin Chapter 5 there is
an application of a supervised learning procedure on arcbbegorization task.
In the last chapter we draw the conclusions and discuss theefwork. Finally
in the Appendix there are some mathematical details thag wet reported in the
main text.
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research history of perceptual grouping by the Gestaltlpsggists. In

particular the Gestaltists tended to view their groupingmiimena as an
illustration of the perceiver imposing a seemingly arbitréalbeit systematic) or-
ganization upon the stimule(g (Wertheimer, 1923)). Nowadays the more typi-
cal view of such grouping demonstrations would be that tlefgct non-arbitrary
properties within the stimuli (similarity, common motioetc), which the visual
system exploits heuristically because these propertebkaty to reflect divisions
into distinct objects in the real world. In particular thgseperties work because
they reflect characteristics of the real world. In this sehsbould be possible to
learn these heuristic properties, that is, it should beiplesto adapt to the statis-
tics of natural images, learning the properties of the Viswald. These properties
can be then exploited to have a more efficient representatignBuccigrossi and
Simoncelli, 1999), and to complete missing information ¥Biynenet al., 2001).

Previous studies have shown that it is possible to learmiogptroperties of the

responses of the neurons of the visual cortex, as for exampleceptive fields of
complex and simple cells, through the analysis of the siegi®f natural images
and by employing principles of efficient signal encodingifirsformation theory,
e.g (Bell and Sejnowski, 1997). Here we want to go further anusaer how the
output signals of ‘complex cells’ are correlated and whidlmimation is likely to

THE term “grouping” (or “segmentation”) is a common concepthie tong

19



20 CHAPTER 2. LEARNING ASSOCIATION FIELDS

be grouped together. We want to learn ‘association fieldsickvare a mechanism
to integrate the output of filters with different preferredeatation, in particular
to link together and enhance contours. We used static hatiages as training
set and the tensor notation to express the learned fieldgllyFime tested these
association fields in a computer model to measure their pedoce.

This chapter is organized as follows: section 2.1 introdube idea of the link
between the Gestalt laws and the statistics of the world.ti&e.2 contains a
description of the method, and section 2.3 describes a &tsifexperimental re-
sults and a method to overcome problems due to the non-mmidistribution of
the image statistics. In section 2.4 we show the fields coegpwith this last mod-
ification and finally in sections 2.5 and 2.6 we show the penfoice of the fields
in edge detection on a database of natural images and we drag/&nclusions.

2.1 Gestalt laws, statistics and neurons

The goal of perceptual grouping in computer vision is to nigavisual primitives
into higher-level primitives thus explicitly represergithe structure contained in
the data. The idea of perceptual grouping for computer wikias its roots in the
well-known work of the Gestalt psychologists back at thefr@igg of the last cen-
tury who described, among other things, the ability of thenan visual system to
organize parts of the retinal stimulus into “Gestaltengttis, into organized struc-
tures. They formulated a number of so-called Gestalt lawsx{mity, common
fate, good continuation, closuretc) that are believed to govern our perception. It
is logical to ask if these laws are present in the statisti¢keoworld.

On the other hand it has been long hypothesized that the @atlgl system
is adapted to the input statistics (Barlow, 1961). Such aptadion is thought
to be the result of the joint work of evolution and learningidg development.
Neurons, acting as coincidence detectors, can discoveussmdegularities in the
incoming flow of sensory information, which eventually repent the Gestalt laws.
It has been proposed that, for example, the mechanism tikatdgether the ele-
ments of a contour is rooted in our biology, with neurons Wateral and feedback
connections implementing these laws.

There is a large body of literature about computational riegeof various
parts of the visual cortex, starting from the assumptiohdbetain principles guide
the neural code ((Simoncelli and Olshausen, 2001) for @weévi In this view it
is important to understand why the neural code is as it is.| @&l Sejnowski
(Bell and Sejnowski, 1997), for example, demonstrated ithatpossible to learn
receptive fields similar to those of simple cells startingmrirnatural images. In
particular they demonstrated that it is possible to reptedhese receptive fields
hypothesizing the sparsity and independence of the neada. cln spite of this,
there is very little literature on learning an entire hiekgr of features, that is not
only the first layer, and possibly starting from these ihitgceptive fields.

A step in the construction of this hierarchy is the use of daggtion fields’
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Figure 2.1: Sample input image from the Berkeley Segmamddatabase. All the
images were converted to grayscale before using the prdposthod.

(Field et al,, 1993). In the literature, association fields are often heoaed and
employed in many different models with the aim to reprodute human perfor-
mance in contour integration. These fields are supposeddéontage the pattern of
excitatory and inhibitory lateral connection betweenetiint orientation detector
neurons as found, for instance, by Schradal (Schmidtet al, 1997). In fact,
Schmidt has shown that cells with an orientation preferenaaea 17 of the cat
are preferentially linked to iso-oriented cells. Furtherm the coupling strength
decrease with the difference in the preferred orientatiopre- and post-synaptic
cell. Models typically consider variations of the co-cil@uapproach (Grossberg
and Mingolla, 1985; Guy and Medioni, 1996; Li, 1998), thatvi® oriented el-
ements are part of the same curve if they are tangent to the siabe. Others
(Vonikakis et al,, 2006) have considered exponential curves instead oEsirab-
taining similar results.

Our question is whether it is possible to learn these associfields from the
statistics of natural images. One of the first publicatiodradsing second order
relations of edge-like structures in images is from Krigdémiger, 1998). Then
different authors have used different approaches to tryetarfy” this fields: using
a database of tagged images (Elder and Goldberg, 2002 p@Gatial., 2001), using
motion as an implicit tagger (Prodéét al,, 2003) or hypothesizing certain coding
properties of the cortical layer (Hoyer and Hyvarinen, 2002

Our approach is similar to to one of Sigmeinal. (Sigmanet al,, 2001), which
uses images as the sole input. Further, we aim to obtaingerasisociation fields,
useful to link contours in a computer model.
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2.2 Learning from natural images

We assume the existence of a first layer that simulates theslmelof the complex
cells; in this paper we do not address the issue on how to team since we are
interested in the next level of the hierarchy. Using the ougs this layer we want
to estimate the mean activity around points with a givennvaigon. For example
it is likely that if a certain image position contains a hontal orientation, then
the adjacent pixels on the same line would be points with @&ntation almost
horizontal.

To have a precise representation of the orientations are &ame time some-
thing mathematically convenient we have chosen to use tisetaotation. Second
order symmetric tensors can capture the information albeutitst order differen-
tial geometry of an image. Each tensor describes both tleatation of an edge
and its confidence for each point. The tensor can be visubdigen ellipse, whose
major axis represents the estimated tangential directidritze difference between
the major and minor axis the confidence of this estimate. El@ngoint on a line
will be associated with a thin ellipse while a corner with ecld. Consequently
given the orientation of a reference pixel, we estimate teamtensor associated
with the surrounding pixels. The use of the tensor notatiea gs the possibility
to exactly estimate the preferred orientation in each pofirihe field and also to
quantify its strength and confidence.

We have chosen to learn a separate association field for easibfe orienta-
tion. This is done for two main reasons:

e Itis possible to find differences between the associatiddsfid-or example,
itis possible to verify that the association field for thesatation of 0 degrees
is stronger than that of 45 degrees.

e For applications of computer vision, considering the disznature of digital
images, it is better to separate the masks for each orientatistead of
combining the data in a single mask that has to be rotatethigémlsampling
problems. The rotation can be done safely only if there is themaatical
formula that represents the field, while on the other hand neerderring
the field numerically.

We have chosen to learn 8 association fields, one for eactetizd orienta-
tion. The extension of the fields is chosen to be of 41x41 pitaken around each
point. It should be noted that even if we quantized the oaitiort of the (central)
reference pixel to classify the fields, the information abithe remaining pixels
in the neighbor were not quantized, differently to (Geigeal, 2001; Sigman
et al, 2001). There is neither a threshold nor a pre-specified eurobbins for
discretization and thus we obtain a precise representafitre association field.

Images used for the experiments were taken from the pulalidilable database
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Figure 2.2: Complex cells output to the image in figure 2.10fategrees filter of
formula (2.1).

(Berkeley Segmentation Databagdlartin et al, 2001)) which consists of 300
color images of 321x481 and 481x321 pixels; 200 of them wemserted to black
and white and used to learn the fields, collecting 41x41 gatclin example image
from the dataset is shown in figure 2.1.

2.2.1 Feature extraction stage

There are several models of the complex cells of V1, but we ltéosen to use
the classic energy model (Morrone and Burr, 1988) on thengity channel. The
response is calculated as:

By = /(I f5)® + (I * £3)° 2.1)

where f§ and f are a quadrature pair of even and odd-symmetric filters aheri
tationd. Our even-symmetric filter is a Gaussian second-derivatind the corre-
sponding odd-symmetric is its Hilbert transform. In figur2 there is an example
of the output of the complex cells model for the 0 degreestaieon.

Then the edges are thinned using a standard non-maximumessm algo-
rithm. This is equivalent to finding edges with a LaplaciarGafussian and zero
crossing. The outputs of these filters are used to constuudboal tensor repre-
sentation.

'htt p: // www. eecs. ber kel ey. edu/ Resear ch/ Proj ect s/ CS/ vi si on/
groupi ng/ segbench/ , last access 19/02/2007.
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2.2.2 Tensors

In practice a second order tensor is denoted by a 2x2 matxaloés:

T = l i ] 2.2)
a1 a2

Itis constructed by direct summation of three quadratuter filair output mag-
nitudes as in (Knutsson, 1989):

3 4 1
T = kz Ey, (gﬁ{ﬁk — 51) (2.3)
=1
whereFEy, is the filter output as calculated in (2.T)is the 2x2 identity matrix and
the filter directionsy;, are:
ny = (17 0)
7)

ﬁQ = ()
N 1 V3
n3 = —§>T)

The greatest eigenvalug and its corresponding eigenvecter of a tensor
associated to a pixel represent respectively the strengihttee direction of the
main orientation. The second eigenvalueand its eigenvectog; have the same

meaning for the orthogonal orientation. The differenge— \s is proportional to
the likelihood that a pixel contains a distinct orientation

(2.4)

N[

2.3 Preliminary results

We have run our test only for a single scale, choosingstbéthe Gaussian filters
equal to 2, since preliminary tests have shown that a siméesion of the fields is
obtained with other scales as well. Two of the obtained fiatdsn figures 2.3 and
2.4. Itis clear that they are somewhat corrupted by the poesef horizontal and
vertical orientations in any of the considered neighboikanthe fact that in each
image patch there are edges that are not passing acrosanthal pixel. On the
other hand we want to learn association field for curves tbhgbaks through the
central pixel. Geisleet al. (Geisleret al, 2001) used a human labeled database of
images to infer the likelihood of finding edges with a ceriirentation relative to
the reference point. On the other hand, Sigretaal (Sigmanet al., 2001) using
only relative orientation and not absolute ones, could motlseen this problem.
In our case we want to use unlabeled data to demonstratd thabissible to learn
from raw images and, as mentioned earlier, we do not wantrisider only the
relative orientations, but rather a different field for eadentation. We believe that
this is the same problem that Prodéhkl. (Prodohlet al., 2003) experienced using
static images: the learned fields supported collinearitiiérhorizontal and vertical
orientations but hardly in the oblique ones. They solvesl pinoblem using motion
to implicitly tag only the important edges inside each patklsimilar approach is
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Main directions for the association field for tiientation of O degrees

Figure 2.3

in the central pixel.
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Figure 2.4: Main directions for the association field for tmgentation of 67.5

degrees in the central pixel.
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used by (Fitzpatrick and Metta, 2003) to disambiguate thyedf a target object
from the other of the environment.

2.3.1 The path across a pixel

The neural way to solve the problem shown earlier is thoughietthe synchrony

of the firing between nearby neurons: if stimuli co-occugrtithe neurons syn-
chronize (Grayet al,, 1989). Inspired by this we considered in each patch only
pixels that belong to a curve that goes through the centrall.pin this way the
gathered data will contain only information about curvesr@rcted to the central
pixel. Note that we select curves inside each patch, notiéngie entire image.
The simple algorithm used to select the pixels in each pattiei following:

1. put central pixel of the patch in a list;

2. tag first pixel in the list and remove it from the list. Putrsunding pixels
that are active (non-zero) in the list;

3. if the list is empty quit otherwise go to 2.

With this procedure we remove the influence of horizontal eertical edges that
are more present in the images and that are not removed byrdlbess of av-
eraging. On the other hand, we are losing some informatmemexXample about
parallel lines, that in any case should not be useful for titeaecement of con-
tours. Note that this method is completely parameter freeame not selecting the
curves following some specific criterion, instead we are jusning the training
set from some kind of noise. It is important to note that thetlmd will learn the
bias present in natural images versus horizontal and aéddges (Coppolet al,,
1998), but it will not be biased to leamnly these statistics, as in Prodddt al.
(Prodohlet al., 2003) when using static images.

2.4 Results

We tested the modified procedure on the database of natuaglesrand also on
random images (results not shown), to verify that the resuttre not an artifact
due to the method.

In figures 2.5, 2.6 there are respectively the main oriemtatitheir strengths
(eigenvalues) and the strengths in the orthogonal dinestid the mean estimated
tensors for the orientation of O degrees of the central pi$aime for figures 2.7
and 2.8 for 67.5 degrees. The structure of the obtained iasisocfield closely
resembles the fields proposed by others based on collipeadtco-circularity. We
note that the size of the long-range connection far exceéetsite of the classical
receptive field. We note also that the noisier regions in tientation corresponds
to very small eigenvalues so they do not influence very mueliittal result.
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Figure 2.5: Main directions for the association field for ¢teentation of O degrees

in the central pixel, with the modified approach.
Figure 2.6: Difference between the two eigenvalues of tkedation field of fig-

ure 2.5.
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Figure 2.8: Difference between the two eigenvalues of tkedation field of fig-
ure 2.7.
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Figure 2.9: Comparison of the decay for the various origmat On the y axis
there are the first eigenvalues normalized to a maximum oh the x axis is the
distance from the reference point along the main field divact

While all the fields have the same trend, there is a clearrdifiee in the decay
of the strength of the fields. To see this we have considergdtioa values along
the direction of the orientation in the center, normalizihg maximum values to
one. Figure 2.9 shows this decay. It is clear that fields feizbatal and vertical
edges have a wider support, confirming the results of Sigebah (Sigmanet al,
2001).

2.5 Using the fields

The obtained fields can be used with any existing model ofatorgnhancement,
but to test them we have used the tensor voting scheme pibins&uy and
Medioni et al. (Guy and Medioni, 1996). The choice is somewhat logicalambn
ering to the fact that the obtained fields are already tendorghe tensor voting
framework points communicate with each other in order tcneefind derive the
most preferred orientation information. Differently tcetloriginal tensor voting
algorithm we don’t have to choose the right scale of the fifld®e and Medioni,
1999) since it is implicitly in the learnt fields. We comparbeé performances of
the tensor voting algorithm using the learned fields versasimple output of the
complex cell layer, using the Berkeley Segmentation Datalsand the methodol-
ogy proposed by Martiet al. (Martin et al., 2004; Martinet al, 2001). We can
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Figure 2.10: Comparison between tensor voting with leafiedds (PG label) and
the complex cell layer alone (OE label).

see the results in figure 2.10: there is a clear improvemeng) tilse tensor voting
and the learned association fields instead of just usingith@ated outputs of the
complex cells alone. An example of the results on the tesj@mia 2.1, after the
non-maximum suppression procedure, are shown in figurdsahd 2.12.

2.6 Discussion

Several authors have studied the mutual dependencies olasad complex cells
responses to natural images. The main result from theseestigdthat these re-
sponses are not independent and they are highly correldted they are arranged
collinearly or on a common circle. In this chapter we havespnted a method
to learn precise association field from natural images. Aitspired procedure
to get rid of the non-uniform distribution of orientatiorsused, without the need
of a tagged database of images (Elder and Goldberg, 2008|eGet al., 2001),
the use of motion (Prodoéhdt al., 2003) or supposing the cortical signals sparse
and independent (Hoyer and Hyvéarinen, 2002). The learn&tsfieere used in a
computer model, using the tensor voting method, and thdtsesere compared
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Figure 2.11: Test image contours using the complex celrlaigne.

Figure 2.12: Testimage contours using tensor voting wetHeharned fields. Notice
the differences with the image 2.11: the contours are lindgether and the gaps
are reduced. Especially on the contour of back of the tigerdifferences are
evident.

using a database of human tagged images which helps in prgwdttar numerical
results.

However the problem of learning useful complex featuremfratural images
could in any case find a limit beyond these contour enhancemaworks. At
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least the knowledge of class to which the images belong iessacy as in (Fidler
et al, 2006), that have used a similar method to learn class speoifbinations
of basic features. Moreover thesefulnesof a feature is not directly related to
image statistics but supposes the existence of an embodett a&cting in the
natural environment, not just perceiving it. In this sensehie future we would
like to link strategies like the one used by Natateal (Nataleet al, 2005) and
the approach described here, to link the first stages of emgiged learning, to
reduce the dimensionality of the inputs, to other stagesipévised learning for
the definition of the extraction of useful features for a gitask.



Chapter

Visual Attention

Contents
3.1 Computational models of visual attention . . . . . ... .. 33
3.2 Setup ... e 37
3.3 Themodel ... ... ... . .. . .. .. ... ... ... 38
3.4 Learningaboutobjects . ... .. ... .. .. ....... 45
35 Results .. ... ... . ... 48
3.6 Discussion . ... .. .. ... ... 49

that of locating suitable interest points, “salient regignn the scene, to
detect events, and eventually to direct gaze toward thes¢idms. In the
last few years, object-based visual attention models hegeived an increasing
interest in the literature, the problem, in this case, béivag of creating a model
of “objecthood” that eventually guides a saliency mechanitVe present here an
object-based model of visual attention and show its ingtaobh on a humanoid
robot. The robot employs action to learn and define its owrcepnof objecthood.
The chapter is organized as follows: section 3.1 containgitaoduction on
the modeling of human visual attention. Section 3.2 dessriine experimental
setup used in the experiments. Section 3.3 details the'solistial system and the
implementation. Section 3.4 introduces the probabilishgect model and shows
how this is used for object recognition. Finally in sectidh§ and 3.6 we show
experimental results and we draw some conclusions.

Q s said in the Introduction, one of the first steps of any visyatem is

3.1 Computational models of visual attention

One way to study the phenomenology of visual attention isgutie paradigm of
visual search task. In such tasks the observer must telkdsepce or absence of a
target object among a number of other objects, “distrattdrslominant tradition

33
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in visual search was initiated with a seminal paper by Traiskend Gelade (Treis-
man and Gelade, 1980). They argued that some primary visopégies allow a
search in parallel across large displays. In such caseartet appears to ‘pop out’
of the display. For example there is no problem in searctong fed item amongst
distractor items coloured green, blue or yellow. In othelesathe paradigmatic ex-
ample being a ‘feature conjunction’ search for a targetithlawth green and a cross
when distractors include red crosses and green circletaskas much more diffi-
cult, suggesting the use of a different search strategysriagn and Gelade argued
that in the pop-out tasks preattentional mechanisms peapidl target detection,
in contrast to the conjunction task, which was held to remaiserial deployment
of attention over each item in turn. They introduced an erpental paradigm that
differentiated the different types of searches, meastutiegime taken for an ob-
server to make a speeded two choice decision concerningésente or absence
of a target in a visual display. Half of the displays contdiaetarget and in the re-
maining the target was absent. The critical independeraarwas the number of
displayed items. Thsearch functiorshows how the response time depends on this
variable. The traditional interpretation of the searchction is that the display-
size-dependent increases shown in the search functiorfunction searches
come about through an item by item serial scan of coverttittethrough the dis-
play. If the display does not contain a target, it is assurhatl évery item in the
display is scanned before a target-absent response is. divére search is self-
terminating in displays that do contain a target, then onmames half the display
items must be scanned before the target is found. This diohotserial/parallel
has suggested the division of the attention in two stages:‘pmeattentive’ that is
traditionally thought to be automatic, parallel, and taaat relatively simple stim-
ulus properties, and other ‘attentive’ serial, slow, withited processing capacity,
able to extract more complex features. The ‘preattentit@jes by definition is
traditionally thought to precede the subsequent ‘attehttage, with the latter by
definition depending on the attentional state of the obseMereover, Treisman
and Gelade proposed a model called Feature Integrationr{f ED) (Treisman
and Gelade, 1980), to justify their findings. The preattentitage is modeled by
a set of low-level feature maps that are extracted in pa@ii¢he entire input im-
age, than they are combined together by a spatial attenfiothow operating on a
master saliency map (Figure (3.1)).

The Treisman and Gelade’s model is a representative of a ofasodels
(space-based theories) that holds that attention is #fldda a region of space,
with processing carried out only within a certain spatiahgaw. Attention in this
case could be directed to a region of space, even in abseraceeaf target. The
most influential evidences for the spatial selection cornmfthe experiments of
Posnetret al. (Posnert al,, 1980) and Downing and Pinker (Downing and Pinker,
1985). In a pointing experiment, they showed that antigigathe appearance of a
target with a cue (for example an arrow) sped up the respdnbe subject. The
opposite occurred, that is the subject's response wasfisigmily slowed down,
when the cue was in the wrong direction (invalid cue). Thisnsethat attention
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Figure 3.1: A simple schematization of the FIT model.

might be directed to a region of space even in absence of targat. Moreover on
invalid cues, the response slowed down monotonically adidiance between the
cue and the actual target increased. These results subgeattention is deployed
as a spatial gradient, centered on a particular locatiomcel¢his theory consid-
ers attention as a “spotlight”, an internal eye or a sort abfna lens”; attention is
deployed as a spatial gradient, centered on a particulatidrc

On the other hand there is a recent literature on the soecaligect-based’ vi-
sual attention, that represents the result of a fertile messstalk between two tra-
ditionally separate research fields, one concerning vseginentation and group-
ing processes, and the other concerning selective atter@@ibject-based attention
theories argue that attention is directed to an object ooamof objects, to pro-
cess specific properties of the selected objects, ratherduons of space. There
is a growing evidence both from behavioral and from neursjitggical studies
that shows, in fact, that selective attention frequentlgrages on an object based
representational medium in which the boundaries of segedenbjects, and not
just spatial position, determine what is selected and htentn is deployed (see
(Scholl, 2001) for a review). This reflects the fact that teual system is op-
timized for segmenting complex scenes into representtifr(often partly oc-
cluded) objects to be used both for recognition and actimtesperceivers must
interact with objects and not with disembodied spatial fioces. For example, at-
tention to one part of an object confers an attentional adggnto other parts of
that object (Eglyet al., 1994). Similarly, attention to one aspect of an object) (
its shape) enhances the cortical response to other aspetttst @bject €.g its
color or motion); thus, all the attributes of an attendedobgeem to be bound to-
gether into a single entity. This concept holds even wheratteanded and ignored
objects are spatially superimposed. O’Craetral. (O’'Cravenet al,, 1999) have
observed the effects of object-based attention using fMRhis study, observers
looked at a display containing a sequence of semitransparages of spatially
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superimposed faces and houses. At any given moment, dithéouse or the face
moved with an oscillatory motion. Observers were asked twdgewhether the
currently visible house (or face) matched the one immelgigteeceding it; this
required them to attend closely to the relevant object typspatial 'spotlight of
attention’ could not select one of the two superimposedadjat would neces-
sarily select both or neither. The researchers found thafitgdn face- and house
selective cortical regions mirrored the subject’s statattégntion (despite the fact
that both a house and a face were present in the scene ated)timdicating that
object-based selection was possible in this task. As pextlicy an object-based
account, all of the features of the attended object werewsaleand the features of
the ignored object were (relatively) suppressed.

Finally, another classification can be made depending oowtiies are actu-
ally used in modulating attention. Bottom-up informati@rhich comes only from
the input image, includes basic features such as colomtatien, motion, depth,
and their conjunction thereof. A feature or a stimulus caschttention if it differs
from its immediate surrounding in some dimensions and tihesod is reason-
ably homogeneous in those same dimensions. However, mtiatie higher-level
mechanisms are involved as well. A bottom-up stimulus, kameple, may be ig-
nored if attention is already focused elsewhere (Yanti88).9In this case attention
is also influenced by top-down information relevant to theipalar task at hand
which is not necessarily available in the image (Yarbus,7)96

In the literature a number of attention models that follow finst hypothesis
have been proposed (Milanestal, 1995; Sela and Levine, 1997; I¢gi al, 1998),
most of them being derived from Treisman and Gelade’s FITrddeer the model
proposed by Ittet al. (Itti et al., 1998) is considered the state of the art, and, with
some modifications, has been also implemented on humanrmitsie.g (Breazeal
et al, 2001). An important alternative model is given by Sun argh&i (Sun and
Fisher, 2003), which propose an combination of object-aatlire-based theories.
Presented with a manually segmented input image, their himdble to replicate
human viewing behavior for artificial and natural scenese Tiimit of the model
is the human segmentation of the images: it supposes thef id®rmnation that
could be not available in the preattentive stage, that isrbethe objects in the
image are recognized.

For a complete review on this topic see (Itti and Koch, 2001a)

3.1.1 A proto-object based model of visual attention

The proposed model starts from the considerations thatuh®ah visual system
extracts basic information from the retinal image in termdires, edges, local
orientation etc. Vision though does not only representaliseatures but also the
thingsthat such features characterize. In order to segment a stgems, objects,
that is to group parts of the visual field as coherent wholesconcept of “object”
must be known to the system.

The ‘objects’ which we will be concerned with are segmentexteptual units.
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In particular, there is an intriguing discussion underwayision science about ref-
erence to entities that have come to be known as “proto-tsfijec “pre-attentive
objects” (Rensink, 2000b; Rensink, 2000a; Pylyshyn, 206ihce they need not
to correspond exactly with conceptual or recognizable abjeThese are a step
above the mere localized features, possessing some bull nbttee characteris-
tics of objects. Instead, they reflect the visual systemigrentation of current
visual input into candidate objectisg, grouping together those parts of the retinal
input which are likely to correspond to parts of the same alijethe real world,
separately from those which are likely to belong to otheeots)). They were intro-
duced by Rensink in his interpretation of change blindnesservers were blind
to big changes in a scene when a blank screen was shown for mifieseconds
before for the modified image (Rensiekal.,, 1997)

The visual attention model proposed considers these fagestof the human
visual processing, and employs a concept of salience basg@doto-objects de-
fined as blobs of uniform color in the image. Since we are clamgig an embod-
ied system we will use the output of an instantiation of thedeido control the
fixation point of a robotic head. Moreover, through actidme aittention system
can go beyond proto-objects (Metta and Fitzpatrick, 2008jact, once an object
is grasped, the robot can move and rotate it to build a staishodel of the fea-
tures belonging to it, constructing a representation adlaotion of proto-objects
and their relative spatial locations. This internal repreation then generates a
top-down signal that bias attention toward known objectsamexample we will
show how the top-down influence can be used to direct thetmiteof the robot to
spot a specific object among other similar items lying on &tab

The proposed object-based model of visual attention iategrbottom-up and
top-down cues; in particular, top-down information worksagpriming mechanism
for certain regions in the visual search task. (when the robot seeks for a known
object in the environment).

3.2 Setup

The experiments reported here were carried out on a roblatiiopn called Baby-
bot. This is a humanoid upper torso which consists of a headya and a hand.
The head has 5 degrees of freedom, two of which control thk pan and tilt,

whereas the other three actuate two eyes to pan indepenaatlitiit on a com-
mon axis. The arm is the well known Unimate PUMA 260, an indalsmanip-

ulator with 6 degrees of freedom; the hand (designed anizeelaht LIRA-Lab)

has 5 fingers for a total of 6 degrees of freedom. From the pdintew of the

sensors, the head is equipped with two space-variant car(&aadinet al.,, 2000)

and two microphones for visual and auditory feedback. Reopptive information
is provided to the robot by optic and magnetic encoders naolah all joints of
the head, arm and hand. More details about the Babybot cawube in (Natale,
2004).
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Figure 3.2: The robotic setup, Babybot. The experimentaipseonsists of a five
degrees of freedom robot head, and an off-the-shelf sixegsgof freedom robot
manipulator, both mounted on a rotating base: the torso. The kinematics re-
sembles that of the upper part of the human body although legth degrees of
freedom.

3.3 The model

In Figure 3.3 there is a block diagram of the model; the ingud isequence of
color log-polar images (Schwartz, 1977; Sandini and Tagba 1980). The use
of log-polar images comes from the observation that theibiigion of the cones,

i.e. the photoreceptors of the retina involved in diurnalo, is not uniform. This

distribution seems to influence the scanpaths during a vigaech task and so
it has to be taken into account to better model overt visuahibn (Wolfe and

Gancarz, 1996). In addition, the lower resolution of thegesry of the field of

view reduces the images’ size and thus reduces the congnahtoad.
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Figure 3.3: Block diagram of the model. The input image i feeparated in
the three color opponency maps, than edges are extracte@teksiied transform
creates the clusters of uniform or uniform gradient of c@bdobs). The saliency is
defined on the blobs, and not on single pixels, taking int@acttop-down biases.

3.3.1 Log-polar images

The log-polar mapping is a model of the topological transfation of the primate
visual pathways from the retina to the visual cortex. Coresela higher den-
sity in the central region called fovea (approximatetyo? the visual field), while
they are sparser in the periphery. Consequently, the tésolis higher and uni-
form in the center while it decreases in the periphery, ngpaiwvay from the fovea.
Moreover the cartesian image from the retina is deformedercortex through a
transformation that can be well described as a logarithpoler (log-polar) map-
ping (Schwartz, 1977).

The main advantage of log-polar sensors is related to thé somaber of pix-
els and the comparatively large field of view. In fact the lowesolution of the
periphery reduces the images’ size and thus reduces theutatiopal load of the
visual processing, while the high resolution center candwsel dor standard visual
algorithms (Sandini and Metta, 2002).

From the mathematical point of view the log-polar mapping ba expressed
as a transformation between the polar pldpgd) (retinal plane), the log-polar
plane(n, &) (cortical plane) and the Cartesian planey) (image plane), as follows
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Figure 3.4: Log-polar transform of an image.

{:

wherep is the radius of the innermost circle/q is the minimum angular resolu-
tion of the log-polar layout antp, #) are the polar co-ordinates. These are related
to the conventional Cartesian reference system by:

{ x = p-cosd (3.2)

(Sandini and Tagliasco, 1980):

q-0

3.1
logap% ( )

T =p-sinf

Figure 3.4 shows a Cartesian image and its log-polar cquanteas derived
from Equations (3.1) and (3.2). Itis worth noting that theviéo's petals, that have
a polar structure, are mapped vertically in the log-polaagm Circles, on the other
hand, are mapped horizontally. Furthermore, the stamextdi¢hin the center of
the image of the flower, occupy about half of the correspandtig-polar image
(the cortical magnification).

3.3.2 Feature extraction

As a first step the input image at timés averaged with the output of a color quan-
tization procedure (see later) applied to the image attink This is to reduce the
effect of the input noise. The red, green, blue channelsalf @aage are then sep-
arated, and the yellow channel is constructed as the arittbimean of the red and
green channels. Successively these four channels are medntd generate three
color opponent channels, similar to those of the retinahEaannel, normally in-
dicated ask*G—, Gt R~, BTY , has a center-surround receptive field (RF) with
spectrally opponent color responses. That is, for examapled input in the center
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of a particular RF increases the response of the cha@hél~ , while a green one
in the surrounding will decrease its response. The spasganse profile of the
RF is expressed by a Difference-of-Gaussians (DoG) ovetwhesub-regions of
the RF, “center” and “surround”. A response is computed asctivas a RF cen-
tered on each pixel of the input image, thus generating grubirmage of the same
size of the input. This operation, considering for exampkeR* G~ channel is
expressed by:

RTG (z,y) =a-Rxg.— 3-G*gs (3.3)

The two Gaussian functiong, andg; , are not balanced: the ratigy o is chosen
equal to 1.5, consistent with the study of Smirnatisl. (Smirnakiset al., 1997).
The unbalanced ratio preserves the achromatic informaiiia is, the response of
the channels to a uniform gray area is not zero. Hence thelrdods not need to
process achromatic information explicitly since it is imsfily encoded, similarly
to what happens in the human retina’s P-cells (Billock, 399be ratioos /o, the
standard deviation of the two Gaussian functions, is chegeal to 3. To be noted
that by filtering a logpolar image with a standard spaceriava filter leads to a
space-variant filtered image of the original cartesian ien@ddallot et al., 1990).
Edges are then extracted on the three channels separaitayaugeneralization
of the Sobel filter due to (Let al, 2003), obtainingE'r;(z,vy), Ecr(x,y) and
Epy(z,y). A single edge map is generated combining the tree outputs:

E(z,y) = max {|Erc(z,y)|, |[Ecr(z,y)| , |[Epy (z,y)[} (3.4)

The log-polar transform has the side effect of sharpeniegettges near the fovea
due to the magnification factor of the mapping; this is conspéed multiplying
each pixel by a factor which is exponential on the eccemyrici

3.3.3 Proto-objects

It has been speculated, that synchronizations of visusitabneurons might serve
as the carrier for the observed perceptual grouping phenomgeckhornet al,,
1988; Grayet al,, 1989). The differences in the phase of oscillation amomadjaiy
neighboring cells are believed to contribute to the segatiemt of different objects
in the scene. We have used a watershed transform (raigfatlinant) (Vincent and
Soille, 1991; De Smet and Pires, 2000) on the edge map to alienthle result of
this synchronization phenomenon and to generate the pljésts. The intuitive
idea underlying this method comes from geography: a topbgeaelief is flooded
by water, watershed are the divide lines of the domains mdaton of rain falling
over the region. In our view the watershed transform sinesl#te parallel spread
of the activation on the image, until this procedure fills tak spaces between
edges. Differently from other similar methods the edgemteves will never be
tagged as blobs and the method does not require complex mamppéunctions
either. Moreover the result does not depend on the order inhathe points are
examined like in standard region growing (Wan and Higgif¥)3). As a result,
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Figure 3.5: Filtering the image on the left with a DifferenmeGaussians with
the size of positive lobe equal to the size of the circle inrtfiddle, we obtain
the image on the right. Smaller blobs will be depressed whilger ones will be
depressed in their centers.

the image is segmented into blobs with either uniform oramif gradient of color.
Hence from the choice of the feature maps come our definitigmaio-objects as
closed areas of uniform color of the image. Each blob is tdggth the average of
the color of the pixels within its area (this leads to a soabr quantized image).
The result is blurred with a Gaussian filter and stored: thilsbe used to perform
a time-smoothing by simple averaging with the frame at timel to reduce the
effect of noise and increase the temporal stability of thab&l After an initial
startup time of about five frames, the number of blobs and #ieipe stabilize. If
movement is detected in the image (as difference betweendngecutive frames)
then the smoothing procedure is halted and the bottom-ignssl map becomes
the motion image.

As already mentioned above, a feature or a stimulus cattieeattention of
the system if it differs from its immediate surrounding. Wmse to compute the
bottom-up salience as the Euclidean distance in the coloorignt space between
each blob and its surrounding. The size of the spot or focusttehtion is not
constant: it changes depending on the size of the objecteisdene. To account
for this fact the greater part of the visual attention modtelgerature uses a multi-
scale approach filtering with some type of “blob” detectgpitally a difference
of Gaussian filter) at various scales (Itti and Koch, 200 reasoned that this
approach lacks continuity in the choice of the size of thau$oof attention (see
for example Figure (3.5)). We propose instead to dynanyically the region of
interest depending on the size of the blobs. That is thersai®f each blob is
calculated in relation to a neighborhood proportional $csize. In our implemen-
tation we consider a rectangular region 3 times the sizeeobtlunding box of the
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blob as surrounding region, centered on each blob. The ehafia rectangular
window is not incidental, rather it was chosen because Silbeer rectangular re-
gions can be computed efficiently by employing the integredge as in (Viola and
Jones, 2004).

The bottom-up saliency is thus computed as:

Shottom—up = VARG? + AGR? + ABY? (3.5)
ARG = (R*G )y, = (BYG) gurround (3.6)
AGR = (G R )y, = (G R7) gurround 3.7)
ABY = (B*Y )y, = (BYY ) surround (38)

where() indicates the average of the image values over a certair(iaddeated in
the subscripts). The top-down influence on attention ify@nmoment, calculated
in relation to the task of visually searching for a given a@hjeln this situation
a model of the object to search in the scene is given (seec8e8i#) and this
information is used to bias the saliency computation proped In practice, the
top-down saliency map is computed as the Euclidean disiartbe color opponent
space, between each blob’s average color and the averageotthte target:

Stop—down = VARG? + AGR? + ABY? (3.9)
ARG = (RTG7 )y — (RTG7) ppjeet (3.10)
ABY = (BTY ")y = (BTY ) ppicer (3.12)

with a notation similar to the one above. Blobs that are toalk(h/550 of image
area) or too big (1/4 of the image area) are discarded froncdneputation of
salience and will not be considered as possible candidatbs part of objects.
The blob in the center of the image (currently fixated) is dgwred because it
cannot be the target of the next fixation. The total saliea@mnply calculated as
the linear combination of the top-down and bottom-up cbntions:

S = ktd : Stop—down + kbu : Sbottom—up (313)

and normalized in the range 0-255. The center of mass of tis satient blob is
selected for the next saccade.

An example of the intermediate and final maps of bottom-uigised is shown
in Figure 3.6. All the computations are done on log-polarges but input and
output images are shown remapped to cartesian for clarity.

3.3.4 Inhibition of return

In order to avoid being redirected immediately to a previpastended location, a
local inhibition is transiently activated in the saliencypn This is called “inhibi-
tion of return” (IOR) and it has been demonstrated in humaunalipsychophysics.
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Input image

Salience Map

Figure 3.6: Example of model maps.

Posner and Cohen (Posner and Cohen, 1984), for examplend@ated that the
IOR does not seem to work in retinal coordinates but it iseiadtrepresented in
an allocentric reference frame. Together with Klein (K|€i988), they proposed
that the IOR is required to allow an efficient visual searchdtsgouraging shift-
ing the attention toward locations that have already begpeicted. Static scenes,
however, are seldom encountered in real life: objects modeadtagging system”
that merely inhibited environmental locations would be @truseless in any real
situation. Tipper (Tipper, 1991) was among the firsts to destrate that the IOR
could be attached to moving objects, and this finding has begicated and ex-
tended ever since (Abrams and Dobkin, 1994; Gibson and E@88%; Tipper,
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1994). These results bring to the conclusion that in huntamghibition of return
works by anchoring tags to objects as they move; in other svitiid process seems
to be coded in an object-based reference frame.

Our system implements a simple object-based IOR. A list efldist five posi-
tions visited (Wolfe, 2003) is maintained in a head-cemtex@ordinate system and
updated with a FIFO (First In First Out) policy. The positiohthe tagged blob is
stored together with the information about its color. WHesbbot gaze moves —
for example by moving the eyes and/or the head — the systepskeack of the
blobs it has visited. These locations are inhibited onlyéyt show the same color
seen earlier: so in case an inhibited object moves or it cblanges, the location
becomes available for fixation again.

3.4 Learning about objects

State of the art models of visual attention are usually usedoat of filters for
object recognition systems, as g, (Walther and Koch, 2006). In such systems
the attention model and the object recognition one live in thifferent worlds,
that is, they work on two different representations of theuinmages and few or
none of the computation done by the first stage is used by dendeone. Here
we will show an attempt to build an object recognition systamthe same basis
of the visual attention, that is on the concept of proto-cigjeit is clear that the
performances will heavily depend on their definition. Intget3.3.3 we said that
the proto-objects are defined as closed areas of unifornt,doémce the object
representation is a collection of areas of uniform colorse proposed method is
just a proof of concept, for better object recognition systesee Chapter 5.

We assume the robot has already grasped the object; thisapgem because
a collaborative human has given the object to the robot oalse it has au-
tonomously grasped the object (even by chance initialgthBolutions are valid
bootstrapping behaviors for the acquisition of an intenmaldel of the object.
When the robot holds the object it can explore it by moving remalting it. Objects
are represented by the blobs generated by the visual attesytstem and their rela-
tive positions (neighboring relations). The model is cedadtatistically by looking
at the same object for some time from different points of viévhistogram of the
number of times a particular blob is seen is used to estinmatgtobability that
the blob belongs to the grasped object. In the following, we the probabilistic
framework proposed by Schiele and Crowley (Schiele and @&yw996). We
want to calculate the probability of the object O given aaertocal measurement
M . This probabilityP(O|M) can be calculated using Bayes’ formula:

P(M|0)P(0)

POIM) = =55

(3.14)

where: P(O) the a priori probability of the objeaD, P(M) the a priori proba-
bility of the local measurement/, and P(M|O) is the probability of the local
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measuremeni/ when the object O is fixated. In the following experiments we
only carried out a detection experiment for a single objixetre are consequently
only two classes, one representing the object and anotpessenting the back-
ground. Not knowingP(O) and P(—0O) we set them td).5, in this way we do
MAP estimation. Since a single blob is not discriminativeegh, we considered
the probabilities of observing pairs of blobs instead. Togify the probability
estimation (the number of possible combinations) we haesem to observe only
pairs composed of the central blob (taken as reference) madwrrounding blob
as the local measuremehif:

P(M|0O) = P(B;|B. and (B; adjacent B.)) (3.15)

where B; is the i-th blob that surrounds the central blh that belongs to the
objectO. That is, we exploit the fact the robot is fixating the objestl @assume
the central blob will be constant across fixations. The colothe central blob
will be stored and used to bias the visual search (see Segt8oB). The proba-
bilities P(M|-0O) are estimated during the exploration phase by considehiag t
blobs not adjacent to the central blob. The local measurtsreme considered
independent because they refer to different blobs, so werfae the total proba-
bility P(My,---, My|O) in the product of the probabilitie®(1;|O). An object
is considered found’ if the probability?(O|M;, - - -, My ) is greater than a fixed
threshold. When the object is found after visual search, @diground segmen-
tation is attempted: each blob is selected if it is adjacenhé¢ central recognized
blob and if its probability to belong to the object is greatesn0.5. In practice,
we estimate the probability of all blobs adjacent to the i@@iiob to belong to the
object. This procedure, although requiring the “activetipgration” of the robot
(through gazing) is faster than estimating all probabtitfor all possible pairs of
blobs of the fixated object. Estimation of the full joint pediilities would require a
larger training set than the one we were able to use in ourempets. Our exper-
imental scenario required the construction of the objeatiehon the fly with the
shortest possible exploration procedure, which natutaligs to estimating prob-
abilities with few samples. It is likely that many bins in thiestograms, used to
estimate probabilities, are empty. To overcome this prable have used a prob-
ability smoothing method. In particular we employed as z=ont smoothing the
Lidstone’s law of succession:

count(M A O) + A

P(M =
(M]0) count(O) + v

(3.16)

for av valued problem. With\ = 1 and a two valued problemv (= 2), we obtain
the well-known Laplace’s law of succession. Following tlesuits of Kohaviet
al. (Kohaviet al, 1997), we choose = 1/n wheren is equal to the number of
images utilized during the training phase. A first use of ty&em is to create a
visual model of the hand of the robot (a special object). Byimg on this model
the robot can distinguish the grasped object from partseohtind that might still
be visible.
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Figure 3.7: Some example images during exploration pha8g &hd related seg-
mentations (4-6) used to build the statistical model of thgect. Note how the
parts not of the object are not always detected, so theimastid probability to
belong to the object will be low.

Looking for airplane... Saliency map

Is it the airplane? Color segmentation Full segmentation

Figure 3.8: The flow chart of the visual search of an objecat (thy airplane),
recognition and segmentation. The saliency map is gerkuaiag the information
about the color blue of the toy.
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Object Recognition| Number of saccades
rate when recognized

Toy car 94% 3.19 +£2.17

Toy airplane 88% 3.02+2.84

Table 3.1: Performance of the recognition system measuoeu d set of 50 trials.

3.5 Results

The behavior of the robot during the learning phases is shiowigure 3.7: all the
blobs bordering the central one (blue) are used for learthirgrisual appearance
of the object. Two examples of the saliency map are showngargi3.9: in 3.9.4
there is a purely bottom-upcf; = 0, ky, = 1 in Equation (7)) map which is
the result of the processing of the scene in 3.9.1; in 3.%ketlis a purely top-
down (g = 1, ks, = 0) map output after the processing of 3.9.2. In the latter
the robot was instructed to search for the toy airplane. rAdtsaccade on the
object and a successfully recognition the figure-grounansegation is shown in
Figure 3.9.6. The center of mass of the segmented objected iasguide the
grasping action of the robot. Even if the result is not visugkrfect, it has all
the information to guide a manipulation task. In fact thecpptual system is not
intended as stand alone, but strictly coupled with the aatimunterpart; however
the segmented image could be improved with a stage of refimeofi¢he borders.
We have tested the attention system while guiding the retogrand grasping of
objects in the Babybot. In table 3.5, results are shown wisémgua toy car and a
toy airplane as target objects; 50 training/visual seagskisns were performed for
each object. The first column shows the recognition rateséftend the average
number of saccades (meanstandard deviation) it takes the robot to locate the
target in case of successful recognition.

In order to compare the performance of the system with the sththe art
model of Itti, we have done a comparison test of the bottonattgmtion using the
database of images by Itti and Koch (Itti and Koch, 2001b)aofcimages with an
emergency triangle and relative binary segmentation mafstke triangle), which
is freely available on the Interrfet First, the original images and segmentation
masks are cropped to a square and transformed to the logfpaleat (252x152
pixels) (see Figure 3.10.1 and Figure 3.10.2 for the camesemapped images).
To simulate the presence of a static camera, the imagesesented to the system
continuously and, after five “virtual” frames, the bottoip-saliency map is con-
fronted with the mask. 119% of the images a point inside the emergency triangle
is selected as the most salient (see an example in Figure3R3.1t{ds worth noting
that a direct comparison with the results of Itti and Kochcbynting the number
of false detection before the target object is found, is nsisible since after each

lhttp://ilab. usc. edu/ i ngdbs/, last access 19/02/2007.
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Figure 3.9: Example saliency maps. In (4) there is the botiprnsaliency map of
the image (1). In (5) the top-down saliency map of (2), whdarshing for the blue
toy airplane. Image (6) is the figure-ground segmentatich@fmage in (3), after
having recognized the object.

Figure 3.10: Result on a static example image taken from dtebdise by Itti and
Koch. Image (1) is the log-polar input image; image (2) istimary mask used for
to verify the correct localization of the target object anthge (3) is the saliency
map generated by the system.

saccade the log-polar image is heavily deformed.

3.6 Discussion

We have presented the implementation of a visual attenyistes employing both
top-down and bottom-up information. It runs in real time ostandard Pentium
class processor and it is used to control the overt attemtienhanism of a hu-
manoid robot. This eventually gives rise to a different sdgproblems compared
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to the more typical implementations that only generate s=ths on static im-
ages. The algorithm divides the visual scene in color blebsh blob is assigned a
bottom-up saliency value depending on the contrast betweenlor and the color
of the surrounding area. The robot acquires informationutlobjects through
active exploration and uses it in the attention system ap-@dan primer to con-
trol the visual search of that object. The model directs ttengon on the proto-
object’s or segmented object’s center of mass (see SectBod &nd Section 3.5),
similarly to the behavior observed in humans. In fact it hasrbobserved that
the first fixation to a simple shape that appears in the panpleads to land on
its center of gravity (Melcher and Kowler, 1999). When theneaa moves, a new
blob will appear in the image center. This active behaviorifies the segmen-
tation and the recognition task since there will always béa in the center that
will be segmented from the background. A similar approach lbeen taken by
Sun and Fisher (Sun and Fisher, 2003) but the main differattethis work is
that they have assumed that a hierarchical set of percegroapings is provided
to the attention system by some other means and consideledasert attention.
On the other hand, our system has been shown in practice tedbel in guiding
a humanoid robot in selecting objects to be grasped, byreelihie visual search
and recognition task. Moreover the framework introducedereral enough to
work with other additional feature maps, extending the vghied transform to ad-
ditional dimensions in feature space (e.g. local orieotgtithus providing new
ways of both segmenting and recognizing objects. As futuwgkwe want to in-
tegrate the associative fields learnt from natural images gsevious Chapter) to
obtain better proto-objects.
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HERE are many machine learning approaches that aim to reprodhgce t
I performances of humans, for example, in classificationstagkenerally
speaking, considering the supervised learning framewswkje samples
with their labels (the identification of the class to whiclkytbelong) are fed to the
machine as input. After a training on the given examplesntaehine should be
able to indicate the class of an unseen sample, possiblyaitiag also the predic-
tion’s degree of confidence. The training phase often ctsidinding an optimal
separating surface in the input space between the samplédfeoént classes (Duda
et al, 2000). In general, it is possible to separate two cloudsoadtp in infinite
ways and different machine learning algorithms are definedifferent optimality
criterions.

Support Vector Machines (SVMs) are one of these methodtgdan statistical
learning theory. In the SVM framework the classification @md maximizing the
margin separating both classes while minimizing the diasgion errors. One of
their most interesting characteristics is that the sotuéiohieved during training is
sparse This means that a few samples are usually considered “baptdroy the

51
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algorithm (the so-calledupport vectorsand give account of the complexity of the
classification/regression task.

It is natural to ask if humans use a similar internal metholé&on from exam-
ples and to classify new stimuli. At least for face recogmittask, it is possible to
answer to this question, in fact it has been demostratediiragg SVM the distance
of a face to the separating hyperplane is an almost perfedigtor of the human
classification performance (Graf al, 2006). In that study SVM resulted the best
candidates to model human internal classification algmsthwhile the prototype
classifier, as well as its piecewise linear extension seaméed least adapted for
the task. Moreover the prototype classifier behaved in & Ruman-like manner.
Hence it seems that algorithms such as the SVM better cafitarbuman inter-
nal face space. A classification algorithm using the centéhenclasses, such as
for the prototype classifier, seems thus less adapted tolrhodean classification
behavior than a classifier maximizing the margin betweerckasses such as the
SVM.

Even if SVM has been applied to different domains with exadliresults and
it seems to be close to human learning algorithm, it has ted#antage to “grow”
for ever. That is the number of support vectors grows pragaatly with the num-
ber of training samples, thus it is impossible to have adrigl training like in
humans. Due to the big number of support vectors they can lie G slower
of other specialized approaches with similar performariBesges and Scholkopf,
1996). Given that both the training and testing time cricidépend on the number
of support vectors, and it is then very important to keep #@lnin recent literature
this has become a key issue in order to speed up SVMs witheintg@ccuracy.
We propose a new algorithm called Online Independent Supfeator Machines
(OISVM), an incremental way of building the minimal solut& based upon linear
independence in the feature space. Experiments reveauhatachines achieve a
dramatic reduction in the number of support vectors witHosing accuracy, and
mathematically assuring to reach a limit in the number opsupvectors.

This chapter is structured as follows: in Section 4.1 andve 2ntroduce SVM
and their mathematical background, then in Section 4.3tier review of the
relevant literature; in Section 4.4 some considerationthersparseness of SVM
solutions are stated. In Section 4.5 then, we describe OISWI8ection 4.6 we
show some experimental results, and lastly in Section 4¢lusions are drawn.

4.1 Support Vector Machines

In a number of research fields as diverse as, e.g., biointarsalata mining and
robotics, it is crucial to be able to reconstruct an unknowumcfion given a finite
set of samples and the values the function assigns themn @iievery general
problem, statistical learning theory (Vapnik, 1998; Pagghd Smale, 2003) can
tell us how close our approximation is to the original fuantiand give us an indi-
cation of how well it will work. Usually, a set of samples oktlanknown function
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is available, and then a machine learning algorithm is eyguldo interpolate the
data.

Introduced in the early 90s by Boser, Guyon and Vapnik (Besei., 1992),
Support Vector Machind§VMs) are a class of machine learning algorithms deeply
rooted in Statistical Learning Theory (Vapnik, 1998), atdeclassify data taken
from an unknown probability distribution, given a set ofiiag examples. As
opposed to analogous methods such as, e.g., artificial Ineetaorks, they have
the main advantages that) training is guaranteed to end up in a global minimum,
(b) their generalization power is theoretically well foundéd) they can easily
work with highly dimensional, non-linear data, afd) the solution achieved is
sparse. Due to these good properties, they have been nawsiely used in, e.g.,
speech recognition, object classification and functionr@gmation (Cristianini
and Shawe-Taylor, 2000). On the other hand, one of their ch@wbacks is their
alleged inability to cope with large datasets (Keeehal., 2006).

4.1.1 The importance of online learning

Yet, in most real-life applications, datasetee large, for example when online
learning must be performed. Online learning is a scenanwhich training data is
provided one example at a time, as opposed to the batch madeich all exam-
ples are available at once (see (Laskdwal, 2006) and citations therein). In fact,
the classical approach to machine learning is to use all\uhi#able data at once,
train on this data and then use the trained machine. Noteafteatthe predictor
is obtained, it stays fixed and is not updated as new dataeartiv contrast, an
on-line prediction algorithm can take advantage of the flaat the training set is
augmented one sample at a time and continues to update araverthe model as
more data arrive. Hence, in the case of, e.g., non-stayiafatr, online algorithms
will generally perform better since ambiguous informat{@ae., whose distribu-
tion varies over time) is present, and couldn’t possiblydieh into account by the
batch algorithm. Online algorithms allow to incorporateliéidnal training data,
when it is available, without re-training from scratch. Mover using online learn-
ing it is possible to exploit to possibility of active leangi algorithmsge.g (Li and
Sethi, 2006), that actively select the new data point thithgiadded to the train-
ing set. Active learning algorithm are known to require legsiples to converge to
a good solution (Dudat al., 2000). This last topic is very interesting if seen in the
light of the tight coupling between action and perceptiae(Section ).

Moreover in an online setting there is no guarantee that tve df data will
ever cease; therefore, applying SVMs here looks appealing buheesl a way
to cope with large datasets. One of the keys to the problemsée lie in the
sparseness of their solution. That an SVM solutiosparsemeans that usually
just a few samples account for its complexity; in fact, SVMa be seen as a way
of compressing data by selecting “the most important” sas@upport vectors
SV) among those in the training set. Keeping the number of $¥all without
losing accuracy is therefore a major challenge. This is emere relevant since
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a recent result (Steinwart, 2003) shows that this numbe~gyindefinitely with
the number of training samples, and the testing time — a akissue in online
learning, since one might want to test in real time — crugidipends on it.

Following related literature, we propose a method of seigdupport vectors
based uporiinear independence in the feature spaseipport vectors which are
linearly dependent on already stored ones are rejecteda anaart, incremental
minimization algorithm is employed to find the new minimuntloé cost function.
Our experiments indicate that SVMs employing this ideat weawill call Online
Independent Support Vector Maching3lSVMs), do not grow linearly with the
training set but reach a limit size and then stop growingjle keeping the full
accuracy of standard SVMs the case of finite-dimensional feature spaces and
with a negligible loss in accuracy in the infinite-dimensiboase.

4.2 Background Mathematics

Assume{x;, y;}i_;, with x; € R™ andy; € {—1,1}, is a set of samples drawn
from an unknown probability distribution; we want to find an@iion f(x) such
that sgn(f(x)) best determines the category of any future sampléAssuming
the data are linearly separable, according to the stanggbach, aseparating
hyperplanen R™ is sought for:

fx)=w-x+1b (4.1)
with w € R™ andb € R. In this case, the hyperplane must respect the constraints
yi(w-x; +b) —1>0,foralli = 1,...,1 (from now on, this will be implicit

whenever a subscriptappears free in a formula). In the general, more likely and
realistic case in which the data are not linearly separalte ntroducel slack
variablest; and rather require that(w -x; +b) —1+¢; > 0, with &; > 0. In order

to find such a hyperplane, we wish to maximize the hyperptadistance from
both groups of samplesn@argin), minimizing at the same time the values of the
slack variables. The margin is easily determined tq‘%ﬁ:, so we are left with the
problem of minimizing||w|| and¢; subject to the above constraints. The problem
is then usually solved minimizing the following expression

[
min <|IW|I2 +CZ£§’> (4.2)

=1
subject to the constraints

yi(W - x; +b)
&i

whereC' € R is an error penalty coefficient andis usually1 or 2 (Cristianini
and Shawe-Taylor, 2000). Since both the problem and thereams are convex,

1-¢& (4.3)
0

AVARAY
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(4.2) and (4.3) can be compactly expressed in Lagrangian By introducingl
pairs of coefficientsy;, 1; and then minimizing the objective function

l

1 l
LP:§|\W\|2 Zaz (i(w-x;+b) =14+ &) +CY &= "1l (4.4)

i=1 i=1

subject to the constraints that, ;1; > 0. Using the KKT conditions (Cristianini
and Shawe-Taylor, 2000), that givesnecessary and sufficienbnditions forw, b
andq; to be be a solution, we obtain for the case 1

aLp

l
=W — Z oyix; = 0=w= Z 0GYiX; (4.5)
i=1
9 C—a;j—pu; = 0 (4.6)
!
aLP Z i = 0 @.7)
a; (yi(w - x; + b) -1 + &) = 0 (4.8)
{i(ai - C) =0 (49)

and forp = 2 the condition (4.9) disappears while condition (4.6) beesm

OLp
0&;
Substituting Equation (4.5) in (4.1), gives

l
=1

An example of the optimal separating hyperplane for a sir@ptémensional
problem is shown in Figure 4.1.

Notice that, in the last Equation and in Equation (4.4),stleeonly appear in
the form of inner products; in order to boost the expressowar of SVMs then,
the x;s are usually mapped to a highly, possibly infinite-dimenaicspace (the
feature spacevia a non-linear mappin@(x); the core of the SVM becomes then
the so-calledkernel functionk” such thati (x;,x2) = ®(x1) - (x2). This idea
is calledkernel trickand is standard in SVM literature; it avoids the necessity of
explicitly knowing ® (see section B in the Appendix for more details). Equation
(4.11) then becomes

Zalyl (x,%;) +b (4.12)
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Figure 4.1: Optimal linear separating hyperplane (in gregmorresponds to the
implicit curve defined byf (x) = 0, while the blue and red line corresponds to the
curves defined by (x) = 1 and f(x) = —1. The support vectors are marked with
an ‘X’. The distance between the red and blue line is the manfgotice how the
misclassified red sample is a support vector.

An example of the optimal separating hyperplane for the szidienensional
problem of Figure 4.1 is shown in Figure 4.2.

After training, that is after the minimization dfp, some of they;s (actually
most of them in many practical applications) are zero; thosefor which this
doesnot hold are somehow crucial to the solution and are cadigaport vectors
hence the name of the approach. This phenomenon is knogpeasenessf the
solution, meaning that only a subset of the training datssisally really needed
to build it. This is a quick account of SVMs — the interestedder is referred
to (Burges, 1998) for a tutorial, and to (Cristianini and B&araylor, 2000) for a
comprehensive introduction to the subject.

4.3 Previous work

An exact simplification of the decision function (4.12) isposed in (Downst al,,
2001), based upon linear independence of the SVs in theréegpace, performed
after the training is done. In particular they observed that if ppgut vector is
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Figure 4.2: Optimal separating hyperplane using a Gaugeiarel (in green). The
support vectors are marked with an ‘x’. The use of a non-lifeanel makes
possible to separate the two classes without misclassHiegles.

dependent on the other support vectors in the feature space,

l
Ixy : K(x,x5) = Z ¢ K (x,x%;) (4.13)
i=1,i#k

then the decision function (4.12) found after training camlritten as

l l

f)= Y awiK(xxi) +oryr Y, GK(xx)+0b (4.14)
i=1,itk i=1,itk

Hence it is possible to remove the dependent support vegtoupdate the other
coefficients, and obtain a new smaller representation al¢kesion function, with-
out changing it in any way. Notice that the new coefficientyymat respect the
KKT constraints.

This can be seen as a simple consequence of the fact thag, fédture space
has dimensiom, at mostn + 1 SVs are required to build the solution (Pontil and
Verri, 1998). The idea is useful in reducing the testing tiimet it is unfeasible in
an online setting, since the simplification should be pentt every time a new
sample is acquired. The same consideration apmigs,to the after-training sim-
plification proposed in (Nguyen and Ho, 2005). On the othedhdiscarding from
the sample set the linearly dependent SVs will result in gsr@pmation; other
methods to heuristically select a subset of the supporbvetiave been proposed,
e.g, in (Lee and Mangasarian, 2001; Keerhal., 2006; Wuet al,, 2006). Besides
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this, these methods require the knowledge of the full trgjrsiet, and therefore are
not suited for online learning.

In order to keep the solution compact without losing accyr#éite key is to
build a low-rank approssimation of the kernel matrix. Uresysed rank reduction
methods have been proposed) (Baudat and Anouar, 2003), as well as supervised
onese.g (Bach and Jordan, 2005), but no application of these idegesaas so far,
to the best of our knowledge, in online settings.

A different method has been proposed by Collokatral. (Collobertet al.,
2006): they have used a non-convex formulation of the legrproblem where
training errors are no longer support vectors thus draml$ticeducing the growth
rate of the support vectors with the training samples. Aryinghe paper it is not
clear if the number of support vectors reaches a limit onafiit grow indefenitely,
even if less than with standard SVM.

The exact solution to online SVM learning was given by Cauvezghs and
Poggio in 2000 (Cauwenberghs and Poggio, 2000), but thedrliés received little
attention in the community so far (Lasketal., 2006).

4.4 Sparseness of the solution

The time required by an SVM to train and predict is, in turnbicuand linear in
the number of support vectors (Keerti al, 2006). Moreover, a recent result
by Steinwart (Steinwart, 2003) indicates that the numbeugport vectors;, in-
creases linearly with the numbgof training samples (given a kernel functién,

r tends to2 Bk [, whereBg is the smallest classification error achievable with the
kernel K). Therefore, although support vectors somehow code allnfoema-
tion required by the solution, their number grows indefigiges the input space is
sampled. It is then highly desirable that the number of stpgectors is kept as
small as possible, without losing accuracy. Surprisinglgn if the machine keeps
growing, usually the generalization power reaches a pledtar a while.

In general, the possibility to obtain an alternative, eglaat, and possibly
more compact representation of the SVM solution followsrirthe fact that the
solution of an SVM problem is not unique if the kernel matfx wherekK;; =
K (x;,x;), does not have full rank, which is equivalent to some of thepsu
vectors being linearly dependent on the othiershe feature spaceln fact, as
pointed out in (Burges, 1998), given a vecwrsolution of Equation (4.2) and
(4.3), conside® that belongs to the null space éf, orthogonal to the vector all
of whose components ateand satisfingzﬁz1 0;; = 0. If 0 < oy + §; < C then
a + 4 is also a solution. However it is possible to show that thesud possible
solutions to an SVM problem is even larger. In fact using tleeiRsenter Theorem
(Kimeldorf and Wahba, 1970; Cox and O’Sullivan, 1990), Bara(4.5) can be
written as follows:
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l
w=> fix (4.15)
=1

for a set of generic coefficient$. Substituting Equation (4.15) in (4.4) and using
the kernel trick, we get

l l l
1
=Y (5@' - ai%) BiKij — > ou(by; — 1+ &) + > _(C — ;)P (4.16)
ij i=1 i=1
Now, enforcing the KKT conditions othis, more general version of the prob-
lem, one obtains that

oL,
= Z(ﬁz —ayi)Kij =0 (4.17)

0% I

Clearly, in order for (4.17) to hold, the vector whose comgrus are3; — «;y;

must be in the null space &f. Now if K has full rank, the null space only consists
of the null vector, and thereforg = «a;y; (this particular result already appears in
(Keerthiet al,, 2006)). Otherwise, there are infinite solutions to the S\fbbiem,
and theg;s are not constrained at all: this agrees with Doenal’s method and
generalizes it.

4.5 Online Independent Support Vector Classification

To avoid simplifying the solution each time a new sample guared, we need a
way to use independent SVs only. Hence, the main idea is touide the concept
of “basis” vectors, that is the vectaxs that we constrain to be allowed to havg;a
different from zero in (4.15), from the samples used to fintitbe actual values of
theseg;s. If the selected basis vectors span the same subspacendslbesample
set, the solution found will be equivalent — that is, we wibthose any precision.

Following Keerthiet al. (Keerthiet al, 2006) then, and inspired by the above
considerations, we explicitly choose a subset of the sumgators to form a basis
for the solution. In that paper, two heuristics are propdsesklect an appropriate
subset of support vectors; we hereby proptsenline select the set of support
vectors that are linearly independent in the feature spawtta build the solution
only using themThe solution found this way ihie samas if using all the training
samples as basis set, that is the classical SVM formulatida.approximation
whatsoever is involved, unless one gives it up in order taiabtven less support
vectors. See below, especially Section 4.6, for a discnsmichis point. Moreover
the training procedure is incrementafter each new sample the coefficients are
updated without recalculating the entire solution frorasa.

We assume that a set bfraining samples is available and that the machine has
been trained on them. The indexes of the vectors in the dubeesis are denoted



60 CHAPTER 4. LEARNING AND SUPPORT VECTOR MACHINES

by B, andx;; denotes the new sample under judgement. Since the procsdure
incremental, we also assume that the vectors indexdtldrg linearly independent

in the feature space, that is, th&iz has full rank. The algorithm can then be
summed up as follows:

e check whether;, is linearly independent from the basis in the feature
space; if itis, add it td3; otherwise, leavés unchanged.

e incrementally re-train the machine.

In the following, the notatioM;; andv;, whereA is a matrix,v is a vector
andl,J C N denote in turn the sub-matrix and the sub-vector obtaineih fA
andv by taking the indexes i and.J. The next two Subsections detail the linear
independence test and the training method.

4.5.1 Linearindependence

In general, checking linear independence in a matrix is daaesome decompo-
sition, or by looking at the eigenvalues of the matrix; butehee want to check
whether asinglevector is linearly independent from a set of vectors whichair
ready known to be independent. Inspired by the definitiorinafdr independence
(Engelet al,, 2002), we check how well the vector can be approximated eal
combination of the vectors in the set. lgte R with j € B; then let

2

> dib(x;) — p(xir1) (4.18)

A = mdin
jeB

If A > 0thenx;, is linearly independent with respect to the basis, &ndl
is added taB. In practice, we check whethéx < n wheren > 0 is a tolerance
factor, and we expect that larger valuesnolead to worse accuracy, but also to
smaller bases. As a matter of factyifs set at machine precision then OISVMs
retain the exact accuracy of SVMs. Notice also that if theéuleaspace has finite
dimensionn, then no more than linearly independent vectors can be found, and
B will never contain more than vectors.

Expanding equation (4.18) we get

A = min ( D didip(xj) - d(xi) — 2 did(x5) - d(x111) + d(x111) - B(x41)
i,jeB jeB
(4.19)
that is, applying the kernel trick,

A = min (dTKBBd —2dTk + K(x41, xm)) (4.20)



4.5. ONLINE INDEPENDENT SUPPORT VECTOR CLASSIFICATION 61

wherek; = K(x;,x;+1) wWith ¢ € B. Itis apparent from Equation (4.20) that the
range ofn is related to the kernel used; for example for Gaussian lkehe< 1
and hence good values gfrange in{0, 1}.

Solving (4.20), that is, applying the extremum conditionthwespect tal, we
obtain

d = Kggk (4.21)

and, by replacing (4.21) in (4.20) once,

A= K(x1,%41) —k'd (4.22)

In general it is possible to prove that, given> 0, the number of basis vectors
will reach a finite number and then will stop growing: this isvious for finite
dimensional feature space but the same result holds alsoffoite dimensional
spaces (Engadt al., 2004).

Note thatB can be safely inverted since, by incremental constructios full-
rank. An efficient way to do it, exploiting the incrementglitf the approach, is
that of updating it recursively:

0
-1 : 1 E -
Kzl « Ky s _dl ] (a7 -1 ] (4.23)

whered andA are already evaluated during the test. This method matbleesne
used in Cauwenberghs and Poggio’s incremental algorithau@nberghs and
Poggio, 2000), in turn similar to on-line recursive estimatof the covariance of
sparsified Gaussian processes (Csaté and Opper, 2001 ksTtoahis incremental
evaluation, the time complexity of the linear independediseck isO(|B|?), as
one can easily see from Equation (4.21).

To gain other insights to what is going on using this activersification method
consider the case in which a Gaussian kernel is used. Corthieleexpression
(4.18) withB = {i}, that is, as the-th element is the only one in the base

Ai = min ||did(xi) — d(xie1)] (4.24)

ObviouslyA; > A, Vi € B, so if A; < n then we have that\ < n and the
samplel + 1 will not be added to the basis set. Remembering Equatiod9)4.
(4.22), last equation can be expanded in

K(Xlﬂ, Xz‘)2

4.25
K(x;,x%;) (4.23)

A = K(xp41,X141) —
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Support Vectors selected by a standard SVM software
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Figure 4.3: Classification problefaurclass The support vectors selected by the a
standard SVM with gaussian kernel are circled.

If we consider the case in which the kernel is Gaussian we e (x, x) =
1, ¥x and we can write

A <n & 1-K(xu1,x)*<n
K(xp41,%;) > /1—1n

i3

exp (=[x = xil”) > VI =7

i3

i3

1
i1 — x4])* < —ﬁog(l —1) (4.26)

Hence if at least one point; of the basis set is too near to the new poipt;,
it will be not added to the basis set. In other words when weauGaussian kernel,
fixing a certain value of implies imposing a minimum distance between the points
selected as basis vectors. An example of this is shown inr&sg#.3 and 4.4. In
this casey is equal to5 andn is 0.4, hence the minimum squared distance from
Equation (4.26) isz 0.0511, while the minumum distance for the support vectors
selected iz 0.0639.

4.5.2 Training the machine

The training method largely follows Keertet al. (Keerthi and DeCoste, 2005;
Keerthi et al, 2006), that we have adapted for online training. The allori
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Support Vectors selected by OISVM
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Figure 4.4. Same problem of the figure 4.3. The circled sasnafte the ones
selected by our sparsification procedure as basis vectbis pbssible to see the
effect of the minimal distance imposed by the constant

directly minimizes problem (4.2) as opposed to the standarglof minimizing its
dual Lagrangian form, allowing to select explicitly the isagectors to use. Let

D C {1,...,1}, settingp = 2 in (4.2) we can write it as an unconstrained problem
1 1<
Hgn <§,8TKDD,3 + 50; maz (0,1 — yiKLD,B)Q) (4.27)

whereg is the vector of the Lagrangian coefficients involvedfix), analogously
to theq;s in the original formulation. For convenience the bias tbaa not been
included, but the analysis presented in this section canniyel\s extended to in-
clude it (see chapter A in the Appendix). Then, we explicé#tD = B, assuring
thus that the solution to the problem is unique, sihGg; is full rank by construc-
tion. Newton’s method as modified by Keertfial. (Keerthi and DeCoste, 2005;
Keerthiet al,, 2006) can then be used to solve (4.27) after each new sakivplen
the new sample;; is received the method goes as follows:

1. use the current value @f as starting vector;

2. letojy1 = Ki11.88, if 1 —y;41041 > 0 stop: the current solution is already
optimal;
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3. letZ = {i : 1—y;0; > 0} whereo; = K; g3 is the output of the-th training
sample;

4. updated with a Newton step:3 — YP~'g — 3 whereP = Kpp +
CKpr K}y andg = KppB3 — CKpz (yz — oz);

5. letz"" = {i : 1 — y,0; > 0} whereo; are ricalculated using ne@. If
7™ is equal taZ stop; otherwis€ = Z™¢* and go to step 4.

In Step4 above,y is set to one, without any convergence problem. With this
choice the update g8 is CP~'Kzryr — 8™, In order to speed up the algo-
rithm, we maintain an updated Cholesky decompositioR aihd a vector with the
productKzry7: every time a sample enters or exits from the&#iese two quan-
tities are updated. It turns out that the algorithm conveigevery few iterations,
usually0 to 2; the time complexity of the re-training stepG¥|5|l), as well as its
space complexity; hence, keepiigsmall will speed up the training time as well
as the testing time.

4.6 Experimental Results

In order to test the effectiveness of OISVMs with respectttmdard SVMs, we
have chosen a set of databases commonly used in the macrini@atecommunity
and have then run comparative tests on them. In order to obeckredictions
about the linear independence tolerance consigniye have chosen finite- and
infinite-dimensional kernels, namely polynomial kerneigiegreel (linear) and
cubic, and Gaussian kernel. We expect, in the finite-dinoeradicasey) to be
essentially irrelevant, and the machine to stop growingeamcertain number of
li. support vectors have been found. This is exactly dubedeature space being
finite-dimensional, and therefore only a finite number ofddctors can be found.
In the case of the infinite-dimensional kernel, we have ren@hSVM with n at
different values, expecting, as foretold, bigger valueg ¢d cause the accuracy
to degrade, but also the size of the machine to remain snthber with smaller
values.

OISVM is implemented in Matlab hence CPU times cannot be.used

For each benchmark, we display the mean number of retaingzbguwectors
on 10 random75%/25% train/test runs. We compare against LIBSVM (Chang
and Lin, 2001) (straight line), a standard SVM implementati The coefficients
~ andC have been found by cross-validation and employed in botlfSMB and
OISVMs. For the sake of comparison, LIBSVM has been also fremtlas sug-
gested by its Authors in order to set= 2 in equation (4.2), therefore in the fol-
lowing it is called LIBSVM-2. In the case of finite-dimensmlrkernels, we only
show the performance of LIBSVM-2 against OISVMs witlat machine precision;

thttp://www. csie.ntu. edu. tw ~cjlin/libsvntool s/datasets, last access
19/02/2007.
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Benchmark| Classification % SVs % SVs
name rate loss vs. LIBSVM-2 | vs. LIBSVM
Breast 0.47 £0.82 10.2 £ 0.87 22.1 4+ 1.77
Diabetes —-0.52+2.1 40.2 +£2.1 55.2 +2.73
German 0.40 £1.15 6.1 +£0.23 9.24+0.35
Heart —0.454+1.01 10.3 £0.56 15.54+0.94

65

Table 4.1: Comparison of OISVM and LIBSVM on standard benatis, solved
using a Gaussian kernel. For each benchmark, we report fiieeetice in classi-
fication rate with respect to LIBSVM-2 and the percentagehefiumber of SVs
with respect to LIBSVM and LIBSVM-2. The values gffor each dataset have
been chosen in order not to loose more th&di¥ accuracy.

—— 0OISVM
LIBSVM-2
400 | — — — LIBSVM

Number of Support Vectors

1 1 1 |
200 300 400 500 600
Number of samples

Figure 4.5: Comparison of OISVM and LIBSVM on tRBabetesbenchmark, it is
solved using a homogeneous polynomial kernel with degree

in the case of the infinite-dimensional kernel, we show oneefor a value ofy
that guarantees a good trade-off between performance ansksess.

Consider Figure 4.5: when all samples have been loaded MBS has about
427 SVs, and LIBSVM abou290, confirming the fact that the norm-2 formulation
is known to be less sparse of the norm-1. The kernel used imadneous poly-
nomial with degree3 and the benchmark hasfeatures, therefore the dimension
of the feature space iégo) = 120 (see,e.g, (Burges, 1998)); and, as expected,
OISVM stops acquiring new SVs when there are exat®§, although it loads a
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Figure 4.6: Comparison of OISVM and LIBSVM on tiAelult7 benchmark, it is
solved using a Gaussian kernel.

few more before reaching the limit, with respect to the otigproaches. The accu-
racy (not displayed) is exactly the same of LIBSVM-2, beeatn® two solutions
found are completely equivalent. Again, notice that, aftaving acquired’20
SVs, OISVM will never acquire any more ever, while keeping fame accuracy,
whereas the LIBSVMs do, as theoretically proved in (Steimyz003).

Consider now Figure 4.6: the kernel used is Gaussian andrtiendion of its
feature space is infinite. The benchmark is relevantly 1§tg@00 samples) and
complex (23 features). Nevertheless, withas small a%).1, at the end OISVM
has less thaf% of the SVs used by LIBSVM-2 and less tha% with respect to
LIBSVM. The accuracy i$.063% + 0.14 worse than that of LIBSVM-2.

Lastly, consider Table 4.1, which shows the very same datampact form
for 4 more standard databases. OISVM attains a number of SVs vidiabout
6% to slightly more tharb5% of LIBSVM, whereas the accuracy is basically the
same, being slightly better than LIBSVM in two casBsapetes this time solved
via a Gaussian kernel, amteart).

As a final remark, notice that in general the number of supgextors chosen
by OISVMs could be higher than that obtained by SVMs. An exangs this
phenomenon is visible in Figure 4.5, between x-valuasd150.
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4.7 Discussion

A new method is presented to keep Support Vector Machineb, sraltied OISVMs
(Online Independent Support Vector Machines). OISVMsawaserting into their
kernel matrix support vectors which are linearly dependéiprevious ones in the
feature space — in other words, the kernel matrix is always &efull rank. The
primal SVM problem is then solved via an incremental aldgwnitwhich benefits
of the small size of the kernel matrix.

Experimental results show thét) in the case of finite-dimensional kernels,
OISV Ms attain the theoretical limit of linearly independenpport vectors allowed
by the feature spac¢iji) in the case of infinite-dimensional kernels, they dramati-
cally reduce the number support vectors at the price of dagiblgl degradation in
the accuracy. Notice that, in this latter case also, theybeansed to obtain full
precision, choosing the tolerance threshold to be equabithine precision.
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dominantly by the idea of the create a faithful descriptidrthe world,

reconstructing the 3-D structure of objects as proposed hyr NMarr,
1982). The difficulties to detect simple characteristicsniages like edges and
vertices have challenged these early models, favoringabent idea of recogni-
tion systems that make use of viewpoint-dependent degorgpt Moreover there
is psychophysical evidence supporting these approaclaesgiid Bulthoff, 1998).
In a view-based approach, each object is represented by bamwhimages taken
from different viewpoints, then these model images are @ewbto the test im-
ages. However objects can appear in images in differentipos; orientations and
scales. Hence to reliably recognize objects, we shouldedtrom the images fea-
tures that are independent from the translation, rotatimhszale transformations.
Such an object recognition system should be used after al\atiention system,
that would select a region of the image at once (Walther arechK2006). Similar
considerations can be done for a categorization system.

The reminder of the chapter is organized as follows: sediidncontains a
description of the two state-of-the-art models for objectognition: the “standard
model” and the SIFT model. Section 5.2 describes the exgertiah results of a
comparison between the two methods. In section 5.3 we shewttnamprove
the performance of the standard model and finally in secttodsve draw some

EARLY approaches to object recognition in static images werednflad pre-
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conclusions.

5.1 Two view-based models for object recognition

In the following two view-based state of the art models fojecbrecognition and
categorization are compared: the so called “standard rhaddlthe SIFT.

5.1.1 Standard Model

The so called “standard model” of object recognition hasipgeposed by (Riesen-
huber and Poggio, 1999) and then improved by (Setral, 2005). It can be
thought as the natural evolution of previous hierarchicatlet for object recogni-
tion (Fukushima, 1980; Lecuet al, 1998). In the model there are two types of
layers,cells that are alternated in the hierarchy. The “simple cellgtamt local
features from the previous level and are tuned to specifiouiti the “complex
cells” pool a number of specific simple cells, to have a locairf of invariance,
while simultaneously maintaining specificity to the stimuh particular the com-
plex cells use a MAX operation between the inputs, that séerhave a biolog-
ical justification (Lamplet al, 2004). In the model two couple of layers of sim-
ple/complex cells are implemented, for a total of 4 layeifse Tirst layer of simple
cells (S1) extracts local orientations with a set of Gabterfil with different scales
and orientations tuning. (Gabor filters, which are the pobad a cosine grating
and a 2D Gaussian envelope, has been used to approximaezéptive field sen-
sitivity profile of orientation-selective neurons in prirgasisual cortex (Leventhal,
1991).) The layer of complex cells (C1) pools over a locaghborhood of space
and scale the outputs of the simple cells of the previousr.layée filters used
in layer S2, instead, are learnt directly from the imagesiganobmber of random
patches of the output of C1, of different sizes, are takerleathie system “sees”
different natural images. Each of those patches is set astatyye of the S2 unit
which are radial basis function (RBF) units. That is the autyf i-th unit S2

2
exp <_M> 5.1)
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at all the spatial positionX. The last layer of complex cells, C2, pools the max-
ima over all the scales and locations. Hence the output o$yhtem is a feature
vector of size equal to the number of S2 detectors, whichdspendent of the
size of the input image. Hence the output of the system, itirthie of the digital
implementation, is not carrying any information about tbals or the location of a
certain local image feature. The system is purely feed-dodwwithout any feed-
back connections (Behnke, 2003), and consequently it ysappropriate to model
fast decisions of object presence or absence (Huiad, 2005). We have used the
Matlab source code of the model that is available of the welithe authors the

thtt p://chbcl.mt.edul/ soft war e- dat aset s, last access 19/02/2007.
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only modification that we have made is to séh Equation (5.1) dependent on the
size of the patches, as proposed in (Mutch and Lowe, 2006ause it improves
the performances at no additional computational cost. Atethd of the model
there is an SVM trained to classify the extracted featurexbjact classes.

Beside the SVM classifier, the other non-fixed part of theesystire the filters
of the S2 layer, that can be thought as adapting to the imagtsties. In fact uni-
formly sampling a stochastic variable, we obtain anothedoan variable that has
more or less the same probability density function of thgionél one. In section
5.3 we will discuss with greater details about the disachges of this method.
Note that it is possible to learn class specific detectoet, dhe expected to have
better performances on a single class, or universal desedtmat are expected to
work equally well on all the possible image classificatiosk&a In the latter case a
set of generic natural images is used to learn the filtershdrfdllowing tests we
have used the set of universal features available on theiteatishe Authors.

5.1.2 SIFT

The Space Invariant Feature Transform (SIFT) (Lowe, 1989¥ascriptors of sta-
ble image patches (keypoints) designed to be invariantdal ismage transforma-
tions as rotations, scale warpings, illumination changekreise. Here an object,
like in the standard model, is coded as a combination of Skbifitp. The SIFTs

have been shown to excel in the re-detection of a previoesn sbject under new
image transformations.

Usually single SIFTs are matched one to the other and the ofdke observed
object is decided with the majority of the votes. Insteadun@mparison we have
decided to use an SVM classifier, like in the standard modelthis way, it is
possible to have a fair comparison with the standard modil @rthe same time,
to enhance the generalization power of the SIFT. The inptite VM are sets of
SIFT point, each being a vector &'?® (the standard SIFT descriptor). Given that
for each image a different number of SIFT can be found, eachsseciated with
each image will have a variable number of points. Hence aaldezrnel must be
used to calculate the scalar product between sets, and wehasen the Matching
Kernel proposed by Wallraveet al. (Wallravenet al,, 2003) (see also section B.2
in the Appendix). This kernel has been designed to matcH $etitures of variable
dimensions, in particular it has been used to match SIFTifest and it can also
take into account the spatial information of each points. N&fe chosen not to
use this possibility in order to give to the classifier the sagpe of information
produced by the standard model. Note that no adaptationsater is the model;
even if prior information about the images has been impficised in the design
of the optimal way to detect the keypoints and to code them.

The original software made by Lowe has been ésed

2http://ww. cs. ubc. ca/ ~| owe/ keypoi nt s/, last access 19/02/2007.
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=

Figure 5.1: Sample images from the Caltech-101 databasthelfirst row they
are taken, respectively from the classplanes Car side Faces LeavesandMo-
torbikes this subset has been used to compare the standard moddieaSdHT.
In the second row there are example images from the otheyarés Elephant
GramophongUmbrella Yin Yangandlbis). Note that all the images are of differ-
ent sizes, but in the test they have been normalized to hatleeatame height of
140 pixels, and the width has been rescaled proportionally.

5.2 Results on a categorization task

The Caltech datasets, containing 101 objects plus a baskdrcategory (used as
the negative set) and availabletdtt p: / / www. vi si on. cal t ech. edu®, has
been used for our tests. These datasets contain the taijget eimbedded in a
large amount of clutter and the challenge is to learn fronegmented images and
discover the target object class automatically. We hateddsoth approaches on a
subset of the 101-object datasets plus an additional I¢abdse as in (Seret al,,
2005) for a total of five datasets. Example images of thesesdtt are shown in
Figure 5.1.

The system was trained witlb examples from the each object class. From
the remaining images, we extractdd images for each category to test the sys-
tem’s performance, averaging overandom splits. All images were normalized
to 140 pixels in height (width was rescaled accordingly so thatithage aspect
ratio was preserved) and converted to gray values befoepsing like in (Serre
et al, 2005); this was done also for the images used with the St-iave a fair
comparison.

The parameters of the Matching Kernel and @hefor the classification with
SIFT have been found with 5 random splits of 15/50 imagesr&ining/testing,
for each category. Instead for the standard model a lined B& been used, with
a value ofC equal tol, as in (Serreet al, 2005). In fact the dimensionality of the
input space is big enough compared to the number of trairangptes to have a
separable problem, so the valugdfs not critical. The paradigm of “one-vs-all” is

3Last access 19/02/2007.
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Database | Classification ratg Classification rate
name SIFT standard model
Airplane 92.00 + 3.16 87.24+5.40
Car side 88.80 = 4.15 94.80 £ 3.35
Faces 88.40 + 3.29 94.80 + 3.03
Leaves 90.80 £ 3.35 88.80 £ 6.72
Motorbikes 88.40 £ 7.27 92.00 £ 5.48
Overall 89.68 + 2.66 91.52 +1.61
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Table 5.1: Comparison of SIFT and standard model classditaerformances on
a subset on the 101-Caltech database. The mean classificatés+ standard
deviation are shown for each datasets,5omndom splitsl5/50 of training/test
images.

used for the multi-class classification. The performans#sgus different random
splits is summarized in table 5.2.

It is interesting to see that there is not a clear winner beibe two methods.
In fact the standard deviation are too high to say that there lieal difference
between the performances. Itis also interesting to notéhkawo methods appear
complementary in their performances: it seems that easseist for one method
are difficult for the other and vice versa. These results m@pposition with the
result of (Serreet al,, 2005), that claim that the C2 features are better than SIFT
features in the same classification task. In our opinion taardifference is that
they do not use the right classifier for the SITFs. Indeed fidssible to obtain
similar results using an appropriate classifier as the S\ thie Matching Kernel.
These findings make us believe that the classifier is the nrg&tat part of an
object recognition system, given two equally good featuteaetion systems. As
a further example of this claim, (Mutch and Lowe, 2006) hamdnstrated that it
is possible to gain more tha&¥% of classification performance with the supervised
feature selection method in (Mladéret al., 2004).

5.3 Adapting the features through selection

In the spirit of adapting the feature extraction system ®ithage statistics, we
want to address the possibility to select only a subset ofdhtires extracted by
the system. As in the learning of association fields (see teh&) we are inter-
ested in using an unsupervised strategy, at least to setetis®t of the available
information, that could then refined using external (suised) knowledge in later
stages.
Given than the test time required to test a new point is ptaptal to the

number of features that must be calculated on each imaga;irgpthe number of
features will proportionally reduce the testing time. Oa ¢ither hand it is possible
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that removing some of the features we improve also the Gileasbn performance.
In fact in the machine learning literature it is well knowratha classifier with a
small number of informative features can work better thataasifier with tons
of redundant or useless features. In general given a certadsification task it
is possible to select some of the features that have moremiatmon and discard
redundant or even useless ones (Mladatial, 2004). Considering the case of
online learning, it is not easy to select the features kngviire labels, that is in
a supervised way, because the samples are available onbt tinge. An optimal
feature selection could be done only after having acquiredigh samples, but in
this way the online behaviour would be disrupted.

In the following we introduce a simple algorithm to selectuset of feature
in unsupervised way. The results will show that the subsdéxted will be always
better than a random selection.

5.3.1 Unsupervised feature selection for SVM

Consider the case of alinear SVM or in general any learniggrahm that depends
on the scalar products in the input space. Let the case inhvithio features are
identical, in this case we could remove one of the two andiptuithe other by2:

Ip,q:a, =a,va € R" = (5.2)
=a-b=> ab;j= ) ab;+2ayb, = (5.3)
i=1 i#p,q
= Y aibi + V2a,v/2b, (5.4)
i#p,q

Hence it is the same as being in a space with 1 dimensions, with one of them
multiplied by a factor ofy/2. In general to have good results in machine learning
it is important to give to all the input features the same ingoace, regardless of
the input range. This is the reason because the range ofghtsiare usually nor-
malized to have the same maximum-minimum ranges or to havsatime standard
deviations. But in the case of two features identical thisripossible, because
the extra weight is not in the feature itself but in the dugdiicn. The case of a
repeated feature can appear trivial, but it can be the caddwtlo features carry
the same information even if they are not exactly the samensi@er the case
of two features, corresponding to the indexand ¢, that has a correlation index
approximately equal to 1. In this case we can write

r(ap,aq) = 1Va € R" = a, = aaq + (5.5)

If we remove the mean from all the features and normalizechtttehave unitary
standard deviation thefican be consideredlanda = 1, and we can write again

Z a;b; ~ Z a;b; + \/ﬁap\/ﬁbp (5.6)

i=1 i#p,q
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The same happens if the correlation is approximatively Given the above con-
siderations we claim that the presence of the correlatddriesican worse the clas-
sification performance, and removing some of them can ingtio® classifier and,
at the same time, speed up the system because less featedet® e computed.
This is, again, similar to the idea proposed by Barlow thatrtaural responses are
statistically independent, because the redundancy inethgosy input is removed
by early sensory systems (Barlow, 1961).

Notice that this somewhat different from applying Prin¢iBamponent Anal-
ysis (PCA) because it is true the with PCA redundant feataresemoved, but no
gain in speed is obtained because the principal componentmear combination
of all the original features, so all the features must be calaliatany case.

Hence we propose to build the reduced set of uncorrelatedrésastarting
from the sample correlation matrix between all the inputdess. We consider
only the absolute values of the sample correlation matrecabse positive and
negative correlations count in the same way. Then itefgtselect the most cor-
related couple of features and discard one of them. In pdatiave have chosen
to discard between of the two, the feature that has the sshallen of the sample
correlations with the other features. The rationale bektwglapproach is to keep
the features that are mostly uncorrelated with the othee rblw and column as-
sociated with the removed feature are removed from the saogptelation matrix
and the removed feature is tagged as numbeFhen the second removed feature
is tagged as number — 1 and so on, until all the rows and columns of the matrix
are removed. At the end, the tag associated with each feailirgive a sort of
ranking of the unigueness of the information carried by gaaticular features. Of
course if there is a feature containing pure noise, unctaeélto the other features
it will be ranked as the most important. However this is a fimirinsic to any
unsupervised feature selection: without knowing the klitds impossible to un-
derstand if the noise is useless to the classification tastould be the case that
the output is only function of the noise,g the label of the sample being equal to
the sign of the noise.

Then we select increasingly sets of features, considehiaganking obtained
from the above method. For example the first set has the &saftom numbet to
number100, the second from to 200 and so on until the last set that contains all
the features. The performance of the method is confrontddanbhaseline obtained
using a random ranking of the features, and building the ssetseof increasing
sizes.

Note that even if a big number of input samples is needed itbats the sample
correlation matrix, their labels are not needed. Hence #éhecgBon takes place
before the learning phase, thus it can be used in an onlineihgaframework.

The feature selection method proposed works very well viithrandom fea-
tures collected during the training phase by the standameindt is worth to note
that sampling randomly an input space we select more paintse areas more
densely populated. Samples that are near in the input speesyilikely that will
be highly correlated. Hence the feature set randomly sslewill contain many
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101-Caltech Database
36

34t

Classification of performance
w w

o N

T T

N
0
T

26

24 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Number of features

Figure 5.2: Classification performances using the unsugemhvfeature selection
method proposed, compared with a random selection of sub$étatures, on 5
different 15/50 training/test splits.

similar features belonging to the most common image patdbeshe other hand
it also is very likely that these very common features willdndow discriminative
power in a classification task, because they are presenttimeatiasses. Note that
the use of random features has been proposed even by atgidowaket al,
2006), and it is very likely that this method could be appkedcessfully to other
object recognition system.

The validity of the proposed method is demonstrated by this @one on the
101-Caltech database using the standard model and a liN@&r S

5.3.2 Results

As in Section 5.2 the system was trained withexamples from the each object
class, this time using all the 102 classes. From the renmimiages, we extracted
50 images for each category to test the system’s performamnegaging overs
random splits. The images were preprocessed as describe2l ihhe kernel used
is linear and the parametéris equal to 1.

In Figure 5.2 there is the comparison between the randonctgeieof fea-
tures and the proposed method. As said above, using lessdedhat the total
it is possible to increase the accuracy of the classifieh@asame time reducing
the computational cost. In this case it is possible to gapr@pmatively 1% of
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Figure 5.3: Difference of classification performances leetwthe random method
and the proposed method.

classification performances, havig times less features and, hen@e; times
faster.

Moreover selecting a subset of features with the proposetiadds always
better than selecting a random subset. This can be seelydtebigure 5.3 where
itis plotted the difference in the performances betweeritenethods. Of course
when all the features are selected the performances of thenethods are exactly
the same, being equal to the performances of the systemutiting feature selec-
tion.

Analyzing Figure 5.2, we can see that the rate of improveradding more
random features is very slow. This suggest that adding neateifes is unlikely to
be the right way to improve the performances. This can beagxgd from the fact
that new features are likely to bring redundant informaticorrelated to already
added features. At the same time unique and independentrdsateing more
rare, will have a small weight (see Equation 5.6).

We have also combined OISVM (see Chapter 4) with the rand@turfe se-
lection and the unsupervised feature selection, and thétsesre shown in Table
5.2. The kernel used in the classification task is linearcbghe dimensionality
of the feature space is equal to the dimensionality of thatispace, that is to the
number of features used. We can see that using OISVM the nuofitsipport
vectors is more or less equal to the dimensionality of theetne difference is
due to numerical approximations), while using standard SW&Inumber of SVs
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100 300 600 1000
Feature sel. 1518 £0.8 | 1518 £2.8 | 1618 £1.8 | 1520 £ 2.1
Random features 1519 £1.7 | 1521 £2.6 | 15621 £3.1 | 1520 £ 2.1
OISVM n =0, f. sel. 100+ 0 302£3.0 | 602£3.3 | 1008 £2.1
OISVM n = 0,random| 101 +2.2 | 310+3.8 | 611 +£5.5 | 1006 + 1.5

Table 5.2: Mean number of support vectors for different neralof features. The
number of SVs for the unsupervised feature selection andoranselection are
more or less the same, while for OISVM it is exactly equal ® tlumber of fea-
tures because a linear kernel is used.

is independent from the number of features. Moreoyisrset to0, so the solution
obtained is exactly the same of the one obtained with SVM.stéieming the the
time to evaluate the linear kernel function is proporticioethe number of features,
we obtain a speed-up 625 times combining OISVM and the feature selection
method.

5.4 Discussion

A comparison of two state of the art algorithms for objecegatization has been
made, stressing the importance of the learning part. THenpeaince between the
two methods are not statistically significant, given that ¢tassifier has been cor-
rectly tuned. Hence it seems that learning is critical sstesy, given two equally

good feature extraction systems.

Moreover, talking about the possibility to make the featexéraction system
adapt to the statistics of input image, an unsupervisedifeatelection system has
been introduced. The method is able to improve the perfocmanhthe classifier
and at the same time to speed up the system. Object of the fwtark will be the
integration of the model of visual attention system progdseChapter 3 with one
of these models for object recognition.



Chapter

Conclusions

In this thesis we have presented some studies on the topiearofng and adapta-
tion in computer vision.

Starting from raw images, we have shown that it is possibladapt to the
statistics of the world to have a better internal coding am@dmplete missing
information in the input. Going up in the visual hierarchye Wwave taken under
consideration the mechanism of visual attention. Remeimipéine link between
perception and action, and the simple fact that every bickdgystem has an aim,
we have proposed a proto-object based model of visual etteriience the model
does not work on disembodied locations or meaninglessblwith perceptual
groupings that are the building blocks of the concept ofalisbject. Moreover the
idea of proto-object has then been exploited to build anablb@cognition system,
coupled with the attentive system.

Considering learning, we have introduced a new generatealigorithm based
on SVM, able to produce very sparse solutions retaining siralh the accuracy
of the original SVMs. This different formulation of the SVMugrantees a finite
number of support vectors, regardless of the number ofitigisamples.

We have than applied this algorithm to an object classibcatask. We have
also shown the advantages of adapting the feature exmmastame to the input
statistics, gaining speed and classification accuracyeatdine time.

The obtained results support our idea that learning andtatiap are critical
for the comprehension of biological intelligence, and,deror creating an artifi-
cial cognitive agent.
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Appendix

How to include the bias term in
OISVM

The formulation is exactly with the following substitutisin

Kpg 0
[ fez ] — Ky (A.2)

wherel is a row vector of alll, with |Z| elements.

B /
HE ns

With these substitutions the regularization te}ﬁffTKgD,B/ is equal to%ﬁTKDD,B,
while the output of theé-th training sample/ = K;BB’ is equal toK; g3 + b.

Notice thatK g in Equation (4.21) is always the same, and it is not changed
by the use of a bias term.

81



82 APPENDIXA. HOW TO INCLUDE THE BIAS TERM IN OISVM



Appendix

Kernels for SVM

To understand what is a kernel can be useful to directly bugdssing through an
explicit formulation of the functiorp. Considerx € R? and® : R? — R?

Ty
D(x) = | V2x129 (B.1)
2
i)
We have that
O(x) B(y) = ziyi + 2212201y + 23Y5 =
= (x-y)? (B.2)

Hence it is possible to calculate the scalar product in thespace without know-
ing explicitly the function®. In some other cases it is not possible to work with
because the space induced by the kernel is infinite dimealséafor the Gaussian
kernel

K(x,y) = exp (=[x - y|]*) (83)

B.1 Some notes on polynomial kernels

One of the most used kernel is the polynomial one
K(x;,xj) = (x; - xj + )P (B.4)

In many text and publications often it is written without tb@nstant terme (even

in LIBSVM the default value for is 0). It is obvious that the homogeneous poly-
nomial kernel function, that is with = 0, will be even or odd, depending on the
degreep. Maybe it is not so obvious that the entire decision or regjoesfunction
found by an SVM very likely will also be odd or even! In fact tB&M solution,
both in regression and classification, can be written as

f@) = BiK(x,x;)+b=> Bi(xix;)F +b (B.5)
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If the bias termb is 0 then f(x) is even or odd, depending gn being linear
combination of odd or even functions.

B.2 The local matching kernel

Denoting withZ = {I,}" ; andL = {L;};", two sets of local features associated
with two images, we define

1oL
K(I,L)= N ZK(IPquz') (B.6)
i=1
M = min(N, max(m,n)) (B.7)

where

K (I, Lg,) = exp (=7 [T, — Lg,[I*)  (B.8)

K (I,,,L,) > K (I,L;) (B.9)

K (I, Lg,) > K (I, L) i ¢ {p1} j & {m} (B.10)
K (I, Lg) > K (I,L;) i ¢ {p1,p2} j ¢ {a1, @2} (B.11)

... (B.12)

K (L, Loy) > K (L Ly) i & {p1,-- pa—1} 5 & {a1,- sam—1} (B.13)
Pi # P @ # q; Vi,j=1,---, M (B.14)

and N and~ are parameters of the kernel. This definition is slightlyed&ént from
the definition given in (Wallravert al, 2003), but it has better performantes
The idea behind this formulation is to consider thebest matching couples of
local features, without considering the ones that we haeady matched, starting
from the best couple. Even if this kernel is non-Mercer (Bourelet al., 2004),
it has been largely used with good performances in variojecbbecognition and
classification tasks.

!Personal communication by B. Caputo.
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