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Abstract

The research presented in this thesis is the result of a study on prediction
and active vision. These two issues are approached from an interdisciplinary
perspective ranging from brain sciences to developmental robotics. The key
questions I try to answer are:

1. How does prediction affect the development of active artificial systems?

2. What are the biological and computational basis of prediction?

3. What is the role of prediction and expectation in perceptual processes?

In order to respond to these questions I have tried to understand what
prediction is in its biological origin and how it may affect the current behavior
and development of an active robot. In this respect, I have found that
the neurological basis of prediction is not yet well understood, even though
there is an important body of evidence suggesting that prediction plays a
fundamental role in many processes, such as development, learning, behavior,
motor control, perception, expectations, crossmodal perception and many
others. The other important issue I have approached is that prediction is
inseparable from the active nature of living systems. In this respect, I have
built an upper torso humanoid robot and I have studied prediction in the
context of motor control and active vision systems. The main contribution
this thesis purports to make involves: (1) the understanding of prediction
as fundamental to the development of an agent, (2) the study of prediction
and expectation in perceptual processes, and (3) the use of prediction in the
control of complex robotic systems.
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Chapter 1
Introduction

Contents

1.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Active Vision . . . . . . . . . . . . . . . . . . . . . 12

1.3 Dissertation outline . . . . . . . . . . . . . . . . . 13

O
n Saturday morning you receive a phone call. It is a friend who invites
you to play tennis later that morning. You accept, so you get up
from bed and take a shower. In the shower you regulate accurately

the temperature of the water; it is long ago that you have learned how to set
it to get the right temperature. After the shower, you have breakfast taking
care not to eat too much as you want to keep your stomach light in order to
avoid any trouble during the match. Then you look out of the window and
see that it is a cloudy and windy day so you decide to wear something warm.
Of course, you put an umbrella in your sports bag just in case it rains. Then
you get into your car and drive for half an hour to the sports club where you
are meeting your friend. As you drive you stop at traffic lights, follow more
or less closely the traffic signs’ recommendations, and avoid accidents. You
feel relief because you have just avoided a collision with a distracted driver
who did not respect a stop sign. Once at the club, you meet your friend and
then you play. You spend two hours hitting a small yellow ball (that flies at
a certain speed) and trying to send it back into a rectangular field placing
it where your friend cannot reach it. You win, of course, and secretly you
thank the tennis lessons you have been taking over the last months. Then
you take another shower, pay, drive back home, avoid other accidents . . .

The quantity and complexity of actions that a human being can do is
impressive. We have a very limited idea of how humans deal with all the
complexity associated with the actions described in the little story described
above. Yet, a high percentage of individuals can resolve such complexity
in a natural way, without even thinking about it. While we are far from
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understanding completely the neural mechanisms guiding you through your
Saturday morning we propose the following hypothesis: you are using pre-
diction!

If there is something that unites your activities that morning it is the
fact that you have used prediction in performing each and every one of
them. Why may this be so? Let us imagine that you wake up after the
phone call and you have lost your predictive capabilities (maybe you hit
your head during the night). In this case, things become really complex. To
begin with, you will not know how your arm will look like after a voluntary
movement. Indeed, in a normal situation, you are constantly predicting the
sensory consequences of your movements. But anyway, let us imagine you
manage somehow to go ahead, survive the shower and now you are in front
of your coffee cup. Well, surely your brain will not anticipate the grip force
necessary to pick up the cup filled with coffee and the cup will slip from your
hand; indeed, probably you will never be able to drink your coffee. Anyhow
you go ahead, get dressed (of course, you put on light clothing because you
cannot anticipate that it is a cold day based in your visual information), and
manage to get into your car. Now, recall, you have to drive for half an hour.
The first problem arises from not being able to anticipate the behavior of your
car. You cannot use the internal dynamic model of your car that you have
learned patiently in the course of months (probably without even noticing
it). Problems keep coming up, but let us suppose you somehow manage to
arrive to the crossroads where a distracted driver does not respect a stop
sing. Though he was distracted, he immediately sees you and he honks. In
a normal situation the honk will make you expect a car coming, so you will
immediately start to break (without looking at all); but in this case, you
have lost your predictive ability and hence you form no sensorial or causal
expectation based on the car horn. May be, by chance, you see the car
coming, but you cannot predict its trajectory and consequently you do not
know when to brake or steer the car in order to avoid the collision.

I hope these examples suffice to agree on one point: prediction is impor-
tant. We use it constantly in our daily lives and indeed it is central both
to our individual survival and to our success as a species. Therefore, I am
interested in understanding how this complex capability is used by humans
and how this knowledge can be used to build better robots. Figuring out
how prediction works in biological systems can help us create better robotic
systems, i.e. more helpful for humans, as well as understand how the human
body works in general.

In this thesis I address three questions:

1. How does prediction affect the development of an active artificial sys-
tem?

2. What are the biological and computational basis of prediction?

10



3. What is the role of prediction and expectation in perceptual processes?

With question (1) I try to understand the factors involved in develop-
ment and how they are affected by prediction. I specifically discuss learning,
perception and movement. Question (2) inquires into the biological and
computational structures used for prediction. I describe the parts of the
brain involved in prediction —particularly the cerebellum— and the main
neural groups participating in prediction mechanisms. Subsequently, I study
the principal computational paradigms related to prediction, particularly the
models of the cerebellum. Traditionally, these models have been applied to
motor control, so the study of prediction in this area acquires a particular
relevance in this thesis. Question (3) addresses the interesting issue of the
role of prediction and expectation in the processes involved in perception.
In this respect, I present three experiments. In the first one, I address the
particular relevance of prediction in humans for the task of tracking visual
targets (i.e. smooth pursuit) and I present a practical implementation of a
control strategy for an active robotic head based on predictive algorithms.
In the second experiment, I confront the problem of crossmodal expecta-
tions. This is how an artificial system can learn and exploit audio-visual
associations to create visual expectations. Finally, in the third experiment, I
present a research that combines previous knowledge of a given environment
(in the form of a CAD memory) with active vision for controlling a complex
mobile robot.

But, what is prediction? And what is active vision? In the following two
sections, I try to introduce both concepts. After that I present the outline
of this thesis.

1.1 Prediction

Prediction is a statement made about the future. Humans can create pre-
dictions in both space and time. A typical example is the act of predicting
a trajectory such in the case of a flying object. However, humans can do
other type of predictions. For example, we can predict who is in another
room hearing his voice coming through the door, or we can predict how a
flying ball will bounce off the ground because we have previous experience
about that fact. In other words, we need to take into account the influence
of learning and cognition in the generation of predictions.

Yet, let’s us consider another interesting point. How the knowledge of the
future can affect the system in the present? When a system—biological or
artificial—has information about the future, this knowledge can be exploited
in the present for many things: (i) determine current behavior (Butz et al.,
2003), (ii) determine current and future processing of sensory information,
(iii) improve perception, (iv) affect development, (v) affect learning. This
effect of prediction in the current state of the system is one of the main issues
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discussed in this thesis, particularly, the improvement of perception through
expectation mechanisms.

It is also necessary to clarify the meaning given to some terms in this
thesis that in common language are used as synonyms of prediction. An-
ticipation refers to taking prior actions on the basis of information about
the future. These actions can be directed to avoid or propitiate a particular
future. The word expectation refers to the prediction of an event considered
to be probable or certain in the future. This word is widely used in this
thesis to refer to sensorial expectations.

1.2 Active Vision

Active vision is the science dedicated to the construction and use of robotic
heads (Blake and Yuille, 1992). Usually these systems try to imitate and
simulate the human vision system by physically implementing its dimen-
sions and degrees of freedom (DoF). The more interesting aspect is the use
of stereovision in an active manner; this means that the system is able to
interact with the environment by altering its viewpoint. This can be done
by controlling the pan-tilt-vergence angles of the cameras so that the range
of field of vision is not restricted to a static point of view. The ability to ac-
tively control the camera parameters is vital for the robot to achieve robust
and real-time perception in a complex and dynamic environment. The close
association between perception and action proposed in the active vision par-
adigm is not limited to camera movements. The processing of visual input is
tied closely to the activities it supports (navigation, manipulation, signaling
danger or opportunity, etc.) allowing simplified control algorithms.

The first contribution to the field of active vision was made in the late
eighties by Krotkow (1987), who proposed a new strategy for observation
arguing that camera movements and focusing procedures could improve the
robustness of depth estimation algorithms. This approach was later named
active by Aloimonos in 1988 and animate by Ballard in 1991. This paradign
was demonstrated by Coombs (1992) who showed that by using dynamic
vergence his binocular system was able to maintain an object within a narrow
range of disparity, enabling segmentation with a simple disparity-filtering
algorithm (Rougeaux et al., 1994, IROS’94). The result is a robust tracking
without the necessity of any information about the object being followed.

It is worth stressing that the active vision system enhances the capabili-
ties of foveated vision by allowing the system to put the object of interest in
the center of the visual field (the fovea). This is precisely the way in which
the oculomotor system works in many animals.
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1.3 Dissertation outline

The thesis is organized as follows. Chapter 2 presents the upper torso hu-
manoid built for this research and the software architecture used to control
the robot. Chapter 3 addresses several issues in an attempt to provide a gen-
eral overview of arguments related to prediction. Some of the topics discussed
are: perception, the cerebellum, learning, neural plasticity, development, and
motor control. In Chapter 4, I review some of the most relevant models of
the cerebellum used in motor control. Chapter 5 addresses the problem of
smooth pursuit and presents a short experiment with an active vision head.
In Chapter 6, I present an experiment on crossmodal expectation based on
audio-visual associations. Finally, in Chapter 7, I present the results of the
Robvision project that addressed the complexity of localizing a mobile robot
using a geometric memory and an active vision head.
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Chapter 2
Eurobot software and hardware

architecture

Contents

2.1 Hardware Architecture . . . . . . . . . . . . . . . 14

2.2 Software Architecture . . . . . . . . . . . . . . . . 17

2.1 Hardware Architecture

A
guiding hypothesis followed in this thesis is that cognition and behav-
ior processes emerge from an interaction between brain, body and
environment (Lungarella et al., 2004). This is in line with the con-

cept of ontogenetic development that assumes that the system starts with
minimal configuration and evolves into more complex configuration by in-
teracting with the environment. Naturally, this concept is correlated with
the idea that action and movement are fundamental elements in this devel-
opment. In other words, the system needs a body with which it can explore
and interact with the external world (i.e. embodiment). In this line of re-
search and for the purpose of this thesis I have constructed an upper torso
humanoid robot called Eurobot (depicted in figure 2.1). Eurobot has nine
degrees of freedom and its aspect and kinematics are very similar to those
of Babybot (Metta, 1999). From a human perspective, both robots could be
considered as “brothers”.

There are, however, some differences between both robots:

• The Eurohead: it is a four degrees stereo head; its most important
characteristics are a simplified kinematics, light design and high preci-
sion. This head has been widely used during this thesis.
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Figure 2.1: The Eurobot

• The body structure: Eurobot has been built with prefabricated ma-
terials. This has reduced the construction time and it allows easy
modifications of the robot structure (kinematics).

• The control cards: Eurobot is controlled with Galil1 control cards. The
device driver for these cards has been developed.

• The operating system: Eurobot uses QNX2 a professional hard real-
time operating system.

Despite of these differences, both robots run with a very similar software
called YARP (to be described in section 2.2). The other minor differences
between the robots have been solved through software modularization (e.g.
the value of the gains and the reduction gears).

2.1.1 The Eurohead

The Eurohead is shown in figure 2.2(a). It has been designed and imple-
mented to be an accurate vision-based measuring device. For the control of
its four degrees of freedom, i.e. the pan, the tilt and the two cameras pan
(vergence), four DC motors with harmonic drive reduction gear are used.

1www.galilmc.com
2www.qnx.com
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(a) (b)

Figure 2.2: (a) the Eurohead, (b) the inertial sensors system

Range(o) Velocity(o/s) Acceleration(o/s2) Resolution(o)

Pan ±45 ≥ 73 ≥ 1600 0.007
Tilt ±60 ≥ 73 ≥ 2100 0.007
Tilt ±45 ≥ 330 ≥ 5100 0.03

Table 2.1: Synopsis of the stereo head characteristics

These actuators have been chosen according to their mechanical characteris-
tics. Due to their harmonic drive gearing, they provide high reduction ratios
in a single stage, zero backlash and high precision. Teeth belts have been
used for the movement transmission from the actuator to the joints. This
gives better results in term of accuracy than usual gearing transmission.

The specifications of the head are summarized in table 2.1. The head
was carefully designed in order to be compact, portable and low weight. Its
dimensions are 209mm x 222mm x 185mm and its weight is about 3Kg. It
carries standard CCD cameras of 752 x 582 resolution and 4.8mm lenses.
Moreover, the head employs three piezoelectric gyroscopes (Panerai et al.,
2000). Each sensor along with the driving and filtering electronics is mounted
on a card of about 3.5cm in size. Three cards are arranged so that they form
a small modular cube as the one shown in figure 2.2(b). In this manner, the
sensing elements are able to measure motion along three orthogonal axes.
The cube is mounted on top of the head, so that it monitors the external
disturbances that are subjected to the head. The signals end up to the ADCs
of the axis control board and are used to compensate the head movements
due to such external disturbances.
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2.2 Software Architecture

The operating system QNX 6.2 was used as a platform for the development of
the software architecture of the robot. QNX 6.2 is a hard real-time operating
system with a micro-kernel architecture design. The software development
consisted basically on the adaptation of YARP (discussed in section 2.2.2)
to work under QNX. Moreover, it was necessary to develop various device
drivers and some special control modules.

2.2.1 BTTVX and the Galil device driver

Among the device drivers developed it is worth mention two of them. The
first, called BTTVX, is a driver for controlling framegrabber cards based on a
microchip commercialized by Conexant called BT848. This chip has evolved
into many different versions but its internal architecture has remained as in
the original version and therefore the driver can run framegrabbers based in
all the available chips. The BT848 chip is a very popular device and many
framegrabbers and computer television cards use it as their main video signal
digitalization device. It can digitalize the most popular analog video signals,
e.g. S-Video, PAL, NTSC.

The driver has been developed with an open source philosophy in mind
and is available on a public licence. Some research groups are using it for
their vision systems and some companies have reported internal use mainly
for video streaming applications.

We refer to the second devide driver as the Galil driver. It is an adap-
tation of a driver originally developed for QNX 4.0 —an old version of the
QNX operating system. Two problems appeared when developing this soft-
ware; first, there are a lot of differences between the versions 4.0 and 6.0 of
the QNX operating system thus the porting was not easy, and second, it was
necessary to emulate some control strategies used in the Babybot control
cards that simply were not available in the Galil control cards.

2.2.2 YARP: Yet Another Robotic Platform

YARP is a software library for research in robotics. It has been developed
as an open source project involving several researchers and laboratories. It
is similar to other robotic platforms but with the specific goal to control hu-
manoid robots and to do so in a multi-operating system and multi-computer
architecture.

The main components of YARP can be broken down into:

• libYARP_OS – interfacing with the operating system(s) to support
easy streaming of data across different threads and machines. YARP
is written to be OS neutral, and explicitly supports Linux, Microsoft
Windows, and the QNX realtime operating system.
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• libYARP_dev – interfacing with common devices used in robotics:
framegrabbers, digital cameras, motor control boards, etc.

• libYARP_sig – performing common signal processing tasks (visual,
auditory).

2.2.3 Requirements

YARP runs on Windows (2000/XP), Linux (Debian/SuSE), and QNX6. It is
based on the open-source ACE (ADAPTIVE Communication Environment)
library, which is portable across a very broad range of environments, as a
consequence, YARP inherits that portability.

For real-time operation, network overhead has to be minimized, so YARP
is designed to operate on an isolated network or behind a firewall. To inter-
face to the hardware YARP relies on the operating system; this means that
for each board (frame grabbers, control boards, to mention a few) it needs
the appropriate device driver. The libYARP_dev library is structured
to interface easily with vendor-supplied code creating a software multi-layer
abstraction that facilitates hardware replacements. In this way YARP im-
proves software maintenance and provides a robust structure that makes
future changes easier.

 

MCAST port

TCP port

portlets

command receiver

MCAST port

TCP port

portlets

command receiver

Figure 2.3: Communications model. Every process or thread can own any number
of ports.
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2.2.4 Communications

One of the key aspects of YARP is the support for communications. The
main abstraction for inter-process communication is called a port. A port
template class can be specialized to send any data type across an IP-network
relying on a set of different protocols. Depending on the protocol different
behaviors can be obtained. The implemented protocols include TCP, UDP,
MCAST, QNET1, and shared memory. A port can either send to many
target ports or receive simultaneously from many other ports. A port is
an active object: a thread continuously services the port object. Being
an active object it allows responding to external events at run time, and
for example it is possible to send commands to port objects to change their
behavior. Commands include connecting to another remote port or receiving
an incoming request for connection and since all this can be done at run-time
it naturally enables connecting/disconnecting parts of the control system on
the fly.

Figure 2.3 shows the structure of the port abstraction. Each port is, in
practice, a complex object managing many communication channels of the
same data type. Each port is potentially both an input and output device al-
though for simplicity of use only one modality is actually allowed in practice.
This is enforced by the class definition and the C++ type check. Each com-
munication channel is managed by a portlet object within the main port.
Different situations are illustrated in Figure 2.3: for example an MCAST
port relies on the protocol itself to send to multiple targets while on the con-
trary a TCP port has to instantiate multiple portlets to connect to multiple
targets. In cases where the code detects that two ports are running on the
same machine the IP protocol is replaced by a shared memory connection.
Ports can run independently without blocking the calling process (if desired)
or they can wake up the calling process on the occurrence of new data. In
some cases synchronous communication is allowed (TCP protocol).

Protocols can be intermixed following certain rules. Different operating
systems can of course communicate to each other. QNET protocol is an
exception and it is only valid within a QNX network. YARP communication
code leads to a componentization of the control architecture into many coop-
erating modules. The data sent through port can range from simple integral
types to complex objects such as arrays of data (images) or vectors. Thus
controlling a robot becomes something like writing a distributed network of
such modules.

In addition, YARP contains supporting libraries for mathematics and ro-
bot type computation (kinematics, matrices, vectors, etc.), image processing
(compatible with the Intel IPL library), and general purpose utility classes.
We also designed a few modules based on existing Microsoft technology to
allow remote controlling Windows machines (this support comes naturally
on QNX). In short, these scriptable modules complete seamlessly the archi-
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tecture allowing the design of scripts to bring up the whole control structure
and connect many modules together.

A Matlab interface to ports has been implemented. This allows building
Matlab modules (e.g. .m files) that connect to the robot to read/write data.
There are basically two advantages: i) complex algorithms can be quickly
implemented and tested relying on Matlab existing toolboxes, ii) an addi-
tional level of scripting can be realized within Matlab. Matlab provides a
relatively efficient and easy to use display library that can be used to visualize
the functioning and performance of an ongoing experiment.

2.2.5 Robot independent code

One of the goals in writing our control architecture has been that of simpli-
fying the programming of a complex robotic structure such as a humanoid
robot. Control cards come in many different flavors and programming them
is usually painful. It would be much better if a standardized interface were
provided. It would be even better if a suitable abstraction were available.

To solve the first problem we defined a virtual device driver interface
into YARP. To solve the second, we encapsulated the control of parts of the
robot (head, arm, frame grabbers, etc.) into a standardized template class
hierarchy.

In short, the virtual device drivers bear much of their structure from
the UNIX device drivers. Each cards driver class contains three main meth-
ods: Open, Close, and IOCtl. The latter is the core of the interface. Each
device accepts a set of messages (with parameters) through the IOCtl call.
Each message accomplishes a specific function. Two different control cards
supporting roughly the same commands can be easily (as it was done in
our setup) mapped into exactly the same virtual device driver structure,
although clearly the implementation might differ.

The next layer is a C++ hierarchy of classes which through templates
includes both the specification of the controlling device driver (e.g. the head
is controlled through a certain control card) and the idiosyncrasies of the
particular setup (e.g. wiring of the robot might differ, or initialization might
require different calibration procedures).

2.2.6 Robot specific interface

The real communication with the robot is carried out through a set of binary
modules that use a device driver structure. Module customization is at this
stage accomplished through configuration files. In the YARP language these
modules are called daemons (a term borrowed from UNIX). The daemons
directly interact with the remainder of the robot software through YARP
ports and in general they export very specialized communication channels.
For example the frame grabber has an output port of type image and the
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head control daemon an input port that accepts velocity commands. There
are no specific restrictions on the type of ports exported by a daemon since
any type of state information about the modules might be required.

Further, some of the daemons accept or send commands of a special type
that are generally used to communicate status information. A bus structure
based on the MCAST protocol has been implemented to transmit and receive
these special messages (called bottles). YARP bottles may contain any type
of data or even a group of heterogeneous elements of different types. The
structure contains identifiers to properly decode messages and interpret the
data. YARP bottles create a network within the network of behaviors to
realize a high-level control and coordinate a large number of modules.
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Chapter 3
An essay on prediction
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3.1 Introduction

In this chapter I attempt a multidisciplinary review of several issues related
to prediction. My purpose is to create a road map of the main areas of
research that need to be mastered to understand prediction. This is a vast
and complex task, which this essay can only fulfill in a limited fashion. Yet,
I think the reader will obtain an adequate overview of the principal issues.

Prediction does not have a formal theory, it is an argument used by many,
but it still does not have a formal research line to follow. Indeed, we need
to survey several research areas to understand what prediction is and how it
can be used.

The key idea for understanding the following sections is that prediction is
not only the act of extrapolating a trajectory. Prediction is much more than
that; and I have chosen to view it as a fundamental capacity of the brain that
is used in perception, learning, control and many other basic brain functions.
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This chapter is structured as follows. In the section The paradigm of per-
ception I discuss the evolution of the concept of perception and how expec-
tations —a form of prediction— and crossmodal information may assist and
even dominate the act of perceiving. In the section The cerebellum I review
this well studied brain organ with its contributions to motor control, sensor-
ial expectations and its fundamental role as a predictive organ. I discuss how
the cerebellum works and its more important cellular components. In the
section Learning I discuss how learning is intimately related to prediction.
Indeed, if one wants to make reliable predictions it is necessary to acquire
experience about the facts to predict, which is to say, it implies learning. The
link between learning and prediction is so intimate that learning can be seen
as the acquisition of reliable predictions to the point to consider prediction
errors as fundamental signals guiding learning, development and behavior.
In the section Neural plasticity I explore even more in detail into the neural
mechanisms involved in learning. These are related to the modification of
neural synapses and the way neural pathways synchronize temporally. In
the section The development of prediction I analyze how development may
affect prediction. I put forward some conceptual ideas about the factors that
should be taken into account when studying the development of prediction
and review some of the results and conclusions reported by developmental
psychology studies. Finally, in the section Prediction and computational mo-
tor control I review the research area of computational motor control and
the main problems affecting control, particularly the effect of delays in the
control loop.

3.2 The Paradigm of Perception

Traditionally perception has been considered as a process that has no di-
rect relation to behavior. According to Marr, visual perception is nothing
but the transformation of sensory information into a sensory representation,
sorting out irrelevant information (Möller, 1997). Slowly, this traditional un-
derstanding of perception is being abandoned and a more flexible approach
is gaining acceptance where perception is closely tied to action and is consid-
ered an active, generative process and not a mere projection (Möller, 1997).

In a more general sense, perception can be considered as a comparison
between an expected and an actual state (Berthoz, 1997) and is, therefore,
intimately related to prediction. The idea that the use of prediction and
expectations in the perceptual cycle improves performance is gaining accep-
tance in the research community, e.g. Datteri et al. (2003) suggest that
perception and action improve in speed and accuracy by expectation mech-
anisms. In some cases expectations can dominate the perceptual cycle mod-
ifying the perception of reality. Berthoz (1997) maintains that, in extreme
cases, anticipation can become a prison for perception and a trap for action.
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Another important idea is that of considering perception as intimately
linked to action. In this context, perception of space and shape can be
assumed to be a process of anticipating the sensory consequences of ac-
tions (Möller, 1997).

3.2.1 Perception as a multisensorial experience

Perception may not depend only on one sense. It is clear from daily expe-
rience that humans use several senses to perceive the world around them.
Therefore, crossmodal perception plays a fundamental role. But, how does
the brain manage to associate information from different sensor modalities?
Möller (1997) suggest that this association may be based on the detection of
statistical interrelations within afferent data. This idea is explored further
in chapter 6 where I present an experiment on the creation and exploitation
of audio-visual associations. Though not studied in this thesis, it is worth
mentioning that the majority of stable easily detectable interrelations are
presumably found between actions performed by an agent and their per-
ceptual consequences (Möller, 1997). In other words, actions contribute to
the development of the system by actively creating events that elicit multi-
sensorial correlations that contribute on the development of multisensorial
contingency1.

3.2.2 Memory: A tool for predicting

What tools does the human brain use to generate expectations? Berthoz
(1997) suggests that memory plays a fundamental role in this process. He
argues that the information stored in memory is used to predict the conse-
quences of actions and, he hence considers memory as a tool for predicting
the future. This idea raises immediately a doubt about how memory stores
and organize information. I cannot do justice to the complexity of this ques-
tion in the limited space of this section allows; I will hence only mention the
notion of schemata borrowed from cognitive psycology (Neisser, 1976).

The concept of schemata does not give us any idea about how memory
is actually organized but it provides an intuitive idea about how memory
may work and which is its contribution to the process of perception. Neisser
(1976) suggests that schemata are anticipations, the means by which the
past affects the future. Moreover, schemata provide anticipation about both
temporal and spatial patterns.

3.3 The Cerebellum

The cerebellum is probably the part of the brain that has been studied in
most detail. Its particular architecture has attracted the attention of many

1something liable to happen as an adjunct to or result of something else
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researchers and has facilitated the understanding of its functions (Houk et al.,
1996). The cerebellum is believed to have an important role in the predictive
capacities of humans (Miall et al., 1996). Smagt (2000) claims the cerebellum
performs the following functions:

• The cerebellum is responsible for coordinating movements.

• The cerebellum learns models of the skelotomuscular system.

• The learning process in the cerebellum is influenced by the simulta-
neous activation of parallel and the climbing fibers at the Purkinje
cells.

The participation of the cerebellum in movement is supported by many
researchers. This hypothesis has been formulated more than a century
ago (Houk and Miller, 2001). In this line of research, Doya et al. (2001)
argue that the cerebellum is involved in limb movements and the adaptation
of quick eye movements. They discuss the hypothesis that the major role
of the cerebellum extends to both the temporal and spatial coordination of
movements. Barto et al. (1999) hypothesize that the role of the cerebellum
is to eliminate the need for corrective movements by learning to adequately
regulate the initial movement. There is also a strong conviction that the
cerebellum is a sensory-motor system in which sensory and motor informa-
tion are integrated (Parkins, 1997). Miall and Reckess (2002) suggest that
one of the fundamental roles of the cerebellum is to act as a sensory pre-
dictor with the particular task of generating predictions about the sensory
consequences of motor acts. This capability implies a precise timing, so it
is not a surprise that many theories of cerebellar function claim that it is
related to temporal processing (Miall and Reckess, 2002).

From a functional point of view, Ito (see Parkins, 1997) suggests that
the cerebellum works as an adaptive control system. It is assumed that the
cerebellum is functionally an adaptive controller with a comparator for de-
tecting control errors through a comparison of intended and effective controls.
Parkins continues analyzing Ito’s work saying that, initially, the performance
of the whole system relies on the cerebral feedback control, but the cerebel-
lar feed-forward system takes over as soon as it is adapted to the control
situation at hand. Schultz and Dickinson (see 2000, pp. 494) call this feed-
forward based control predictive mode and suggest that humans and animals
switch to predictive modes as frequently as possible for optimizing behavioral
reactions. In other words, once the cerebellum has learned all the dynamics
related to a movement, the external feedback control is substituted by an
internal feedforward control that uses a model of the world.

However, the cerebellum may not be alone in doing all this work; Parkins
(1997) suggests that cerebrum and cerebellum complement each other in the
process of information representation and processing. On one hand, the
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cerebellum represents and processes sensorimotor information in a parallel
manner. On the other hand, the cerebrum represents and processes abstract
information essentially in a serial manner. In conclusion, Parkins suggests
that the information representation and processing characteristics of the cere-
bellum and cerebrum are complementary and should be able to reciprocally
evaluate and correct each other.

More recently researchers have started considering the role the cerebel-
lum plays in cognitive processes (for a review see Parkins, 1997). Parkins
(1997) reports that recent publications have studied cerebellar involvement
in mental imagery. Houk and Miller (2001) report that recent studies on the
cerebellar hemispheres make it clear that the cerebellum does much more
than regulate movement. Particularly, the projections from the cerebellum
into frontal lobes (considered to be the regions where the cognitive functions
reside) supports the case for a significant participation of the cerebellum in
cognitive processes.

3.3.1 Cerebellum Structure

The cerebellum presents a peculiar structure where there is clear orthogonal
relationship between parallel and climbing fibers and the dendritic trees of
Purkinje cells (Houk et al., 1996). Anatomical studies show that the cere-
bellar cortex is a phylogenetically ancient structure found in all vertebrates,
and that it is especially large in primates (Miall and Reckess, 2002). Humans
have a particularly complex cerebellum suggesting more powerful predictive
capabilities (e.g. generation of prediction further into the future) (Miall and
Reckess, 2002).

According to Houk and Miller (2001), in the case of movement regulation,
three parts of the cerebellum are active. The portion closest to the midline
of the brain is called vermis and phylogenetically it is the oldest part of the
cerebellum. This part takes care of the accuracy of some basic movements
(e.g. torso, legs, head and eye movements). The middle portion of the
cerebellum is the one that regulates the accuracy of voluntary movements
(e.g. reaching and grasping). In addition, the cerebellum has lateral parts
called hemispheres that may regulate higher aspects of behavior. These
hemispheres are particularly large in humans.

From a more operational point of view, Houk and Miller (2001) explain
that the cerebellum can be divided in two main areas: the cerebellar cortex
and the cerebellar deep nuclei. The cortex specializes in processing large
amounts of information regarding body parts and objects. This information
is received from the input of the mossy fibers. The mossy fibers project onto
the granulle cells whose axons ascend to form the parallel fibers. The paral-
lel fibers are then connected to the Purkinje cells (PC). More that 100,000
parallel fibers connect to each PC. The Purkinje cells specialize in detecting
particular patterns appearing in the parallel fibers. They project into the
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deep nucleus carrying an inhibitory signal that cannot initiate neural activ-
ity by itself. Yet, these inhibitory signals control the spatial and temporal
activity of nuclear cells (Houk and Miller, 2001).

The structure and organization of the cerebellum suggest that this organ
is a massive information processing structure. But, how does the cerebellum
process all this information? Parkins (1997) argues that cerebellar represen-
tation and processing have essentially a parallel distribution and analogical
characteristics. The cerebellum is considered able to represent and process
both spatial and temporal information and to do so in such a manner that
space and time are unified.

Nevertheless, if we want to understand how the processing takes place
in the cerebellum it is necessary to study the type of neurons present in
the cerebellum and the way they are connected. The human cerebellum is
composed of about 10 million Purkinje cells, each receiving about 150,000
excitatory synapses via the parallel fibers. Parallel fibers are excited by
the mossy fibers coming from the spinal cord, the cerebrum, and the brain-
stem (Smagt, 2000). Although the cerebellum is formed by several different
types of cells I review here only those more interesting from the point of view
of prediction: i.e. the climbing fibers and the Purkinje cells.

Cerebellar climbing fibers. Probably the most intriguing cells in the
cerebellum are the climbing fibers (CF). These fibers originate in mammals
in the inferior olivary nuclei in the brain stem and are unique to the cerebel-
lum (Peters and Smagt, 2002). According to Schultz and Dickinson (2000)
they have a role in activities such as movement, aversive conditioning and
the generation of prediction errors. The nature of the signal transported by
the climbing fibers is, however, strongly controversial. Different interpre-
tations of the nature of this signal have produced different computational
models of the cerebellum. For example, it is not clear whether the CF carry
a sensory or a motor signal. Yet, it seems to be almost generally accepted
that these neurons transport some kind of a training signal. In concomitance
with other factors, the discharge of a CF produces a long-term depression
(LTD) in the action of parallel fibers to Purkinje cells synapses as postulated
by Albus (Barto et al., 1999).

The paper by Houk et al. (1996, sec. 3.3) contains an interesting dis-
cussion about the nature of climbing fibers. Houk, Buckingham, and Barto
discuss how various combinations of sensory fibers and collaterals of motor
fibers converge in the inferior olive (the origin of the climbing fibers). Accord-
ingly, the inferior olive computes the error signal that is then sent through
the climbing fibers. The intriguing point is to understand the nature of the
combination between somatosensory and efference copies in the inferior olive.
On the one hand, it is possible that motor signals dominate the formation
of the signal generated on the climbing fibers. On the other hand, this sig-
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nal could be dominated by somatosensory information. Another possibility
is that the signal carried by the climbing fiber is a weighted combination
of both somatosensory and motor information with complex temporal and
intensity patterns. The problem is that the nature of the signal transmitted
by the climbing fibers has not been established with any certainty yet. Thus,
probably, as stated by Miall et al. (1996), the key to a definitive understand-
ing of the function of the cerebellum is given precisely by understanding the
functioning of climbing fibers.

Another study that is worth mentioning in this context was done by
Keeler (1990, sec. 6.5) and contains an interesting discussion of the timing
properties of the climbing fibers. He suggests that part of the role of the
climbing fibers is that of transmitting a synchronization signal. This idea
seems intimately connected to the concept of eligibility traces extensively
studied during the nineties and that will be discussed in section 3.5.

Purkinje Cells. The Purkinje cells are the sole neural exit from the cere-
bellum and they project to several structures important in regulating and
coordinating movement (Berthoz, 1997). They are large neurons measuring
between 21 and 40 µm. Indeed, they are the largest cells of the cerebellum
and also its main processing units (Keeler, 1990). Each Purkinje cell contacts
about 35 nuclear cells. Purkinje cells generate complex spikes when activated
by a a climbing fiber and a number of parallel fibers. The spikes are simpler
when the cell is activated only by parallel fibers, basket and stellate cells.
The Purkinje cell has only one single climbing fiber which branches out into
its dentritic structure (Peters and Smagt, 2002; Keeler, 1990). Ito was the
first to discover the inhibitory nature of Purkinje cells. It is believed that
neural inhibition is actually one of the basic mechanisms in the production
of movement and the main mechanism of sensorimotor training (see Berthoz,
1997, chap.10).

3.4 Learning

If one wants to understand the predictive capabilities of biological systems
it is necessary to study the mechanism by which they are acquired. I will
hence discuss some aspects of learning.

Learning is important for prediction. Intuitively we can affirm that; if one
wants to predict something, one needs a previous experience about the fact in
question. Learning is a huge research area and my intention is only to make
a short survey of some interesting concepts that may help the understanding
of prediction.

What is learning? Looking into a dictionary, the following definitions
can be found:

1. Knowledge or skill acquired by instruction or study
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2. Modification of a behavioral tendency by experience

From these definitions two main ideas emerge. First, learning implies the
acquisition of knowledge; there is a strong body of evidence that in humans
and other animals, knowledge arise from the variation of the neural synapses
—an issue that I will discuss in the next section. Second, this acquired
knowledge can affect current and future behavior. In this sense, Wolpert,
Ghahramani, and Flanagan (2001) state that learning involves changes in
behavior that result from interaction with the environment and is distinct
from maturation. For Wolpert et al. (2001) the goal of this behavioral change
is, in general, to improve performance.

3.4.1 Motor learning

Probably, an adequate framework for the understanding of many of the prob-
lems associated with learning and prediction is that of motor learning (Jor-
dan, 1996). Motor learning has received a lot of attention in recent decades
and there is an impressive quantity of findings that cannot be fully reviewed
here. Nevertheless, I will expand on the problems associated with motor
control in section 3.7 and here I will discuss some research results in motor
learning that can be relevant to other kinds of learning.

The first question that comes to mind is: do we learn everything from
scratch or do we have some kind of learning bias? Wolpert et al. (2001)
explain that humans start with innate patterns of behavior, that conform to
a set of hardwired motor skills. They argue that these innate patterns are the
result of evolutionary pressures that have predetermined neural connections
we have at birth. To understand motor learning, they suggest, we must
approach learning as a process taking place not only during one’s live, but
also during previous generations.

Motor learning can also provide some clues about how time may affect
learning. Indeed, it is important to realize that learning may develop over
different time scales. For example, Flanagan et al. (2003) reports exper-
iments showing that in humans predictor and controller learning occur at
different speeds.

The time difference between learning and unlearning can shed light on
about the mechanism of motor learning at work in humans. In works related
to human motor control, Wolpert and Kawato (1998) show that there is a
temporal asymmetry between learning and unlearning. This makes them
hypothesize that learning implies the adaptation of a new module whereas
unlearning represents only a switching operation between modules.

Another critical point is to understand in which space learning may take
place. In the context of an active vision system, Coombs (1992) states that
it is important to make the predictions in a coordinate system not per-
turbed by the control system, so that the target signal can be stable in that
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space. A target trajectory may be relatively smooth in head-centered coor-
dinates but can create problems in the visual system if a retinotopic space
is used (Coombs, 1992). In a related work, Brown (1990) states that non-
retinal representations are more robust and therefore it is better to use head
or laboratory centric reference frames to predict retinal images.

In another work related to the study of human gripping, Witney and
Wolpert (2003) cite studies that show that anticipatory grip force modula-
tion is scaled to object weight, texture, shape, center of mass and previous
experience. They suggest that this prediction is hence not hard-wired but
learned through development.

3.4.2 Learning through prediction errors

I will discuss now an interesting work in neuroscience by Schultz and Dick-
inson (2000) regarding learning and the neural coding of prediction errors.
For Schultz and Dickinson (2000), associative learning enables animals to
anticipate the occurrence of important outcomes. They suggest that learn-
ing may occur when the actual outcome differs from the predicted outcome.
This difference may produce a neural signal known as prediction error. They
argue that several brain structures seem to code prediction errors regarding
several external events.

Thus, for Schultz and Dickinson learning consist in the acquisition of
reliable predictions about future outcomes. Prediction errors lead to the ac-
quisition or modification of behavioral responses. In general terms, Schultz
and Dickinson continue, learning can be viewed as the acquisition of the
capacity to predict outcomes. In other words, prediction errors are con-
sidered as the leading factor that directs learning, although it is not clear
whether prediction errors are directly used to create associations ,or rather,
they affect quantitatively the attention allocated to the stimuli (Schultz and
Dickinson, 2000).

Returning to the issue of the time scale of learning, Schultz and Dickinson
show that prediction errors can affect learning after some days (as in the
case of the coding of dopamine neurons) or in the course of a few seconds or
minutes.

In the previous section, I presented the structure of the cerebellum and
how prediction errors seem to be coded in the climbing fibers. Here, I con-
tinue the discussion commenting some other neural groups involved in car-
rying signals related to prediction errors.

Dopamine neurons. According to Schultz and Dickinson dopamine neu-
rons show homogeneous, short latency responses to two classes of events:

• Certain attention-inducing stimuli

• Reward related stimuli
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In the case of reward, dopamine neurons code an error in the prediction of the
reward (Schultz and Dickinson, 2000). Furthermore, the role of dopamine as
a behavioral reinforcer is in line with the role of the Time Difference error in
the reinforcement of learning algorithms (Schultz and Dickinson, 2000; Doya
et al., 2001).

Superior Culliculus. Schultz and Dickinson report an important impli-
cation of this group of neurons for saccadic movements and eye position.
In the context of cognitive neuroscience, Berthoz (1997, pag.77) argues that
the colliculus is involved in anticipation and motor prediction. In particular,
he suggests that the colliculus is a key structure for understanding how the
brain handles the problem of spatial and temporal coherence of signals com-
ing from different senses —learning based on different sensorial modalities.

From a more general perspective, it seems that there is a wide agreement
that, at least, these two types of learning may exist (Schultz and Dickinson,
2000):

• Classical conditioning (Pavlovian)
Here, the reactions elicited by a signal are controlled solely by the
predictive relationship between the signal and the reinforcer.

• Instrumental conditioning
In this case, signals elicit changes in behavior that allow the person
to control the occurrence of events. In other words, there is an ac-
tive interaction that allows to acquire through experience the causal
relationship between the reaction and the reinforcer.

Whatever, the particular form of learning, Schultz and Dickinson (2000)
suggest that the learning cycle may be formed by the following steps:

1. Generation of predictions of an event.

2. Processing of the event.

3. Computation of the event and its prediction.

4. Use of the prediction error to modify both subsequent predictions and
performance (learning).

3.4.3 Computational paradigms of learning

I have discussed so far some of the conceptual aspects of learning, but it
is interesting to see how learning mechanisms are practically implemented
in computer systems. I hereby consider three computational paradigms for
learning which correspond to the three principal ways in which a biological
learning system can interact with the environment:
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• Supervised learning; In supervised learning the environment provides,
for each input, an explicit desired output. The goal of the learning
system is to learn the mapping from input to outputs (Wolpert et al.,
2001). The difference between the learned mapping and the teaching
signal, i.e. the error, can be used to modify the mapping itself by using
an appropriate learning rule. These learning rules adjust the synaptic
weights of the system and take the form of delta rule of backpropaga-
tion (Wolpert et al., 2001).

• Reinforcement learning; Reinforcement learning is the problem faced
by an agent that must learn through trial and error interactions with
a dynamic environment. Generally, a reinforcement signal from this
environment is used to guide learning. Doya et al. (2001) affirm that,
in general, reinforcement learning is notoriously slow for nonlinear,
high-dimensional control tasks. It is much more time consuming and
harder to apply to large-scale learning tasks (Mehta and Schaal, 2002).

• Unsupervised learning; A form of unsupervised learning is Hebbian
learning. Donald O. Hebb, a canadian neuropsychologist, postulated
that learning is based on the modification of synaptic connections be-
tween neurons. He proposed that the repeated stimulation of specific
receptors leads slowly to a metabolic change in the synaptic connec-
tions of the cell involved.

3.4.4 Exploration versus exploitation

Probably, the most important conclusion is that learning is context driven
(Smagt, 1998). The learning agent learns through interaction with the envi-
ronment, but it must also take into account that this learning may be based
on incomplete information and, most importantly, that it must be acquired
quickly enough to keep up with the changes in the environment (Metta,
1999). Therefore, time has a fundamental role in the learning process. The
agent has to decide when to stop exploring and to start using what has been
learned (exploitation).

3.5 Neural plasticity

This section continues the discussion of learning. Here I summarize some of
the main findings in neural plasticity in the cerebellum. Neural plasticity
is the ability of neural circuits to undergo changes due to previous activity.
From a neural point of view, as addressed by Houk et al. (1996), any model
of the cerebellum needs to adopt a rule for modifying synaptic efficacy. This
is to say that, if we intend to create a model of the cerebellum, we need
to simulate the learning process happening in the cerebellum that presents
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itself in the form of neural plasticity. Cellular and chemical mechanisms
involved in neural plasticity, however, are extraordinarily complex. Indeed,
research about these mechanisms is still a largely uncharted area of investiga-
tion. Here, I just discuss some ideas and concepts used in the computational
modeling of neural plasticity.

The publications of Marrs (1969) and Albus (1971) about models of the
cerebellum encouraged experimentalist to search for a cellular mechanism of
synaptic plasticity (Houk et al., 1996). Marr proposed a learning rule similar
to the rule used in Hebbian learning and analogous to the long term potenci-
ation (LTP). Albus, on the other hand, suggested a mechanism by which the
synaptic weight is decreased in the presence of a coincidence signal in three
cells: a climbing fiber, a Purkinje cell and a parallel fiber. This learning
rule is known as long-term depression (LTD) and it has been demonstrated
experimentally that it is actually taking place in the cerebellum.

Yet, if one attempts to create a computational model of neural plasticity
other problems appear. Houk et al. (1996) address the problem of the credit
assignment, which is the difficulty of directing training signals to the appro-
priate sites in the network and at the appropriate moment. Smagt (2000)
explains that this problem requires keeping track of which signal from which
unit causes an error in the output. Consequently, the credit assignment
problem can be divided into two different parts (Houk et al., 1996; Smagt,
2000):

• Structural credit assignment problem

• Temporal credit assignment problem

Considerable research efforts have been made toward understanding these
processes of neural adaptation in the cerebellum. In particular, research by
Houk et al. (1996), Barto et al. (1999) and Houk and Miller (2001) has been
concentrated in creating biologically plausible computational models of cere-
bellar learning. For example, in Barto et al. (1999) the authors propose a
simplified model of neural learning exploiting the concept of eligibility traces
borrowed from Klopf (1972,1982). This hypothesis suggests that appropri-
ate activity at a synapse creates a synaptically local memory trace. This
local memory makes the synapse eligible for modification if and when the
appropriate training information arrives within a short period of time. Barto
et al. explain that this allows the learning rule to modify synaptic weights
based on the synaptic actions that ocurred before the relevant climbing fiber
information is available. In a work dealing with the creation of predictive
models of smooth pursuit based on eligibility traces, Kettner et al. (1997)
report that the model lost its capacity to learn predictive tracking when not
using eligibility traces. Eligibility traces appear as a mechanism of neural
synchronization, such that signals with different time delays contribute to
synaptic adaptation.
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Therefore, synchronization may have a fundamental role in the learning
processes in the cerebellum and probably everywhere in the brain. Further-
more, the signals to be synchronized do not need to be of the same modality.
In this context, Berthoz explains that one problem the brain has to solve
in order to enable the fusion of multisensory information is that of time
shift. He indicates that the solution adopted by the nervous system is called
temporal windows. This is, in the words of Berthoz, “a memory developed
by the neural network of the colliculus that maintains the sensitivity of the
multimodal neurons during certain time.”

The concepts of eligibility traces and temporal windows seem to overlap
to a large extent. Or at least, both ideas try to solve the same problem
—how to put together asynchronous signals. In addition, one can think of
temporal synchronization as taking place at different levels, from a more
synaptic based synchronization to a more cognitive based one.

3.6 The development of prediction

To understand prediction it is necessary to study also its evolution during
development. In this case, we may formulate several questions:

• Is prediction a phylogenetic or a ontogenetic process?

• How do humans develop prediction?

• When do humans start using predictions?

• Do humans use the same neural structures for all types of predictions?

• How do humans develop the neural structures necessary for prediction?

These and many other questions arise when thinking about the devel-
opment of prediction. Unfortunately, we have not yet found the answer for
them. Based on current research results, we can provide only some partial
answers.

As we do not have yet discovered the genes involved in prediction, it
is difficult to answer the question of whether prediction is the consequence
of a phylogenetic or a ontogenetic process; however, we already have some
clues. It is known that at birth the human cerebellar cortex has a well estab-
lished architecture. It is also believed that the cerebellum has an important
role in predictive capabilities, particularly in those related to movement and
sensorial expectations. Thus, we can make the hypothesis that some of the
neural mechanisms involved in prediction are phylogenetic structures and
are available at birth. The way these mechanisms adapt to particular types
of prediction would be an ontogenetic process.

Yet, the latter hypothesis is incomplete because it considers development
as starting only at the moment of birth. For a complete understanding of
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the problem it would be necessary to analyze the development of the fetus.
Prenatal movement is present in all animals and is believed to begin long
before the twelfth week of gestation (van Heijst, 1998). It is possible that
these prenatal movements have an influence on the ontogenesis of predictive
mechanisms (e.g. in motor control). In this early ontogenic development,
the consequences of living in an aquatic environment should be taken into
account. Many animals spend the first weeks of their lives in an aquatic envi-
ronment, to be later born in a gaseous environment. The main consequence
of living in a fluid is the reduction of the gravity force that could help both
the development of muscles and the acquisition of rough models of body dy-
namics. Moreover, the contact with the internal wall of the uterus provides
the fetus with a clear feedback signal when moving the limbs, and this could
help in the development of early control and predictive neural structures.

Moreover, the pathways variation of feedback signals during development
should also be taken into consideration. The change in neural pathways has
as consequence modifications in the nature of the feedback signals during
development, that is, feedback signals could suffer significant changes in
timing, composition and intensity.

Unfortunately, the hypotheses discussed above are difficult to test. Tech-
nical difficulties associated with prenatal research have limited our knowledge
about development before birth. We are only now starting to understand
plasticity changes in neural connections in adult subjects. To my knowl-
edge, prenatal studies are mainly concerned with the quantitative aspect
of fetal movement, though perhaps in the near future, using non intrusive
three dimensional visualization tools, it will be possible to perform more
complete experiments to analyze the dynamics of the fetal movements and
their relation to prediction.

Much more information is available when we study development after
birth. Indeed, this is the main research field of developmental psychology.
From this field, we know that the predictive capabilities of humans increase
considerably with age; probably this is due to both maturity and the adap-
tation of the neural mechanisms involved in prediction.

To understand this process we can refer to some works on the develop-
ment of smooth pursuit. Smooth pursuit (SP) has attracted a lot of attention
from the research community and has been studied in detail during the last
half century. This makes SP an excellent starting point for understanding
the developmental processes that take place in the acquisition of prediction
capabilities.

Several important findings have been reported in the study of SP in
young infants. Infants one month old present a delay of 180 microseconds
when following an object with the eyes (Von Hofsten and Rosander, 1997);
therefore, the earliest expressions of smooth pursuit do not predict the tar-
get very well and the performance of this prediction depends on the size
of the stimulus (Von Hofsten and Rosander, 1996). Moreover, SP in these
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early months of life is step-like (i.e. based on saccades) (Johnson, 1997). It
seems that a predictive strategy appears between two and three months of
age, when infants start following the target smoothly often staying on the
target or little ahead of it (Von Hofsten and Rosander, 1996, citing Aslin).
At this age infants are also able to anticipate the appearance of a picture
by moving the eyes before the image appears (Von Hofsten and Rosander,
1996, citing Haith). Because of the internal lags of the perception-action
cycle, this control strategy can only be explained in the context of predictive
control. Indeed, this predictive strategy works well for sinusoidal trajecto-
ries but it fails for triangular ones. This could be explained with the fact
that the sinusoidal trajectory can be easily predicted using a local velocity
extrapolation, whilst the triangular trajectory requires a more complex pre-
diction mechanism based on expectations or learning of the periodicity of
the signal (Von Hofsten and Rosander, 1997).

These results suggest that a combination of maturation, adaptation and
learning may take place during a long period of time thus allowing the subject
to increase the complexity of predictions. First the subject is able to make
simple predictions based on local extrapolations of the trajectory. Then, in
a second stage, these extrapolation mechanisms generalize factoring in pre-
dictions based on global trajectory features such as periodicity or pattern
probabilities. Third, the subject learns intersensorial associations and learns
crossmodal expectations. After that, the subject starts developing even more
complex predictions based on cognitive processes. All these steps are devel-
oped in parallel with the capacity to predict more and more into the future,
due to the performance improvement of the neural mechanisms involved in
prediction.

3.7 Prediction and computational motor control

In this section I discuss some of the problems encountered by computational
motor control. Interestingly, these problems are also the ones faced by the
human brain and it is likely that the brain uses prediction mechanisms to
solve many of them. The study of motor control is fundamentally the study of
sensorimotor transformations and includes also the study of dynamics (Jor-
dan, 1999). Just as a terminology note, it is worth noting that in control
theory the word state is used to define the variables that specify the con-
figuration of the body; for example, these variables can be joint angles or
positions (Wolpert et al., 2003). Other variables with slower and discrete
change rates are considered to be the context (Wolpert et al., 2003).

3.7.1 Problems in control

Therefore, some of these problems are:

36



State estimation. To obtain accurate control, the system has to know
with precision both the state and context of the body (Wolpert et al., 2003).
The motor command depends on the state of the system (Wolpert and
Kawato, 1998). However, the internal state and the context are not di-
rectly available to the system and they need to be inferred from the sensory
feedback available. Moreover, in biological systems (and also in some ro-
bots) these signals can be of different nature: auditory, visual, tactile and
propioceptive. In general, it is assumed that the state and the context can
be estimated using a function of these signals. After this, the estimation can
be used to control the system.

More generally, Wolpert (1997) identifies three cues available to estimate
the state:

• Sensory inflow (e.g. propioception)

• Motor commands (efference copies)

• A combination of both the above

Delays. When dealing with sensor signals one has to address the prob-
lem of delay. Indeed, sensory signals can have a processing delay of more
than 150 milliseconds in the case of the human visual system and of several
milliseconds in robotic systems depending on the type of sensor used. The
main difficulty is that these delays can create stability problems in using
sensory information as control signals, particularly in the case of feedback
control (Brown, 1990; Robinson, 1987; Coombs, 1992). Delays can be due
to several causes:

• Processing

• Transduction (Wolpert et al., 2003)

• Transport of sensory signals

• Switching between control modes

Humans succeed in controlling a complex system such as the human body
despite the delays. Indeed, several strategies can be used to deal with this
problem. Three of them are:

• Slow down system gains This case is not very optimal because the
performance of the system suffers (Brown, 1990).

• Intermittency It alternates movement and rest, waiting for a sensory
validation after each movement (Wolpert, 1997).
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• Prediction In general prediction refers to estimating future states of a
system; but it can include many other functions (Wolpert and Flana-
gan, 2001). This strategy seems to be the one used by humans and
other animals.

Synchronization. Another problem that may arise with different sen-
sor and control modalities is the problem of synchrony. Sensor modali-
ties can have different sampling frequencies which can make sensor inte-
gration difficult. The signals can occur up to several hundred milliseconds
apart (Wolpert et al., 2003). In humans, this problem seems to be solved
by a mechanism similar to the mechanism of eligibility traces explained in
section 3.5. But it is likely that the nervous system is also able to regulate
the velocity of conduction of nerve fibers and neurons to make signals arrive
at the same time (see Berthoz, 1997, pg. 82).

Neural noise. Neural noise is definitely a problem in biological systems,
but also in artificial ones. In artificial systems we deal with noise by using
stochastic system analysis (discussed in section 5.3.5). In biological systems,
however, it is not so clear how this phenomenon is treated . It has been
suggested that noise may play a fundamental role in development. Neural
noise can be caused by many factors, as for example immature neural pat-
tern innervations or lack of myelination (Metta, 1999). Moreover, it is likely
that noise affects not only the sensorial signals but also the motor com-
mands (Wolpert et al., 2003).

Switching between control submodules. Another problem a control
system has to face is that of the interaction of subcontrol components (Brown,
1990). This is specially the case when control is exercised through an adap-
tive system. The switching time between components can be a problem.
Particularly, in the case where one of the control modules is a memory, the
control architecture may face problems accessing and storing data.

Non-linear properties. This is one of the biggest problems faced by ar-
tificial systems that try to imitate biological control methods. The skeleto-
muscular system in humans is highly non-linear. Non-linearity has important
computational consequences and can make difficult mathematical modeling.

High dimensional state of the motor system. The other problem
associated with the control of such a complex structure as the human skele-
tomuscular system is its high dimensionality. This can lead to the known
problem of the course of dimensionality (Bellman, 1957).
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3.7.2 Computational representations for motor learning

The theoretical framework of motor learning is a possible alternative in deal-
ing with the problems discussed above. Motor learning can be seen as the
learning of the necessary mappings representing the sensorimotor transfor-
mations needed to perform a desired control. In artificial agents, these map-
pings take the form of computer based data representations acquired through
some of the learning methodologies explained in section 3.4. These data
structures can take the form of some of the representations listed below:

• Lookup tables

• Basis functions

• Parametric representations

3.7.3 Motor planning

Another problem faced by biological and artificial systems is that of motor
planning. Motor planning can be viewed as the computational process of
selecting a single solution in the motor hierarchy (Wolpert, 1997). In the
case of artificial systems, a computational framework used to solve such a
problem is called optimal control theory, where a cost function is minimized
to find a solution (Wolpert, 1997). Indeed, one of the main goals of research
in motor control has been to understand and model the cost function that
the human brain uses to solve the problem of motor planning. Although
much effort has gone into reverse engineering this cost function, the control
method used by humans is still unknown (Wolpert, 1997). Yet, this research
has developed various methods of trajectory planning that can be divided
into four main groups:

• Kinematic

• Dynamic

• Force fields (Mussa-Ivaldi, 1997)

• Minimum variance

The first two try to minimize some particular variables like the jerk or
the rate of change of the torques. The main difference between them con-
sists in the parameters used to calculate the cost function and the degree of
separation between planning and execution (Wolpert, 1997). The potential
field approach is based on the experimental observation that any position of
the arm configuration space can be obtained by a linear combination of a
small number of motor primitives each represented by a torque field (Metta,
1999). Finally, the minimum variance theory assumes that noise has great
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importance in motor commands, assuming that the noise increases propor-
tionally to the intensity or volume of the motor command. Thus, when a
movement is done very quickly the noise increases. Consequently, the error
at the end of the movement is bigger than in the case when the movement
is slower.

3.8 Chapter summary

This chapter deserves a summary of the salient points discussed so far. The
first thing to remember is that prediction does not follow a distinct research
line in the traditional sense. If one wants to create a robot with predictive
capabilities similar to those of humans, one has to combine several research
lines in a multidisciplinary approach, and even in this case, research results
have not yet produced enough information to completely understand predic-
tion. The second thing is the fact that prediction may affect many other
ongoing processes in humans and other animals. I address the particular
case where perception is interpreted as the comparison between an expected
and an actual state. Perception must be understood as a multisensorial ex-
perience, and consequently, the synchronization and integration of different
sensory signals acquire a special relevance. One should also consider the pos-
sibility that, crossmodal expectations may guide perception as well. In the
third place, I have offered a description of the cerebellum. This brain organ
has a particular relevance in movement, prediction, sensorial expectation and
dynamics modeling. The fourth issue has been learning and how it seems
to be encoded in the brain through variations in neural synapses —neural
plasticity. Learning can be seen as the acquisition of reliable predictions.
Prediction errors may be fundamental signals used throughout the brain to
guide learning. Finally I have discussed some details related to the develop-
ment of prediction and some problems that appear in motor control which,
in all likelihood, humans and other animals solve by means of predictive
mechanisms.
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Chapter 4
Computational models of the

cerebellum
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I
n recent years, there has been considerable efforts to use cerebellar based
controllers in robotic systems. The appearance of light-weight robot ma-
nipulators has recently attracted the interest of research groups working

in this area (see Smagt and Bullock, 1997). There is a good reason for
that. The traditional control methods have made an enormous progress in
automation. Industries have successfully adopted robotized systems in man-
ufacturing (e.g. car manufacturing industry). Why then are robots not used
everywhere? The reason is that currently robots can successfully operate in
constrained, well defined, environments. In these applications usually the
interaction between the robot and the world is limited and controlled. One
would like to create robots, however, that are more similar to humans. In
this case, one encounters several problems that traditional methods are un-
able to address. Two of these problems are: flexible links and flexible joints.
If one wants a light-weight robot, this usually means that the rigid body as-
sumption used in classical robotics needs to be abandoned. The low weight
of the links usually correlates with weaker materials that consequently have
more flexibility. Moreover, the use of artificial muscles or high-ratio gear
boxes allow for a certain degree of compliance at the joints. As already ex-
plained in section 3.7, two more complications must be taken into account:
times delays and high-dimensionality. The time delays can be of many types
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and can be particularly important in sensory feedback. Although computer
power is constantly increasing, very often algorithms are still too complex to
allow real time performance (this is especially true for image processing or
when multiple sensorial sources are involved).

Consequently, one needs to study alternatives to current methods and
consider architectures that will be better suited to the complex control re-
quired of the new generation of robots. The computational models of the
cerebellum is one of the options. These models deal with aspects that have
not been considered in traditional methods such as learning and adaptation.

So, can artificial cerebellar models compete to control robots? (Smagt
and Bullock, 1997; Smagt, 2000). Probably, the question can be partially
answered by saying that it depends on the robot to control. However, for the
moment, there is still a big gap between existing applications and cerebellar
based control. Usually, the latter is limited to the control of 2-link simulated
robots arms (Smagt, 2000).

There have been two main lines of research attempting to develop plausi-
ble biological models of the cerebellum. There are many differences between
these two approaches, but probably, the most controversial issue is whether
the cerebellum creates internal models or not. Mehta and Schaal (2002)
suggest that the two approaches can be classified in two conceptual groups
of control: direct control and indirect control.

The differences between the two approaches are not confined to the phi-
losophy of control, but extend to the way of understanding brain mechanisms.
Direct control is dominated by a bottom-up approach where researchers try
to model the morphology of the cerebellum as well as its ability to adapt at
the cellular level. In contrast, indirect control is strongly based on the idea
that the cerebellum implements internal models. This line of research has
approached the problem from the point of view of control theory thus trying
to simulate the cerebellum at a functional level.

In the following sections, I review the more relevant models of the cere-
bellum. The review of each model is organized in four subsections. First I
present its historical development and theoretical concepts. Second, I dis-
cuss its range of capabilities. Third, I talk about the learning methods used.
Fourth, I discuss the principal problems. And finally, I review the main
improvements suggested in the literature for each given model.

4.1 Cerebellar Model Articulation Controller (CMAC)

4.1.1 Origins and concepts

Albus was the creator of the CMAC model. This model was the computa-
tional implementation of some ideas about how the cerebellum works. Albus
improved and modified some ideas first proposed by Marr. This is why this
model is popularly known as the Marr-Albus theory model.
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The CMAC model seems to have been based on an earlier model called
BOXES (by Michie and Chambers). BOXES essentially implements a lookup
table, thus the extension proposed in CMAC resolves the generalization prob-
lems associated with this kind of representation (Smagt, 1998).

4.1.2 Capabilities

CMAC considers the cerebellum to be a perceptron-based associative mem-
ory that controls elemental movements (Smagt and Bullock, 1997). The
cerebellum is considered a context-driven pattern recognition system (Doya
et al., 2001). In the model, granule cells work as combinatorial encoders of
sensory and motor variables and the Pukinje cells work as pattern classifiers.
The climbing fiber inputs are used as teaching signals (Doya et al., 2001).

One of the most important features of CMAC is the discretization of in-
put signals through the input sensors. Basically, the overlap of the receptive
fields produces input generalization, while the offset of the adjacent layers of
the receptive fields produces input quantization. In other words, the oper-
ation of the CMAC can be described in terms of a large set of overlapping,
multidimensional receptive fields with finite boundaries (Peters and Smagt,
2002).

Smith (1998) states some of the advantages of CMAC:

• The mapping and training operations are extremely fast.

• The algorithms used by CMAC are easy to implement.

• Local generalization prevents over-training in one area of the input
space from degrading the mapping in another.

• CMAC is useful in real-time adaptive control because of its speed.

4.1.3 Learning

CMAC has often been considered only a function approximation model (Smagt,
1998). The network output is linearly related to the weights of the respective
signals thus the learning of a pattern is instantaneous and does not require
an iterative procedure. The weights are modified using a delta rule.

4.1.4 Problems

Yet, CMAC is only a crude approximation of the cerebellum. An impor-
tant shortcoming is that it ignores the inhibitory nature of the Purkinje
cells (Smagt, 1998). Moreover, the original CMAC was not able to com-
pute partial derivatives information (see Smagt and Bullock, 1997, chap.2).
Indeed, this problem becomes highly relevant when the system is asked to
create predictions in areas of the state space where the training data is
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sparse (Smagt and Bullock, 1997). Another problem may be that CMAC
does not take into account time (Smagt and Bullock, 1997).

According to Peters and Smagt (2002) the Marr-Albus theory focuses
on the cerebellar cortex and associates each Purkinje cell with elementary
movement. The cerebellar cortex is considered to be an isolated system,
without taking in consideration the fact that the cerebellum is integrated in
a more complex system (Peters and Smagt, 2002).

4.1.5 Improvements

A recent improvement was suggested by Kraft (see Smagt, 1998, pag.12); this
improvement is called smoothed CMAC because the gradient of the network
output can be calculated. This gradient is useful for dynamic control in
robotic systems.

Another recent improvement on CMAC is the Fairly Obvious Extension
(FOX) by Russel Smith (Smith, 1998). The major difference of FOX with
respect to CMAC is that the climbing fiber carries error information which
is filtered and used for weight modifications using eligibility traces (similar
to APG –see bellow). Moreover, elegibilities are in vectorial form instead of
a scalar form (Peters and Smagt, 2002).

4.2 Adjustable Pattern Generator(APG)

4.2.1 Origins and concepts

The adjustable pattern generator was introduced by Houk and colleagues.
The term adjustable is used since the model is able to generate a burst
command with adjustable intensity and duration (Houk et al., 1996; Peters
and Smagt, 2002).

The APG is based on the same understanding of the cerebellum structure
as CMAC. Basically, it contains the same state encoder that the CMAC
and the improvement used in CMAC for the state encoder can be used for
APG (Peters and Smagt, 2002).

4.2.2 Capabilities

The APG has only been used to control simple systems (i.e. single muscle
or two-link robot arm having six muscles) (Peters and Smagt, 2002).

According to Miall et al. (1996), in the APG model, the key role for
the cerebellar cortex is to modulate and terminate motor commands; how-
ever, this models ignores that the cerebellum may function also as a sensory
predictor or state estimator (Miall et al., 1993).

Each module in APG includes a positive feedback loop between a cerebel-
lar nucleus cell and a motor cortical cell. Each nucleus cell receives inhibitory

44



input from a private set of Purkinje cells. Each set of Purkinje cells receives
a private climbing fiber training signal. A key assumption is that climbing
fibers train Purkinje cells to recognize particular patterns of parallel fibers
activity that indicate when desired endpoints are about to be reached (see
Houk et al., 1996).

4.2.3 Learning

Although CMAC and APG have the same conceptual bases, they differ
strongly in the learning mechanisms. The synapses of the Purkinje cells
learn by the reinforcement given by one climbing fiber for each APG. The
climbing fiber gives an external error signal (Peters and Smagt, 2002).

APG is continuously learning while controlling the system, thus it is to
be considered an on-line learning controller (Peters and Smagt, 2002).

The most relevant characteristic of APG learning is that it uses eligibility
traces. The learning rule has two components: a strong one named long-term
depression (LTD) and a much weaker one named long-term potentiation
(LTP) (Peters and Smagt, 2002).

4.2.4 Problems

Some authors complain about the positive feedback of the APG model. Pos-
itive feedback can be difficult to control and, consequently, can provoke ex-
cessive activation (Miall et al., 1996).

4.2.5 Improvements

Barto et al. (1999) present an extensive work about a simplified version of
the APG model. This model was used to investigate the timing and pre-
dictive processes taking place in the cerebellum in the control of movement.
According to the authors, the model does not make explicit predictions and
does not use a forward model. The system simply learns to generate a motor
command in a manner that elicits desired future behavior.

4.3 Internal models

4.3.1 Origins and concepts

According to Houk et al. (1996) internal models have fascinated control the-
orists with their potentialities in system control. The underlying idea is that
the cerebellum creates internal models that predict responses when supplied
with sample commands. Once learned these models become an integral part
of the controller (Houk et al., 1996).

It seems that Ito was among the firsts to hypothesize that the cerebellum
provides models of the body and the physical environment and that these
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models may be used to achieve accurate control despite the time delays in
sensory feedback (Doya et al., 2001).

Indeed, the necessity to create a model of the plant (e.g. the arm) is
a requirement that emerges also from control theory (Doya et al., 2001).
Skilled motor behavior requires both inverse and forward internal models.
Any good controller can be thought of as implicitly implementing an inverse
model of the system (Wolpert et al., 2001).

4.3.2 Capabilities

One of the leading ideas in this field is that the cerebellum provides an
estimate of the current state of the motor system by employing a forward
model of the plant (Miall et al., 1996; Wolpert et al., 1998).

In the case of the control of the arm, Wolpert et al. (1998) state that
internal models can permit a control with reduced stiffness.

We can identify two types of internal models (Wolpert and Kawato,
1998):

• Forward models

Forward models are directly involved in prediction. By using an ef-
ference copy of the motor commands, they are able to anticipate the
sensory effect of movement (Jordan, 1999). Forward models can pro-
vide a fast internal feedback loop that contributes to the stability of the
system. Moreover, this internal loop can be used to assist an imperfect
controller (Miall and Reckess, 2002).

In general, according to Wolpert et al. (2001), the prediction generated
by the forward models can be used for: state estimation, sensory confir-
mation and cancellation, context estimation, mental practice, imitation
and social cognition.

Several research results support the hypothesis that the cerebellum
provides a forward model of the motor system (Miall and Reckess,
2002). Evidence of the existence of forward models in the cerebellum,
however, is difficult to find, because the output of the forward model is
not used directly as a visible output (i.e. measurable experimentally).
Instead, it is used indirectly to facilitate control processes (Mehta and
Schaal, 2002).

There are two kinds of forward models

– Forward dynamic model These models capture the forward rela-
tionship between inputs and outputs. They predict the next state
of the system (Wolpert, 1997). Their output, adequately delayed,
can be used to create a teaching signal to improve control.
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– Forward output model Forward output models produce an esti-
mate of the sensory output (Wolpert and Kawato, 1998). In other
words, given the estimated state of the system (computed by the
forward dynamic model) they are able to predict the sensory feed-
back (Wolpert, 1997). This fast feedback signal can be used to
cancel the predictable part of the real sensory feedback.

• Inverse models They provide the motor input that will cause a desired
change in the state of the plant. Therefore, they are well suited to
act as controllers (Wolpert and Kawato, 1998). They can transform
sensory variables into motor variables, that is, they transform desired
sensory consequences into motor commands that yield these conse-
quences. Internal models are the basic module in open-loop control
systems.

Smith Predictor. A feedback control system that uses forward models
both for mimicking the plant (forward dynamic model) and for canceling pre-
dictable feedback (forward output model) is known as Smith Predictor (Miall
et al., 1993). It is believed that the cerebellum can act as such a controller.
The Smith Predictor has been criticized because it needs to learn two mod-
els: one for forward dynamics and another one for feedback delays. However,
these models present different learning rates, so it is plausible that they are
learned in parallel (Wolpert et al., 1998). Experiments show that the learn-
ing process is slower when the delays of the feedback signal are artificially
modified (Wolpert et al., 1998). This suggests a strong correlation between
learning and the timing of the feedback signals.

4.3.3 Learning

Both forward and inverse models can be combined to create plausible learn-
ing structures. The models do not necessary need to be accurate; they can
be coarse and adapt to new situations by using learning signals to restruc-
ture their internal neural synapses. Some learning architectures have been
proposed and studied from a computational perspective, which suggests that
biological systems use similar learning mechanisms.

Learning the forward model. Learning the forward model is easier than
learning the inverse model. The basic idea is that forward models are not
fixed entities but must be learned and updated through experience (Wolpert
et al., 2003). Forward models can be easily learned by using supervised or
self-supervised techniques comparing the predicted and the actual outcome
of a motor command (Wolpert and Kawato, 1998).
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Learning the inverse model. The learning of an inverse model can be
more complicated. Usually, the signal used to teach the inverse model is
the motor error. Unfortunately, this signal is not directly available to the
Central Nervous System(CNS) but only in the form of an error in sensorial
space (e.g. in visual retinal coordinates). Therefore, a transformation is
necessary from sensory coordinates into motor coordinates (Wolpert et al.,
1998).
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Figure 4.2: Feedback error learning

Different solutions have been proposed in the literature to solve this sen-
sorimotor transformation problem:

• Direct inverse modeling In this type of learning, which architecture
is depicted in figure 4.1, the output of the plant is provided as an
input to the learning controller which in turn is required to produce
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as output the corresponding plant input (Jordan, 1999). Plant input
and controller output are compared to produce a learning signal that
is used to regulate the controller parameters. Consequently, an inverse
model of the plant can be obtained by supervised learning.

• Feedback error learning Figure 4.2 depicts the architecture of a feed-
back error learning system. A feedback controller is used to guide
the learning of the feedforward controller. This architecture, originally
proposed by Kawato (Kawato and Gomi, 1992), is inspired by the side-
path model (Peters and Smagt, 2002). The control architecure has two
main components: a fixed linear feedback controller and an adaptive
nonlinear feedforward controller (Doya et al., 2001). The control sig-
nal that governs the plant is the sum of the output of both controllers;
the learning signal for the feedforward controller is the output of the
feedback. The desired plant output is used for both, control and train-
ing purposes; therefore, the feedback controller is trained on-line (i.e.
control and learning happen at the same time). Goal directed control
is used as the desired plant output is directly used for control. This
model takes its biological clues from the assumption that the activ-
ity of the inferior olive essentially reflects a motor error (Houk et al.,
1996).

• Distal supervised learning In distal supervised learning, the controller
is learned indirectly, through the intermediary of a forward model of
the plant; the forward model must be also learned observing the inputs
and outputs of the plant. Both controller and forward model form a
composite learning system, i.e. a single computational unit from an
architectural point of view. If the controller is an inverse model then
the composite learning system should be an identity transformation;
therefore, using this identity transformation as a learning constraint,
the controller can be indirectly trained by fixing the parameters of the
forward model (Jordan, 1999).

4.3.4 Problems

In direct inverse modeling, the learning approach is not adequate for non-
linear systems. The existence of multiple solutions could lead the learning
algorithm (e.g. a last squares cost function) to produce a result that is the
average of these solutions, thus producing an incorrect controller. Moreover,
direct inverse modeling presents two different phases for learning and control,
and requires necessarily a switching mechanism between them. This strategy
is known as off-line learning.

In the case of feedback error learning, some researchers express their
doubts that it may have some convergence problems, particularly in the
control of non-linear systems. For example, Peters and Smagt (2002) state
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that although feedback error learning can be proven to be globally stable,
this is not always the case locally. Due to internal dynamics it can become
locally unstable. Moreover, feedback error learning has been criticized as
it lacks mechanisms to take into account time delays in the control loop.
Another point of criticism is that feedback error learning needs an accurate
and continuous trajectory to learn from (Wolpert et al., 2001). However, the
question of whether the brain does or does not generate a desired trajectory
is still an open debate in the research community.

4.3.5 Improvements

One of the principal improvements regarding internal models is probably
that of considering architectures where multiple internal models are used
together. This is the subject of the next section.

4.4 Multiple Internal Models

4.4.1 Origins and concepts

Modularity can simplify the control problem. In this sense, multiple internal
models can be regarded conceptually as motor primitives. The general idea
is that an architecture with different internal models can manage success-
fully many dynamically different situations (e.g. different object, different
contexts) (Wolpert and Kawato, 1998).

Research results present more and more evidence that the cerebellum is a
good candidate to contain multiple paired forward-inverse models (Wolpert
and Kawato, 1998).

4.4.2 Capabilities

According to Doya et al. (2001), the basic question in using multiple con-
trollers is how to select an appropriate controller under a given condition.
A solution is to feed all controllers and select the one that gives the best
performance. This solution, however, can be time consuming when there are
a large number of candidate controllers (Doya et al., 2001).

According to Wolpert and Kawato (1998) a fundamental aspect in this
type of control is that switching should be based on prediction errors rather
than on performance errors. This way by using prediction the system can
select a priori the correct action. In computational terms, the sensory predic-
tion error from a given forward model is represented as a probability (Wolpert
et al., 2003). This probability is used to create a responsibility signal that
in turn is used to select the adequate module. The responsibility signal is
derived from the combination of two processes:

• Forward model predictions
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• Sensory contextual cues

A system that implements the latter control technique is called MO-
SAIC (Wolpert et al., 2003). MOSAIC runs multiple forward models that
predict the behavior of the motor system; then these predictions are com-
pared with the actual feedback. Each predictor is paired with a controller,
so when the forward model achieves a good prediction its correspondent
controller is selected to control the current action.

Another possibility is that the multiple internal models handle a non-
linear control task by integrating the control output of multiple linear con-
trollers (Doya et al., 2001).

4.4.3 Learning

According to Wolpert and Kawato (1998), the problem of learning and con-
trol is best solved by using multiple controllers. Interestingly, a key ques-
tion in experimental psychology research is whether humans use one internal
model that must be tuned each time or more internal models that specialize
in particular parts of the motor space. Motor adaptation experiments sug-
gest that humans do not just tune the parameters of a single controller but
retain multiple controllers and switch them on the fly (Doya et al., 2001).

Another interesting question is whether, inside a module, the forward
models will be learned before the inverse model or vice versa.

4.4.4 Problems

The concatenation of optimal local control policies is not guaranteed to pro-
duce a globally optimal policy (Doya et al., 2001). The switching between
different modules can be time consuming and create timing problems in the
control. Lastly, the feedback prediction can be wrong, so in this case a fast
switch based on real sensory information is necessary to perform the correct
control action.

4.4.5 Improvements

An improvement on MOSAIC is called Hierarchical MOSAIC (HMOSAIC),
because it consists of several layers of MOSAIC. According to Wolpert et al.
(2003) the hierarchical architecture embodies a way to reconciling top-down
plans and button-up constraints.
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Chapter 5
Smooth pursuit
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5.1 Introduction

I
n this chapter I make a review of the history of smooth pursuit and then I
present a short experiment on smooth pursuit implemented on an active
vision robotic head. An excellent review about smooth pursuit can be

found in Pavel (1990). Although a little out of date, the paper by Pavel
(1990) is the most complete and exhaustive review about smooth pursuit I
have found. Therefore, to a certain extent, I follow his structure.

The oculomotor system has attracted a lot of attention in the research
community and there exists an enormous body of literature. In this section
I concentrate on a particular branch of research dedicated to the modeling
of the oculomotor system using techniques of control theory. In particular, I
will discuss works related to a particular function of the oculomotor system
called smooth pursuit.

Smooth pursuit refers to the capacity of the oculomotor system of track-
ing a moving target on the fovea (Shibata and Schaal, 2001, IROS01). This
task is not an easy one because the oculomotor system has delays that can
affect the control of the system. Interestingly, it has been observed that
individuals can not make smooth pursuit in the absence of a moving visual
stimulus (Barnes, 1993).

Probably, the most intriguing question that has interested researchers is
the fact that the oculomotor system tracks objects so well in the presence of
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delays. These delays have been measured to be between 150-200 milliseconds.
It is generally accepted that the human oculomotor system uses some kind
of prediction mechanism to deal with the delays problem (Wexler and Klam,
2001; Klam et al., 2000; Pavel, 1990; Brown, 1990; Barnes, 1993; Von Hofsten
and Rosander, 1996).

I have already discussed in section 3.6 some details about the develop-
ment of smooth pursuit. The main idea is that humans seem to improve
their predictive capabilities with time. This could happen because both the
neural mechanisms involved in prediction are maturating and other neural
structures are collaborating to create more complex predictions. Probably,
the development of prediction and in particular of smooth pursuit involves
a combination of both. But it must be also taken into account that humans
can learn to predict (Pavel, 1990).

Many researchers agree that the oculomotor system uses a trajectory ex-
trapolation mechanism, however, as noticed by Barnes (1993), the oculomo-
tor system should include also other mechanisms like: periodicity estimator,
sample and hold mechanism, intermediate storage system, conflict monitor
and gain regulator. We should add also the saccades system and the VOR
mechanism.

The saccadic mechanisms is out of the scope of this thesis, however, it is
worth noticing that it also presents a predictive behavior. Moreover, saccades
play a fundamental role in the initial catch up of the object of interest and
help in correcting the smooth pursuit when errors are detected (Klam et al.,
2000).

5.2 Models of smooth pursuit

Control theory has been used by many researchers as a theoretical frame-
work to understand the complexity of the oculomotor system. Although the
oculomotor system is not linear, linear models have been used extensively
to study the eyes movement; in many cases, this has been done assuming
that the oculomotor system can be approximated by a linear system when
dealing with small signals (Pavel, 1990).

When modeling the oculomotor system one faces two technical problems:
the delays and the coordination of subcomponents (Brown, 1990). Much
of the classical work has been devoted to study how a mechanical system
can use information to predict future paths (Pavel, 1990). The basic idea
guiding this research is that the oculomotor system has evolved to minimize
the output error (Pavel, 1990). In other words, when pursuing a moving
object it is necessary to minimize the difference between the target position
and the eye position. This difference is called the tracking error (when using
the position) or retinal slip (when using the velocity) (Pavel, 1990).

53



5.2.1 Classical control theory approaches

I first analyze the classical control theory techniques used to model the ocu-
lomotor system; these techniques use various negative and positive feedback
loops that are used to control the system. The general idea of such control
architectures is to have a system with the maximum performance while, at
the same time, avoiding instability.

Smooth pursuit control has traditionally been described as a negative
feedback system. According to Leigh and Zee (1999) this kind of control
offers some advantages:

• A prompt and accurate response to stimuli

• Relative insensitivity to changes in internal parameters

Negative feedback control offers many other advantages, and indeed, it
is used extensively in robotics (e.g. PID control). However, in the presence
of delays feedback control presents oscillations and instability (Leigh and
Zee, 1999; Coombs, 1992). Instability occurs when a control system com-
bines feedback, delays and large forward gains (Robinson, 1987). Therefore,
a pure feedback system seems not adequate to model the smooth pursuit
if we consider that the human oculomotor system has good stability and
performance in the presence of large delays in the sensorial feedback loop.

Many of the early models of the oculomotor system use the retinal slip —
the derivative of the tracking error— as a feedback signal to control smooth
pursuit. However, in this case, the control signal approximates zero when
accurate tracking is being achieved (Brown, 1990) and consequently, the
system lags with respect to the target. This does not occur in the human
oculomotor system that is able to maintain the fovea on the tracked object
and, in some cases, anticipate it. This discrepancies between modeling and
the real performance of the human oculomotor system lead Young and col-
leagues to suggest that the signal controlling smooth pursuit may not be
the retinal slip (i.e. the velocity error) but an internal representation of the
target in space (Brown, 1990; Coombs, 1992; Leigh and Zee, 1999).

Robinson proposed a way to implement the idea of Young (see Brown,
1990, for a review); his suggestion was to combine an efference copy of the
eye velocity signal with the retinal error. This combination produces an
estimation of the real target velocity because takes into account the motion
of the eyes in the orbit during the tracking (Brown, 1990; Leigh and Zee,
1999).

In practical terms, Robinson’s idea is to feedback this efference copy
through a positive feedback loop to transform the system in an open loop
control system, and avoid instability problems. However, using this tech-
nique the nice properties of negative feedback control are lost and it is nec-
essary to have an accurate model of the delays of the system to precisely
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combine the negative and positive feedback loops (Coombs, 1992). This can
be difficult in a biological system taking into account that the real delays
are due to the physics of the system whereas the estimation of the delays
depends on neural modeling (Leigh and Zee, 1999).

5.2.2 Optimal control

Although classical control theory approaches have been useful for under-
standing the problems associated with the oculomotor control they are still
very limited as models of the oculomotor system. The main success of these
approaches has been that of obtaining a phase lag reduction in the smooth
pursuit; however, this is not enough to understand completely the antici-
patory behaviors of the oculomotor system. Indeed, one needs to take into
account issues like learning, anticipation based on internally generated sig-
nals, and other contextual cues (Pavel, 1990).

Optimal control theory overcomes some of the problems associated to the
classical approach. In this framework a control problem can be characterized
by specifying three things (Pavel, 1990):

• The dynamic of the system

• An objective function

• Additional constrains

Pavel (1990) contains an exhaustive discussion about the use of opti-
mal control theory to model the oculomotor system. Using a deterministic
approach, Pavel concludes that the controller of such a model must be, in
fact, a predictor. This predictor needs to be able to anticipate the position
of the target τ seconds in advance and, for this reason, must have precise
information about its trajectory.

Other problems arise in the Pavel’s deterministic control system, but the
main idea to take into account is that an estimator of the future target tra-
jectory is needed. Moreover, in a real environment this estimator should deal
with the randomness and signal noise associated to biological processes. The
latter can be taken into account using the framework of stochastic system
analysis (Pavel, 1990). Maybeck (1979) contains an excellent introduction
about why stochastic models should be used. He presents three reasons: (1)
no mathematical model is perfect, (2) there are disturbances which we can
neither control nor model deterministically, and (3) sensors do not provide
perfect and complete data about the system.

Consequently, it is necessary to take into account that noise can be
present in the dynamical system but also in the sensorial observations (i.e.
the measurements).
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5.2.3 The Kalman filter

If we consider prediction as the extrapolation of a trajectory then it seems
natural to use previous information about that trajectory to make the pre-
diction. The use of trajectory past history to generate predictions seems rea-
sonable because there is little else on which to base predictions (see Landy
et al., 1996, chap. 2). However, if one wants to generate the prediction based
in all the previous trajectory history the problem becomes rapidly compu-
tational intractable. Therefore, it is interesting to use adaptive techniques
that allow the system to constantly upgrade the predictions using informa-
tion from prior observations. In other words, “new information is acquired
in small steps and at each stage it is added to what is already known” (see
Pavel, 1990).

A good example of an adaptive method (also known as recursive tech-
niques) is the Kalman filter. The Kalman filter has been used in several
applications since it was first published by R.E.Kalman (Kalman, 1960).
This filter generates predictions about the future state of the system and it
does so tacking into account the noise in both the system and the measure-
ments. The formulation of the Kalman filter can be found in many papers
but I include it here for completeness.

The Kalman deals with the problem of obtaining an estimate of the
state x ∈ Rn of the system that can be represented with the next difference
equation:

xk = A · xk−1 + B · uk + wk−1 (5.1)

where k represents the discrete time step, xk is the estimated state at time
tk, xk−1 is the state at time tk−1, uk is the measurement at time tk and
wk−1 represents a random noise. A and B are matrixes that relate both the
previous state and the measurement with the estimate of the state.

In this system, the measurement z ∈ Rm is calculated as:

zk = H · xk + vk (5.2)

where the matrix H relates the state xk to the measurement zk.
The noise is represented by the random variables wk and vk. These

random variables model respectively the noise in the system and in the mea-
surement. The variables wk and vk are supposed to be white, independent,
and with a normal probability distribution. That is:

p(w) ∼ N(0, Q) (5.3)

p(v) ∼ N(0, R) (5.4)

where Q is the noise covariance and R is the measurement noise covariance.
The Kalman filter performs two steps: a predition and a update. The

equations for these two steps can be seen in table 5.1.
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Prediction

x̂−

k = Ax̂k−1 + Buk

P−

k = APk−1A
T + Q

Update

Kk = P−

k HT (HP−

k HT + R)−1

x̂k = x̂−

k + Kk(zk − Hx̂−

k )
Pk = (I − KkH)P−

k

Table 5.1: Kalman filter equations

5.3 A short experiment on smooth pursuit

To experimentally test some of the results found in the literature about
smooth pursuit we implemented a smooth pursuit experiment on an active
vision system (Baroni, 2002).

5.3.1 Experimental Setup

The experiment was done using the active vision system Eurohead (described
in section 2.1) and a linear sliding track (see figure 5.1(a)). The sliding track
has a computer controllable cart that can be programmed to move with
different velocities and accelerations. The programming is done through a
serial cable connected to the control unit shown in figure 5.1(b). By putting
a colored object on the sliding cart we were able to perform smooth pursu-
ing experiments using the color segmentation method described in the next
section.

(a) (b)

Figure 5.1: (a) is a detail of the sliding cart, (b) is the control box of the sliding
track

The complete experimental setup can be seen in figures 5.2 and 5.3.
The sliding cart was controlled using a computer based on the Windows
operating system. The binocular head control and all the other processing
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were implemented on a rack of computers running QNX 6.2 operating system,
actually this was an early version of the Eurobot setup described in secion 2.1.
For the acquisition of the images in the QNX operating system we developed
a device driver (discussed in section 2.2) to access the framegrabber cards
based in the chip Bt848 commercialized by Conexant (Beltrán-González,
2002). For the control, we used eight axis control cards developed by Galil,
and also in this case we developed the device driver necessary to control the
cards under the QNX 6.2 operating system.

Figure 5.2: The complete smooth pursuit experimental setup
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Figure 5.3: A schema of the complete system

5.3.2 Color segmentation

To track the colored object mounted on the sliding cart we implemented
a color segmentation algorithm. We used the same technique presented in
(Metta et al., 2004). The first step of this technique is to transform the
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RGB color information arriving from the cameras to a Hue Saturation Value
(HSV) space. The transformation of the RGB values into HSV space is
performed according to the following equations:

H(R, G, B) = arctan (
√

3(G − B), (R − G) + (R − B)) (5.5)

S(R, G, B) = 1 − min (R, G, B)

R + G + B
(5.6)

Complex techniques can be used to segment an object automatically (Metta
et al., 2004), however, for simplicity, we performed our color segmentation
using a threshold value calculated empirically (in the HS space). This tech-
nique was sufficient to segment the object of interest. This object was a red
bar (15cm long). Figure 5.4 shows the object and the result of the color
segmentation.

Figure 5.4: The segmentation result. On the right are the log-polar images as
acquired by the robot. The experimenter is presenting the red bar in front of the
robot. On the left, the result of the color segmentation process.

Once the object is segmented, the center of mass (xc, yc) of the object
can be computed as:

xc =
1

A

∑

x

∑

y

xI(x, y) (5.7)

yc =
1

A

∑

y

∑

x

yI(x, y) (5.8)

where I(x, y) is a binary pixel value obtained from the segmented image (Metta
et al., 2004). The object centroid is a good measurement of the object posi-
tion and can be used to calculate the retinal distance from the object to the
center of the image. This distance is the retinal error that can be used to
control the binocular head through a feedback loop.
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5.3.3 The control method

However, the retinal error can not be directly used for control. It is necessary
to perform a transformation from the sensorial space (retinal) into the motor
space (for a review see Jordan, 1999) (i.e. a sensorimotor transformation).
According to Metta et al. (2004) this problem can be formalized with the
formula:

e = C · s(t) (5.9)

where s(t) is the retinal error, e is the error expressed in motor coordinates
and C is a convenient transformation matrix. A way to calculate this matrix
is as follows:

C =

(

∂s

∂q

)

−1

(5.10)

Finally, the motor command can be calculated as:

q̇ = −λ · e (5.11)

where q̇ is the joint speed and λ is a positive constant gain.
The matrix C can be calculated using an automatic least-square tech-

nique (Metta et al., 2004); however, for the purpose of this experiment its
coefficients were calculated beforehand. As a result the head was able to
follow a colored object moving in front of the robot.

However, as already discussed in the previous sections, in this way the
head always lags behind the object being tracked because the visual feedback
has a delay due to the visual processing. To overcome these limitations and
improve the performance of the tracking, a Kalman filter was include in the
control system.

5.3.4 Kalman filter implementation

For the experiment we used two types of Kalman filters. The first assumes
that the object being tracked has constant velocity, whereas the second as-
sumes constant acceleration.

The Kalman filter prediction was applied to the coordinates of the object
center of mass in the image plane, thus making a trajectory prediction on
a two dimensions plane (see figure 5.3). However, the sliding cart moved
mainly in the x axis of the image plane so the variations in the y axis were
mainly due to errors in the calculation of the center of mass of the moving
object. These errors occurred because the color segmentation procedure
suffers of noise and leads to errors in the localization of the object.

Figure 5.5 shows the reduction in the retinal error when using the Kalman
filter. Figure 5.5(a) shows an instant in the tracking process where the fovea
(the black spot in the center of the image) is clearly far away from the
center of mass of the object (the cross in the left part of the image). In the

60



(a) (b)

Figure 5.5: (a) an snapshot of the moving bar without prediction, (b) a snapshot of
the bar moving with prediction

other image, figure 5.5(b), it is shown how the system can obtain a better
performance using the Kalman filter prediction. In this case, the system
manage to put the fovea almost on the object center of mass. However, the
snapshots presented in figure 5.5 are among the best results obtained in this
experiment. The system obtained this performance when the characteristics
of the real movement were close to the assumptions made in the models
(i.e. constant velocity or constant acceleration). The interested reader can
consult Baroni (2002) to get detailed information about the results obtained
during the experiment.

5.3.5 Drawbacks and discussion

In the experiment the predictions were done in the image plane and con-
sequently the performance decreased because we did not take into account
the motion of the head. This is related to the problem already discussed in
section 3.4 and in section 5.2.1 about the space used for trajectory repre-
sentation. If one uses a representation based in head-centric reference frame
the prediction of the trajectory will not be affected by the motion produced
by the robot. In this case, however, a coordinates transformation would be
necessary to calculate the position of the object. There is some evidence that
humans develop the capacity to use extra-retinal coordinates during the first
6 months of life Johnson (1997). However, there is little understanding of
the neural mechanisms involved in such transformation.

Nevertheless, from a robotics point of view many improvements can be
made to the system. For example, it is worth mention implementations of
the Kalman filter based in the Interacting Multiple Model (IMM) (Bradshaw
et al., 1997) where a set of N Kalman filters modeling different types of
motions is used to produce a better prediction of 3D movements. As I said
before, we used two Kalman filters but these were interchanged beforehand.
Therefore, our system lacks of an automatic filter selector as the one proposed
in the IMM architecture.

Another implementation by which or system could be improved has been
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called Signal Synthesis Adaptive Control (Coombs, 1992; Bahill and Mc-
Donald, 1983) where a group of already learned trajectories are stored in a
memory. During smooth pursuit the system selects from the memory the
trajectory that better fits the observed movement. It is however not clear
in this architecture how the system recovers and accesses the information
stored in the memory.
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Chapter 6
Attention modulation based on

crossmodal expectations
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6.1 Introduction

6.1.1 Motivation

This chapter address the problem of crossmodal perception already discussed
in section 3.2. The focus is on understanding how an artificial system can
improve its perceptual capabilities by using multimodal cues. This work
is divided in two main sections: (i) we study how a system can segment
objects based in visual and sound cues, and (ii) we discuss how the system
can use this object segmentation to create visual expectations that may guide
attention based only on audio cues.

The motivation of this work is based on the hypothesis that perceptual
and attentional mechanisms are fundamentally crossmodal processes. That
is, different senses participate in the act of perception. This sensor collabo-
ration, however, is not simply the act of sensor fusion. Indeed, we consider
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the fact that a sensor modality can elicit an expectation on another sen-
sor modality. For example, the smell of food can be sufficient to identify
the components of a particular dish even before we can see it, the sound
produced by another person when walking can be sufficient to identify him
completely and create a visual expectation of the person you expect to see.
These crossmodal influences may guide in an unconscious level many of the
daily perceptual processes.

Let us introduce how this conceptual approach may fit in the history of
computer vision.

6.1.2 Short history of machine vision

Though machine vision is a long and well established scientific discipline the
several decades of intensive research were not enough to resolve a problem
that humans seem to pass by almost intuitively. During the early days of
computer vision, i.e. 1960’s and 1970’s, the research efforts were concen-
trated in the passive processing of single images. The visual cortex was
believed to process all the information in the field of view and to do so in
a sequential and increasingly complex process. This doctrine influenced the
vision computational models of that time that tried to create general descrip-
tions of the visible scene (Landy et al., 1996). This period culminated with
the publication of the influential Marr’s work Vision (Marr, 1982), where
computer vision was formalized as a pure information processing task.

In the late 1980’s and early 1990’s a new approach to computer vision
appeared : Active Vision (Aloimonos et al., 1987; Ballard, 1991). During
the late 1990’s the concept of active vision was exploited, improved and ex-
panded. A strong emphasis was made in the simplification of the early stage
vision problems (see (Vieville, 1997)) by exploiting the explorative capacities
of vision systems. During this period, there was also an approach between
“cognitive sciences” and robotics that yielded to epigenetic approaches to
robotics and the investigation of the perception-action paradigm where the
artificial system is able to act in the world and modify it (see (Metta, 1999)
for a remarkable example).

More recently, the perception-action paradigm has been explored further
in the area of humanoid robotics. For example, Metta and Fitzpatrick (Metta
and Fitzpatrick, 2003) have shown how to segment an ambiguous object from
the background by active manipulation. Several researches stress that an
agent could construct a self image by actively exploring and manipulating
(Natale, 2004; Arsenio, 2004).

However, though the learn by doing approach (Fitzpatrick et al., 2003)
is providing encouraging results, we think that further development is still
necessary. Particularly, the exploitation of intersensorial relations for the
improvement of perception has not been sufficiently explored, e.g. the inter-
relation between sound and vision. In this chapter this problem is addressed
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studying audio-visual causal interrelations. In particular, it is studied how
these interrelations may improve object perception and how they could be
exploited to create intersensorial expectations.

6.1.3 Chapter outline

The chapter is organized as follows: first, we propose a conceptualization of
crossmodal perception; second, we analyze the research in automatic sound
recognition and show how traditional speech recognition techniques can be
used to parametrize sounds produced by objects; third, we discuss how an
approximation of a statistic called mutual information can be used to create
a common intersensorial space for sound and vision; fourth, we present how
the latter information can be used to segment an object from the background
with the assistance of a color back-projection technique; and finally we show
how the system: a) creates a sound-object associative memory, b) uses this
memory to recognize sounds (through a dynamic time warping algorithm)
and c) extracts from the memory a visual expectation associated with a
sound auditory event.

6.2 Toward cross-modal perception

Neuroscience research is actively studying cross-modal relations in the hu-
man brain and several researchers suggest that perception is a multisensorial
experience. However, still many questions remain unanswered, for example:

• How cognitive pathways may dominate perception (top-down approach)

• How different sensorial modalities are integrated.

• How these sensorial interrelations may guide development and learning.

• How sensorial modalities may influence each other.

There is little understanding on how these mechanisms may work in the
human brain. However, some conclusions can be advanced: a) sensorial inter-
relations seem to be fundamental for the development of high level cognitive
abilities, b) perception seems to depend strongly on multisensorial cues.

In the robotics research field, we can categorize these assumptions in
the context of the crossmodal perception paradigm. We conceive crossmodal
perception as an extension of the active-vision/perception-action paradigms.
The crossmodal perceptual agent uses multisensorial cues to reinforce its ex-
plorative perception and creates actively synchronized multisensorial inputs
(e.g. by hitting repeatedly an object on the ground producing a change in
both the visual field and the auditive input).
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We attempt the first steps toward this kind of perception by trying to
solve, in the context of a humanoid robot architecture, two problems: a) ob-
ject segmentation using multisensorial cues, and b) sound classification for
attentional priming. More formally, we suggest that these two problems
could be conceptualized into two distinct phases:

• Synaesthetic Phase: From syn “co” and aisthanesthai to perceive. This
yields to an etymological interpretation as joint perception or to per-
ceive simultaneously. In this particular experiment, this phase corre-
sponds to an object segmentation based on the integration of sound
and visual cues.

• Synesthetic Phase: A concomitant sensation; especially, a subjective
sensation or image of a sense (as of color) other than the one (as of
sound) being stimulated (from Merriam-Webster Online). In this ex-
periment, this phase is formed by a sound classification algorithm that
can remember the visual aspect of an object.

Notice that synaesthesic and synesthetic are very similar (there is only
a letter “a” difference), they have a common etymological origin, however,
the meaning is slightly different in our interpretation. Moreover, it is worth
noting that these words have been used interchangeably in the literature; par-
ticularly, synaesthetic is used in cognitive neuroscience to address an unusual
mixing of the senses that affects certain people (see (Rich and B.Mattingley,
2002) for an extensive review). This unusual mixing of senses interpretation
stress the “strength” how senses interrelate, and also the non relation with the
real world. For example, patients experience visual hallucinations (i.e. they
see colors) when hearing a particular noise or they have smell hallucinations
when they see a particular number.

We adopt a slightly different interpretation; we believe that most humans
have subjective sensations activated by crossmodal interrelations. The dif-
ferences with respect to the cognitive neuroscience point of view are: a) the
“intensity” of the interrelations, and b) that they correspond to real senso-
rial experiences. In our view, the interrelations are related with sensorial
expectations and not with sensorial hallucinations.

Thus, paraphrasing Fermüller and Aloimonos (see (Landy et al., 1996)
chap.9), we may say that:

Now, it has become clear that image understanding should also
include the process of selective acquisition of data in space and
time from multisensorial cues.

6.3 System architecture and experimental setup

Sound could be considered as important as vision. However, comparatively,
little research has been done in the field of sound recognition. The research
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has been mainly concentrated in the recognition of speech and music and
in the study of orienting behaviors (Natale et al., 2002). More recently, the
sound research has included works in scene analysis (Stäger et al., 2003),
detection of talking faces (Hershey and Movellan, 2000) and rhythm detec-
tion (Arsenio and Fitzpatrick, 2003).

In a work related with the segmentation of objects by a humanoid ro-
bot, Arsenio and Fitzpatrick (Arsenio and Fitzpatrick, 2003) address the
problem of object detection based in the rhythm properties of movements,
both in sound and vision streams. They address the recognition of toys de-
signed for infants. We use a similar approach, but we do not exploit the
rhythmic characteristics of movement but the intrinsic common information
created in both sensorial streams when the toy is squeezed or shaked by the
experimenter in front of the robot.

We will show that a combination of speech recognition techniques and
statistics can be used to create a crossmodal perceptual architecture that
can create associations between the images of toys and the sounds the toys
produce; and, in a second stage, evocate the toy’s visual image by recognizing
the sound associated to the toy, and consequently, have the potential to
exploit this visual expectation in explorative movements.

In Figure 6.1 we present the architecture of the crossmodal perceptual
system. This system was implemented in YARP (Yet Another Robotic Plat-
form)(Metta et al.). YARP is a framework for humanoid robotics develop-
ment that provides support, among other things, for distributed computation
and multi-operating system communications.

The proposed system was running in a rack of standard PC’s, either with
Microsoft Windows or QNX installed on the PC’s. The system received its
inputs from the environment through a PAL camera and two microphones.
A standard PCI framegrabber, based on the Conexant Bt848 chip (Beltrán-
González, 2002), digitalizes the images which are converted utilizing a log-
polar mapping by a software conversion algorithm (Sandini and Metta, 2002).
A standard audio PCI card digitalizes the sound signal obtained by the
microphones. Both cards use a Direct Memory Access (DMA) mechanism
to transfer the data streams into the computer main memory.

A fundamental problem was how to synchronize in time the video and
sound streams. The standard acquisition cards do not employ any hardware
synchronization line, so we developed a special device driver in the Windows
operating system that controls the acquisition of both cards. The driver ini-
tializes the acquisition cards in a sequential manner using a software critical
region (i.e. a code execution flow that is not interrupted). Consequently,
the acquisition software needs to run in a single process being executed by
a single computer.

However, the previous mechanism does not guarantee a perfect synchro-
nization, and for this reason, the computer internal clock (timestamps) was
employed to monitor the time alignment between the data streams. Using
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Figure 6.1: The architecture of the crossmodal perceptual system

this technique we measured a time difference that in average of several tests
was less than one millisecond with different CPU loads.

The sampling frequency for the sound was 44100 Hz, whilst the precision
was 16 bits and the transfer memory was 1764 samples/frame. This produced
a sound framerate of 25 frames per second at a rate of one frame each 40
milliseconds, exactly the same as the frame sequence rate of the PAL video
images.

(a) (b) (c)

Figure 6.2: Experiment objects as perceived by Eurobot: (a) A deformable plastic
yellow duck, (b) a hollow hard plastic blue pig filled with plastic bottle caps, and (c)
a hollow hard plastic red pig filled with chickpeas.

For the experiment, we used an upper torso humanoid robot called Eu-
robot and a set of three baby toys acquired in commercial stores. Figure 6.2
shows the group of toys as seen by the robot. Figure 6.2(a) is a deformable
yellow plastic duck; it produces a high frequency sound when squeezed with
the hand. The hollow hard plastic toy pigs shown in Figures 6.2(b) 6.2(c)
are the same toy; the differences are: they have different colors and we have
filled them with different materials. Therefore, the sound produced by each
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toy pig was slightly different.

6.4 Sound Parametrization

The goal of the sound parametrization module was to obtain a low dimen-
sional representation of sound. In the speech recognition literature this mod-
ule is known as the signal-processing front-end. The idea is to have a se-
quence of measurements of the input signal, usually the output of some type
of spectral analysis technique, that yields a “pattern” that represents the
sound; though we prefer the term sound template for this representation.
This sound template is a sequence of spectral vectors. Each of these vectors
represents the frequency transformation of the sound in a short period of
time; in our system, this period of time has a duration of 40 milliseconds.
Therefore, the sound template is a representation of the sound both in time
and in frequency.

To implement this sound parametrization module, we reviewed the most
popular techniques used in speech recognition and, based on several re-
search reports, we chose a technique called mel-frequency cepstral coeffi-
cients (MFCC). The MFCC algorithm can create a compact representation
of sound into a vector of few parameters. We tested the MFCC algorithm in
the Matlab environment using the auditory toolbox developed by Malcolm
Slaney (Slaney, 1998) and then we implemented a C++ version based in his
algorithm for the YARP environment.

Algorithm 1 Calculate MFCC

loop
Window the data with Hamming window
Apply Fast Fourier Transform
Compute the magnitude of the FFT
Convert the magnitude into filter bank outputs
Find the log10

Find the cosine transform to reduce dimensionality
end loop

Algorithm 1 shows the steps suggested by (Slaney, 1998) to compute the
MFCC transformation. In the next sections we explain in detail the parts of
the algorithm.

6.4.1 Short-Time Fourier Transform (STFT)

The traditional approach to spectral analysis of the sound signal consists in
applying a set of filter-banks (see (Rabiner and Juang, 1993)). Figure 6.3
shows graficaly how these filters may be applied to the sound data flow.
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Mathematically this operation is expressed with the formula

si(n) = s(n) ∗ hi(n), 1 ≤ i ≤ Q

=

Mi−1
∑

m=0

hi(m)s(n − m) (6.1)

where (∗) is a convolution, s(n) is the sound stream at time n, hi(n) is the
response of the i bandpass filter and Q is the number of filters applied.

Bandpass filter

Bandpass filter

s(n)

Xn(ejω1)

Xn(ejωQ)

Figure 6.3: Processing of the sound frame through a set of bandpass filters

According to (Rabiner and Juang, 1993), the filter bank computation can
be conveniently implemented by applying first a short-time fourier transform
(STFT) to the incoming data. By substituting hi(n) = w(n)ejωin and con-
sidering xi(n) to be the discrete version of si(n) the equation (6.1) can be
extended to

xi(n) =
∑

m

w(m)ejωims(n − m)

=
∑

m

s(m)w(n − m)ejwi(n−m)

= ejωin
∑

m

s(m)w(n − m)e−jωim

= ejωinSn(ejωi) (6.2)

where Sn(ejωi) is the short-time Fourier transform of s(n) at frequency ωi =
2πfi.

Consequently, from equation (6.2) we can extract the form of the STFT
and rewrite it as:

Sn(ejwi) =
∑

m

s(m)w(n − m)e−jwim (6.3)
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The form of w(n) can be conveniently chosen for the application. In our
case, we chose a Hamming window. The mathematical form of a Hamming
window is presented in the next formula:

w(k) = 0.54 − 0.46 cos (2π
k

n − 1
), k = 0, . . . , n − 1 (6.4)

The shape of the window, which is produced by the above equation, is de-
picted in figure 6.4.
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Figure 6.4: The hamming function

We calculated the magnitude of the STFT as magi =
√

(ai)2 + (bi)2,
where a and b are the real and imaginary components of the fast Fourier
transform for a given discrete frequency i.

The STFT produces a representation of the sound stream both in time
and frequency domains that facilitates the application of the filter-bank in
the frequency domain. Rabiner (Rabiner and Juang, 1993) proposes that
the filter-bank can be implemented by varying adequately the frequency
in the exponential term of (6.3); in the simplest case, this frequency has
an uniform distribution choosing fi = i(Fs/N), where Fs is the sampling
frequency. However, non-uniform frequency distribution can be used; in
particular, neurophysiological studies propose numerous models of the hu-
man auditory system. One of those is the mel-frequency scale where the
filter-banks are distributed linearly in the low frequencies and then decrease
logarithmically in the higher frequencies. As suggested in (Slaney, 1998),
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we constructed the filter-bank using 13 linearly-spaced filters (133.33 Hz be-
tween center frequencies) followed by 27 log-spaced filters (separated by a
factor of 1.0711703 in frequency).

6.4.2 Mel-Frequency cepstral coefficients (MFCC)

The formula for the mel-frequency cepstral transform is as follows:

ci =
2

N

N
∑

k=1

Yk cos[i(k + 0.5)
π

N
], i = 1, 2, . . . , M (6.5)

where ci is the cepstral coefficient, and Yk are the outputs of the filter-bank
discussed in the previous section.

In our system, the MFCC transform reduces the dimensionality by trans-
forming the output of 40 filter-banks into a compact representation of 13
cepstral coefficients. Figure 6.5 shows a graphical 3D representation of a
MFCC transform applied to the sound produced by toy 6.2(a).

0

20

40

60

80

0

5

10

15
−25

−20

−15

−10

−5

0

5

Cepstral Coefficients 

Time samples (40 millis
econds/sample) 

C
e

p
s
tr

a
l 
V

a
lu

e
s
 

Figure 6.5: Three dimensional representation of a MFCC Transform

After applying equation (6.5) we packed the cepstral coefficient in the
sound template data structure. This template contains the ceptral coeffi-
cients associated to a sound produced by a toy. To detect the presence of
an object producing a sound, we measure empirically the background sound
level and we use it as a threshold to activate the template recording proce-
dure.
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6.4.3 Delta-Delta Mel-Frequency coefficients

The simple MFCC transform does not include time evolution information.
However, it would be interesting to obtain dynamic information from the
sound signal. This information could be included in the feature set by cep-
stral derivatives. This information is not used in the current system but
probably it is a way by which we could improve the robustness of the system.
The first order derivative of cepstral coefficients is called Delta coefficients,
and consequently the second order derivative of cepstral coefficients is called
Delta-Delta coefficients. Delta coefficients tell us somehow the sound rate,
and Delta-Delta coefficients describes the acceleration of the sound signal.

∆cl(n; m) =
1

2
(cl(n : m + 1) − cl(n; m − 1)) (6.6)

Delta-Delta coefficients can be calculated applying (6.6) to the Delta
coefficients.

6.5 Multisensory object segmentation (Synaesthe-
sis)

Once the sound is parameterized, the level of synchrony of the sound and vi-
sual data streams need to be measured. For this purpose, we use the method
suggested by Hershey and Movellan based in the mutual information (Her-
shey and Movellan, 2000).

6.5.1 Mutual Information

Hershey and Movellan define the temporal synchronization of a video and
sound channels as an estimate of the mutual information between both
streams. Their algorithm was originally applied to the problem of finding a
vocalizing person in a video sequence (Hershey and Movellan, 2000). They
consider that a(t) ∈ Rn is a vector describing the acoustic signal at time t
and that v(x, y, t) ∈ Rm is a vector describing the video signal at the same
time instant. They assume that these vectors form a set S of audio-visual
vectors and that these vectors are independent samples from a joint multi-
variate Gaussian process. Under these assumptions, Hershey and Movellan
affirm that an estimate of the mutual information can be calculated as

I(A(tk); V (x, y, tk)) = H(A(tk)) + H(V (x, y, tk)) − H(A(tk), V (x, y, tk))

=
1

2
log(2πe)n|ΣA(tk)| +

1

2
log(2πe)m|ΣV (x, y, tk)|

− 1

2
log(2πe)n+m|ΣA,V (x, y, tk)|

=
1

2
log2

|ΣA(tk)||ΣV (x, y, tk)|
|ΣA,V (x, y, tk)|

(6.7)
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where |ΣA(tk)| is the determinant of the covariance matrix of the audio
stream, |ΣV (x, y, tk)| is the determinant of the covariance matrix of a pixel of
the image (e.g. the RGB values), and |ΣA,V (x, y, tk)| is the joint covariance
of both the audio and visual signals .

The calculation of (6.7) is based on the Shannon’s statement (Shannon,
1948) that the entropy of a one-dimensional Gaussian distribution whose
standard deviation is σ is given by H(x) = log

√
2πeσ. This is explained in

(Shannon, 1948) as follows. Given the gaussian probability distribution

p(x) =
1√
2πσ

e−( x2

2σ2
)

taking the logarithm on both sites of the equation we get

− log p(x) = log
√

2πσ +
x2

2σ2
.

Then, given the formula of the entropy

H(x) = −
∫

p(x) log p(x)dx

and substituting log p(x) by the expression calculated above we get

H(x) =

∫

p(x) log
√

2πσdx +

∫

p(x)
x2

2σ2
dx

= log
√

2πσ +
σ2

2σ2

= log
√

2πσ + log
√

e

= log
√

2πeσ (6.8)

To compute equation (6.7) different sound and images parametrizations
can be used. In a first experiment, we calculated equation (6.7) using
13 cepstral coefficients (the parameters of covariance matrix ΣA(tk)) and
three RGB values of the pixel (the parameters of the covariance matrix
ΣV (x, y, tk)) during 0.6 seconds (S = 15). Consequently, the combined
audio-vision covariance matrix ΣA,V (x, y, tk) comprises 15x15 elements. The
computation of the determinants of these matrices exhibits a considerable
computational cost, because the determinants are calculated for each pixel
in the image. This produces a considerable degradation of the system per-
formance. Although this algorithm can be improved by having a distributed
computation, we decided to use a simplified version of the mutual infor-
mation as suggested by (Hershey and Movellan, 2000). This is the special
case when the data streams are in a one dimensional representation (i.e.
n = m = 1). Then, the mutual information can be expressed as

I(A(tk); V (x, y, tk)) = −1

2
(1 − ρ2(x, y, tk)) (6.9)
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where ρ2(x, y, tk) is the Pearson correlation coefficient between A(tk)
and V (x, y, tk) (see (Weisstein, 1999) and (Press et al., 1992)). To obtain
this one dimensional representation, we used for the sound the root mean
square (RMS) of the short-time Fourier transform coefficients (see the arrow
connection between the STFT box and the RMS box in figure 6.1) and a
gray level value of the color RGB components calculated as grayvalue =
0.299R + 0.587G + 0.114B. Notice that the MFCC transform was still used
to form the sound template representation.

One may argue why we did not use the root mean square of the MFCC
coefficients. The reasons were that we could easily compute the RMS value
in the STFT module with little computational cost and that this early RMS
computation made possible a parallel implementation of the object segmen-
tation and sound parametrization modules.

Considering the data streams to be pairs of quantities (xi, yi), i =
1, . . . , N , we calculated the Pearson correlation coefficient according to the
formula:

ρ =

∑

xy − 1
N

∑

x
∑

y
√

(
∑

x2 − 1
N

(
∑

x)2)(
∑

y2 − 1
N

(
∑

y)2)
(6.10)

where
∑

this time stands for sum.

6.5.2 The Mixelgram

To conceptualize the output of the mutual information between sound and
vision, Prince et al. (Prince et al., 2004) introduced the mixel ; that is a
combination of the words mutual and pixel. They proposed that the mixels
form a topographic representation called mixelgram. These can form shapes
that are perceptually relevant for human observers (Prince et al., 2004).
Therefore, the mixelgram is to be considered a common space representation
for both visual and audio sensorial channels.

Figure 6.6 depicts an example of the mixelgram of the toy 6.2(a). It is
possible to distinguish the shape of the duck.

Algorithm 2 shows the steps we followed to calculate the mixelgram.

6.5.3 Improved object segmentation

The original image and the mixelgram maintain a direct geometric corre-
spondence, therefore the mixelgram can be used to segment the object by
segmenting the pixel in the original image which position corresponds to an
activated mixel. However, the segmentation obtained with this method has
a low quality because many pixels of the object are not segmented at all.

To improve the object segmentation, we use a technique based on color
segmentation. We assume that the activated mixels belongs to a uniformly
colored object. Then, we use a back-projection technique to improve the
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Figure 6.6: The mixelgram of the duck toy. Notice that the mixelgram inherits the
same log-polar geometry used in the original image.

segmentation results. The pixels segmented with the mixelgram are used to
create a HS (Hue-Saturation) histogram.

The HS histogram provides an idea of the object predominant color and
this information can be used to segment by color the object in the original
image using a back-projection algorithm. The pixels segmented using the
back-projection technique are then combined with the pixels segmented by
the mixelgram to create an improved segmentation of the object.

Our implementation is similar to that described in (Metta et al., 2004).
However, in our system, the object is originally detected using the mutual
information and we do not use a model of the background to segment the
object. A detailed explanation of the technique has already been done in
section 5.3.5.

As an example, figure 6.7 shows the HS histogram for the segmented
object 6.2(b).

In figure 6.8 we present the results of the discussed segmentation process
for the three toys used in the experiment. These were among the best seg-
mentations obtained during the present experiment.

6.5.4 Associative memory

After an object is segmented, the segmentation results are stored in a dy-
namic lookup table. Each element in the lookup table contains the seg-
mented image and the sound template associated to that object. To create
the memory we appear the object in front of the robot several times squeez-
ing or shaking the object with different speeds and strengths. This way, we
produced slightly different sounds that were associated to the same object
in the memory. This provided some robustness to the process of recognizing
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Algorithm 2 Calculate mixelgram

loop
Get Sound Stream
Get Image
Memorize sound and image streams
for Each pixel do

for Each recorded time stamp do
Compute RMS sound stream value
Transform RGB pixel into a grayscale pixel

end for
Compute Pearson correlation coefficient
Compute mutual information

end for
end loop
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Figure 6.7: The resulting HS histogram of the segmented blue pig toy

the sound.

6.6 Attentional priming (Synesthesis)

This module performed basically a pattern classification for sound identifica-
tion. When the system hears an unknown sound, the sound is parametrizated
using the MFCC algorithm explained in section 6.4. Then, the sound tem-
plate is compared with the memorized sound templates using a measure of
similarity (distance).

To compare the sound templates it is necessary to compute both a local
distance measure between the spectral vectors, and a global time alignment
procedure (Rabiner and Juang, 1993). To compute the local distance, we
used the truncated cepstral distance d2

c(L) (see (Rabiner and Juang, 1993)
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(a) (b) (c)

Figure 6.8: The segmented toys

page 195) calculated as
L

∑

n=1

(cn − c
′

n)2 (6.11)

where cn and c
′

n are the cepstral coefficients of the stored and the heard
sound templates respectively.

6.6.1 Dynamic Time Warping

The global time alignment procedure is necessary because the automatic
sound recognition system has to take into account: a) time alignment and
b) time normalization. This can be done using a Dynamic Time Warp-
ing (DTW) algorithm (Rabiner and Juang, 1993). We used the DTW algo-
rithm to compare the heard sound to those stored in the associative memory
discussed in previous section. During the experiment we produced these
sounds outside the robot field of view. The system was able to recognize the
sound and remember the object image associated with the sound. Then, the
recovered toy image was presented to the experimenter for verification.

6.7 Results and Discussion

Table 6.1 presents the empirical results obtained during the presented ex-
periment. In the case of the segmentation results, the table shows the per-
centage of segmentation trials with similar results of those presented in fig-
ure 6.8. Because a color segmentation is used, lighting conditions influence
the segmentation. The results presented were obtained with good lighting
conditions.

In the case of the sound recognition results, we did the experiment in
a quiet laboratory environment with only some computer generating back-
ground noise. The results in both cases degraded significantly when we
performed the experiment in noisy conditions, as for example, with people
talking in the room.
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Experiment Duck Blue pig Red pig

Segmentation (Synaesthesis) 64% 70% 75%

Classification (Synesthesis) 99% 88% 83%

Table 6.1: Segmentation and recognition results for the system

For the recognition module we used only the c1 . . . c12 cepstral coefficients.
The use of the c0 cepstral coefficient degraded the capacity of the system to
distinguish between similar objects. This was the case with the two pig toys
that are made of the same material. This result make us suggest that the c0

cepstral coefficient could be used to implement an algorithm to distinguish
classes of objects. This may be convenient when the classification needs to
be done among a big number of different sounds.
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Chapter 7
Robvision: A research in

mobile active robotics

Contents
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7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Introduction

In this chapter I present the results of the more relevant project in which
I have collaborated: Robvision(ROBust VIsion for Sensing in Industrial
Operations and Needs). Robvision was a Esprit European Project with the
ambitious goal of creating a mobile robot with an active vision system that
could provide visual information about the environment. The visual infor-
mation confronted with a Computer Assisted Design (CAD) model provided
a precise position and orientation measurement for a mobile robot. The re-
sults of this project are relevant in several aspects for the present thesis: (i)
the use of a memory (the CAD model) facilitates the process of perceiving
the world providing robust information about the environment, (ii) the use
of active vision provides fundamental information for the computation of
distances and allows the concentration of attention on the most important
features of the environment.

Though the CAD model data were filled by humans designers it is partic-
ularly relevant that the integration of this model—seen as a previous knowl-
edge of the environment—and an active vision binocular head can solve a
complex navigation and positional problem for a mobile robotic platform.

80



In certain extent, the CAD model can be seen as a memory that produces
visual expectations. These expectations provide the robot with information
about where to look at and the features that should be found correspond-
ing to its current position and gaze direction. The errors detected between
this expected visual information and the real scene are used by the robot to
update the positional and orientation information.

This way of perceiving the world is coherent with the discussion presented
in section 3.2. The way of generating the visual expectation is by using the
memory (CAD model) and the belief about the actual position. The main
conclusion of this chapter is that such perception increases the performance
of the system.

The rest of the chapter is basically an outline of the two main publications
related to the work done during the framework of Robvision (see (Gasteratos
et al., 2002; Vincze et al., 2003)). The project involved the collaboration of
several people from different research groups and industries, therefore the
reader will find descriptions of the work developed by other teams. Though
Robvision was a excellent result of team work with a hard integration phase,
the results considered to be original from our research team can be found in
section 7.3.2.

7.2 Robvision: An applied research project

Quality assurance and intelligent products are key roads to success in global
competition. Supervising and automatically measuring the quality of parts
in the production of large structures can reduce work costs. The inspection of
these structures needs automated systems to position the tools necessary in a
large environment (e.g. mobile robots). For both, quality measurement and
positioning of inspection tools, the key is to generate the 3D pose of objects.
To find this 3D pose a vision sensor system is developed. Since Industries are
using CAD systems to design parts or working areas this model knowledge
is applied to initialize the vision process. The CAD system provides features
to the vision module that tries to find these features in the images. Two
alternative image-processing techniques are implemented, a monocular and
a binocular, to take advantage of the arising redundancy. The emphasis
of using two different vision methods and CAD model data is to enhance
the robustness of the vision process to make the overall system reliable. To
ensure correct feature detection, model and image cues (e.g. geometrical
order of features or feature intensity) are integrated (Vincze, 2001) (Vincze
et al., 1999). After feature extraction, the pose estimation algorithm can
use both 3D and 2D feature information found in the images to calculate
the current pose and send it to the robot. One of the industrial project
partner constructed the 8-legged walking robot used during the project (see
Figure 7.1).
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(a) (b)

Figure 7.1: (a) the 8-legged pneumatic walking and climbing robot; (b) the Stereo-
head

7.3 Sytem Overview

Figure 7.2 depicts the entire system architecture. It consists of several mod-
ules colored in different greyscales. Each subsystem is provided by one of
the project partners and fulfills all the functions drawn inside the according
module. The next subsections give an overview of the modules and their
respective functions.

PRONTO

C2V

V4R

Stereo Head Pose Calculation

CAD System

User

Robot

Robot Pose

Image

Extracted

Image

Features

Viewpoint

Camera Poses
Robot

Pose

Model
Trajectory

Trajectory

Vision

Edited Model

Feature List

Figure 7.2: System Overview of the RobVision Subsystems

7.3.1 C2V

C2V (Cad to Vision), developed by the Department of Production, Aalborg
University, provides the CAD system. The main task is to generate geomet-
rical features for the vision system. These features specify the shape and
location of geometrical entities such as lines, junctions and regions that the
cameras can expect to see while the robot is moving inside the structure.

As it appears from Figure 7.2 the first input of the CAD system is a CAD
model that is the geometric model of the structure inside which the robot
has to move. As a second input, a Reference Robot Trajectory is delivered
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containing a specification of the task or trajectory that the robot has to per-
form. The user generates this trajectory off-line by using a trajectory planner
developed by OSS. The last input are Robot Poses computed by the pose
calculation component using the features found by the vision system. The
main output from the CAD system are model and view data. The Model data
contain a specification of relevant information from the underlying geomet-
rical model, such as the feature topology. The Camera Viewpoint specifies a
3D point (x,y,z) in world co-ordinates towards which the stereo head ought
to point. The Feature List contains a set of robust features that the vision
systems can expect to find when looking at the specified viewpoint.

The CAD-model and the reference robot trajectory are computed prior
to the operation of the RobVision system. In this off-line phase of C2V
(C2VoffLine), good viewpoints along the referece robot trajectory are deter-
mined and the features associated with these views are derived and gener-
ated. This approach divides the trajectory into areas where sets of features
can be used to determinate the robot pose (Figure 7.3 a).

In the online phase of C2V (C2VonLine) the estimated robot pose gen-
erated by V4R is used to identify in which of the areas generated by the
off-line system the robot is presently located (Figure 7.3 b). The according
viewpoint and the features associated with this area are sent to the vision
systems. This approach requires that the actual deviations of the robot tra-
jectory are less than the areas generated by C2VoffLine. Simulations show
that deviation of 500 mm or more, depending on the situation, are accept-
able.

IP1

IP2

IP3

AIP1

(a)

IP1

IP2

IP3

AIP1

Reference Robot
Trajectory

Realised Robot
Trajectory

(b)

Figure 7.3: The (a) Reference- and the (b) Realised- Robot Trajectory. The ellipses
denote areas along the trajectory where a constant set of features is visible.

7.3.2 PRONTO

PRONTO developed by Laboratory for Integrated Advanced Robotics, Uni-
versity of Genoa, is the software/hardware module that is responsible for
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the stereo head task which in brief consists of Head control, Head stabiliza-
tion, Head calibration and the acquisition of 3D feature data. For each of
the 3D edge junctions PRONTO applies a stereovision algorithm to measure
the feature depths. A Hough technique is implemented to extract the lines
belonging to the junction. A weighted LMS (Least Mean Square) method is
used to relate them to the features provided by the CAD system (Gasteratos
and Sandini, July 2000). Then a closed loop method is followed, so that by
moving simultaneously the three degrees of freedom of the head the junc-
tion is put at the principal point of the image in both images. When this is
the case the two cameras are verging on the certain junction and the direct
kinematics of the head are applied, in order to determine the 3D position of
the junction relative to the head.

After this high precision depth measurements, the vision algorithm based
on tracking (V4R) is used and PRONTO switches to its second operation
mode, where it concentrates its computational efforts to stabilize the head
and to keep the gaze of the cameras fixated on the viewpoint recommended
by C2V. The robot pose generated by V4R is used every 240 ms to cal-
culate the required movements of the head. The stabilization is performed
using angular accelerometers that react to the movements of the robot. This
consents PRONTO to calculate the angular velocity by integrating the ac-
celeration in a 40 ms cycle. This velocity is then multiplied by a predefined
factor and directly introduced in the head motors producing a compensa-
tion movement. Both, stabilization and gaze orientation have the purpose
to guarantee a good image quality to increase the robustness of the tracking
algorithm described in the next section.

7.3.3 V4R

V4R (Vision for Robotics), developed by Institute of Flexible Automation,
Vienna University of Technology consists of two functions. The first task of
V4R is the monocular 2D feature search and tracking. The second unit of
V4R is the pose calculation component to calculate the pose of the robot
relative to a reference system.

The emphasis of the vision method is basically to provide robust features
in real-time, i.e., keeping the processing time lower than the frame rate of the
camera (40ms). To handle the real-time constraint a windowing method is
applied to limit the processing time (Hager and Toyama, 1998). Robustness
can be achieved by including image and model information - so-called cues -
into the vision process. The method used is a combination of cue integration
strategies (with cues like intensity values, color, texture) and the RANSAC-
method for Edge finding (Fischler and Bolles, 1981) (Vincze et al., 1999).
V4R is presently able to track edge features like lines, junctions, ellipses and
arcs. In near future regions will be included.

For the first search of features the projection of the model into the image
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indicates an approximate position of the features. Since the model contains
the model of the features and their topological relations to each other, check-
ing of the actual geometric relations like, e.g., connectedness of some features
can assure that the right feature is found. Furthermore some other model
cues like color information of the object can be used to eliminate wrong fea-
ture candidates. Once a feature is found for the first time, this feature is
then tracked in the next cycle. Additional information of the features found
in the image (image cues like intensity) can be stored to facilitate the search
for the same feature in the next tracking cycle. An example for a tracking
sequence is given in Figure 7.4.

Figure 7.4: A tracking sequence along the robot trajectory.

The second unit of V4R is the pose calculation which computes the posi-
tion and orientation of the robot related to the environment object, i.e. the
ship. This is done by fitting the 2D and 3D image features extracted to the
according model received from the CAD system. The algorithm employed is
based on a method proposed by Wunsch (Wunsch, 1997) and was modified
for providing accuracy estimation of the calculated pose as well as outlier
detection (Kraus, 1997).

7.4 Results

This section gives an overview of the tests for evaluating the whole system.
A mock-up was built with structures that can be found in a big ship environ-
ment. A big challenge is to find a large number of "good" views to enable a
successful task completion, that is, views containing a large number of robust
features. The importance hereby is not only to generate good views along
the path but also good alternative views for one robot pose to be on the
secure side if pose determination with the first view fails. Malfunction can
happen since the mock-up is made of big metal plates welded together, which
is a big defiance for the vision. Some welding causes irregular edge features,
contrast is sometimes poor and additional features on the plate surfaces can
affect pose calculation results negatively. That’s why feature redundancy is
a basic issue. The CAD system generates the features seen in the image to
deliver it to the vision. The two vision methods are able to extract the 3D
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coordinates of the junctions (Gasteratos et al., 2000) and the 2D positions
of edges and junctions in the image. From all the features extracted a pose
is calculated (Wunsch, 1997).

(a) (b)

Figure 7.5: Robot pose measurements in a fix pose (a) diagonal, (b) parallel

Two kind of tests were performed. The first group had the goal to mesure
the accuracy of the system at different fix poses within the mock-up. With
a ruler a reference position was measured. Figure 7.5 shows the results of
different trials to calculate the position in two poses. The first one (Figure 7.5
a) corresponds to the robot standing diagonal in the mock-up and the second
one (Figure 7.5 b) corresponds to the robot standing parallel. Table 7.1 and
Table 7.2 summarise the measurements and give the standard deviations
and the mean deviation from the reference measurements. The mean values
are relatively high due to consistent off-set, which might be caused by the
difficulty to access the origin of the measurement coordiante system. A
further uncertainty is the actual geometry of the mock-up. The bending of
the plates causes a few centimetres deviation over the model. As can be
seen, the three dimensional standard deviation is in one case 35.72 mm and
in the other case 4.64 mm, measurements that fulfil the specification for a
ship building aplication.

X[mm] Y[mm] Z[mm] roll[deg] pitch[deg] yaw[deg] 3D pos[mm]

std 28.17 16.91 23.56 0.35 0 0 35.72

mean 45.87 33.87 25 2.13 0 0 71.91

Table 7.1: The standard deviation (std) of the measurements and the mean distance
from the reference.

The second group of tests had the goal to test the performance and re-
liability of the pose calculation with the robot walking along a trajectory.
Figure 7.6 gives an overview of the pose calculation recorded along a path
in the x-direction. As can be seen the pneumatic walking robot produces
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X[mm] Y[mm] Z[mm] roll[deg] pitch[deg] yaw[deg] 3D pos[mm]

std 5.49 3.29 8.48 0 0.92 0.35 4.64

mean 4.88 8.62 51.25 0 0.62 0.13 52.49

Table 7.2: The standard deviation (std) of the measurements and the mean distance
from the reference.

many jerks, in particular for the translational degrees of freedom. It can
be observed that the body of the robot sometimes moves up 15 cm when
releasing a leg. These fast changes in the orientation of the robot cause big
deviations of the feature positions in the image. Because of the fast but spa-
tially restricted windowing technique, used in one of the vision methods, such
features are then lost. This fact reduces the reliability of the system. The
camera head stabilization implemented lower the optical flow and increases
the robustness of feature finding.
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Figure 7.6: Robot pose output along a trajectory, (a) position, (b) orientation

The tests executed show the system benefits from the redundancies im-
plemented. As long as enough features can be tracked, the system is able
to re-find lost features. Also wrong detected image features are filtered out
from the pose calculation. The stabilization of the pose increases by the use
of 3D features and the continuous update of new image features from the
CAD database makes the overall system robust and reliable.
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Chapter 8
Conclusions

The biological basis of prediction are not well know. I have shown, however,
that the comparison between predictions and real information, that is the
prediction error, seems to play a fundamental role in many brain processes.
Moreover, prediction seems to play an important role in motor control.

I have addressed also the effect of prediction in the present, particularly
how visual expectations and active vision can improve perceptual processes
in complex robotic systems. In this respect, it is specially relevant the study
about the effect of audio-visual crossmodal expectations and how they can
affect attention.

Yet, prediction remains a complex issue that needs to be approached
through multidisciplinary research. This thesis aims to be a contribution in
understanding prediction and its fundamental role in robots that learn and
develop. That is why I have entitled this thesis Toward Predictive Robotics,
because I try to demonstrate that prediction deserves more attention and
can be a key issue in future robotic technology. I hope that, at least, I have
succeed in this goal.
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Appendix A
QR Factorization for efficient

covariance determinant

computation

A.1 Introduction

In the chapter 6 I have addressed the problem of segmenting an object by
combining both visual and audio cues. The focus is in detecting the temporal
correlation in both sensorial cues by using a statistic called mutual informa-
tion. The calculation of the mutual information implies the computation of
the covariance matrix determinants for the audio and visual data streams
and for the combinations of both streams—this is the joint covariance matrix.
This operations must be done for each pixel in the image with a considerable
computational cost in spite of the system using log-polar images with smaller
dimension than standard (rectangular) images. In this appendix I discuss in
more detail the techniques used to perform such operations.

A.2 The covariance matrix

Usually the variance, in the discrete case, is calculated as:

σ2 =
n

∑

i=1

P (xi)(xi − µ)2 (A.1)

where P (xi) is a probability distribution, µ is the mean, and xi are the
samples of the random variable.

Frequently, in real data experiments, the probability distribution is not
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known and therefore is acceptable to calculate the variance using the form:

S2
n =

1

n

n
∑

i=1

(xi − x̄) (A.2)

S2
n is known as the sample variance and x̄ is known as the sample mean

calculated as x̄ = 1
n

∑n
i=1 xi. In order to obtain an unbiased estimator for

σ2 it is possible to use the next version of the sample variance:

S2
n−1 =

1

n − 1

n
∑

i=1

(xi − x̄) (A.3)

As a practical example consider that you have to compute the covariance
matrix of the RGB values of a pixel during a given period of time, lets say
during six time samples. In such a case you can form the next matrix with
the data vectors:

X =

















200 200 200
123 234 56
43 232 20
33 200 50
100 140 100
140 200 160

















Each row (e.g. 200 200 200) correspond to an observation of the RGB values
of the pixel in a given instant of time. Therefore is trivial to calculate the
means vectors that results in:

x̄ =
(

106.5000 201.0000 97.6667
)

By considering the variances matrix as V = (X − X̄) then it is possible
to calculate the covariance matrix by applying the next formula:

S =
1

n − 1
(V T V )

A.3 Fast computation of the covariance matrix de-
terminant

In many practical applications may be interesting, however, not to form
the covariance matrix S directly particularly if it is necessary to calculate
the determinant of the covariance matrix. Eventually we can represent the
covariance matrix, S, as:

S = AT A (A.4)

where the matrix A can be calculated from the variances matrix V —seen in
the previous section—by making A = V · 1

√

n−1
. Then, instead of computing
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S, the matrix A can be decomposed with a QR factorization and it can be
substituted in (A.4) as follows:

S = RT QT QR (A.5)

Because Q is orthogonal, then QT Q = 1 and consequently, (A.5) can be
reduced to:

S = RT R (A.6)

Then the determinant of the covariance matrix can be computed applying
(A.7).

det(S) = det(R)2 (A.7)

The det(R) can be trivially calculated because R is an upper triangular
matrix and therefore its determinant is equal to the product of the diagonal
elements.
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Appendix B
Log-polar images

Vision is the sense more used by humans. In this appendix we describe a
mathematical model, known as log-polar representation, that approximates
the way humans may perceive the light information.

B.1 Log-Polar Images

The photoreceptors within the human retina exhibit a space-variant distrib-
ution. The cones ,which are responsible for visual perception of light, have a
higher density at the center of the visual field and are sparser in the periph-
ery. The resolution has a radial symmetry, which can be approximated by
a polar distribution. The projection of the photoreceptor array into the pri-
mary visual cortex can be well described by a logarithmic-polar (log-polar)
distribution mapped onto a rectangular-like surface.

This particular sensor distribution has important consequences in the
attentional processes. The fact that the fovea generates the most informative
flow of information determines the importance of moving this fovea towards
the object of interest. Indeed, this is the case in the animal kingdom where
frequently foveal vision is associated with active capacities.

The other important fact is that with such geometric distribution of
visual receptors it is possible to perceive a wider field of view, moreover, the
photoreceptors of the periphery are more sensitive to changes in illumination,
hence more appropriate for motion detection.

In summary, the main advantage of such visual perception architecture
is the fact that it is possible to maintain both a good visual acuity and wide
field of view maintaining a low size of the resulting image. This can have
important consequences both from a computational point of view and for
transmission and storage purposes.

Log-polar images find therefore inspiration in biology and have been used
frequently in robotics. Particularly, in active systems. It is worth mention-
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ing that artificial sensors with log-polar geometry have been developed in
silicon C-MOS support (Sandini and Metta, 2002) and they are particularly
useful in real-time robotic applications (Bernardino and Santos-Victor, 1996.
IROS’96). This type of geometry has been using widely during this thesis
though the log-polar images have been used through a software mapping
from standard (rectangular image) cameras.

From the mathematical point of view, the log-polar mapping can be
expressed as a transformation between a polar plane (ρ, θ) (retinal plane)
and a cartesian plane (ξ, η) (log-polar or cortical plane), as follows:

{

η = qθ
ξ = Kξ lna

ρ
ρ0

(B.1)

where ρ0 is the radius of the innermost circle, 1/q is the minimum angular
resolution of the log-polar layout, and (ρ, θ) are the polar coordinates. Kξ is
a linear scaling parameter, this has been added to the original formulation in
order to fit the mapping into a fixed size squared image (which is determined
by the frame grabber characteristic). These are related to the conventional
Cartesian reference system by:

{

x = ρ cos θ
y = ρ sin θ

(B.2)

Graphically the mapping is represented in figure B.1.

Figure B.1: The mapping can be explained as follows: The original image is divided
in concentric circles which are uniformly sampled and arranged along the rows of
the logpolar image. The outermost and innermost circles are placed in the last and
first rows respectively.

The result of the log-polar mapping in a real image can be seen in fig-
ure B.2.
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(a) (b) (c)

Figure B.2: (a) the original rectangular image, (b) the concentric circles samples,
(c) the log-polar image
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