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Abstract: The studies presented in this paper stem from an in-
terdisciplinary approach covering aspects of “brain sciences” 
and robotics, with the goal of answering several questions, 
namely: is it possible to test hypotheses of the brain functions 
involved in a particular task, by implementing biologically 
plausible models on a real physical system such as a robot? 
How can we design more adaptable and potentially efficient 
robots? Is it possible to build a truly human-like robot? And 
finally, is development the right way towards humanoid ro-
bots? 
We shall argue whether developmental studies might provide a 
different and potentially interesting perspective either on how 
to build an artificial adaptive agent, or on understanding how 
the brain solves sensory, motor, and cognitive tasks. 
From the modeling point of view we shall demonstrate how a 
twelve degrees of freedom “baby” humanoid robot acquires 
orienting and reaching behaviors, and what the advantage of 
the proposed framework over traditional learning paradigms 
is. 

INTRODUCTION 

Research activity linking studies on artificial systems to 
“brain sciences” is certainly not new. Beside the studies on 
artificial neural networks, substantial efforts are devoted 
worldwide in building “physical models” of segment of bio-
logical systems, with the aim of suggesting novel solutions 
to robotics or processing problems and to advance our un-
derstanding of human brain functions [1, 2]. The main ad-
vantage of using robots rather than pure computer simula-
tions, at least in the study of the motor system, is that the 
physics of the environment comes “for free” – a proper 
simulation would be difficult, if not impossible. 
In our opinion, there might be commonalities, sometimes 
due to the nature of the tasks, sometimes to the physics it-
self, which suggest that both artificial and biological agents 
could consistently employ the same solutions. The study of 
the “biology” – the modeling of brain functions – could 
suggest how to build more successful and adaptable “artifi-
cial beings”. 
On the other hand, the quest for adaptation raises the issue 
of learning; in other words, how can the learner acquire use-
ful information in order to accomplish a given task? Which 
sensors does it need? Is learning always feasible? Up to 
now, robotics and AI have not provided a definitive answer, 
and consequently truly autonomous and flexible agents are 
still very limited. In spite of many successes on building ro-
bots of various shape, size, abilities, sensory types, etc there 
seems to be something lacking in terms of “cognitive abili-
ties”, as well as system adaptability to the dynamic of the 

environment. Moreover, even for those “successful” robots, 
the integration of different behaviors and sensory modalities 
gave rise to a series of unexpected problems. The traditional 
artificial learning paradigm faced such difficulties, perhaps 
because of some wrong assumptions about the learning 
process itself, rather than the lack of proper models and al-
gorithms. 
In this context, “brain scientists” have studied, since a long 
time, the acquisition of behavior and cognitive abilities, and 
nobody is surprised by the fact that newborns are not simply 
a sort of “reduced size human beings”. What is more sur-
prising is that, even at that age, infants show a series of “in-
nate” behaviors, basic control synergies, and reflexes. On 
this basis, more sophisticated behaviors develop, and this 
process undergoes through stages, where the limited abilities 
already formed are efficiently exploited in order to simplify 
the learning process itself. 
On the contrary, the approach followed in robotics is mainly 
that of designing the “complete manufact” (i.e. the adult-like 
robot). One might wonder what about that is wrong. Per-
haps, something was underestimated, and from a purely en-
gineering point of view, this “something” was the whole 
process of design. Dennet [3], for instance, thinks that the 
overall design process must be included in the specifications 
of the manufact. This approach shifts the emphasis from the 
“final product” to the “process” of building it; the goal of 
the designer becomes that of devising a suitable initial state 
(at time t0), and the appropriate developmental rules to get 
some close approximation of the desired “final product”. 
Given these considerations, we conjecture that developing 
systems, either artificial or natural, can be or are equipped to 
tackle the problem of learning consistently. 
In the following sections, we shall highlight first what the 
advantages of a developing agent over a traditional learner 
might be. Secondly, we will describe briefly those aspects, 
which are relevant for the design of a developing robot, next 
to a significant real-world experiment. 

LEARNING AND DEVELOPMENT 

It has been recognized that learning from examples is an ill 
posed problem [4]. Every learner faces the so-called “theo-
retical pressures”, which require balancing competing needs 
in order for learning to be feasible. Recently, a number of 
theories on learning formalized these problems [5]. Gener-
ally speaking, a learner should be able to learn from incom-
plete information, using a limited number of samples, and 
quickly enough to cope with changes in the environment, as 



well as of its internal physical parameters (e.g. growth, mal-
functions, etc). The first step for any learning agent is that of 
acquiring information through the interaction with the envi-
ronment. However, without any a-priori information, it is 
hard to tell which part of the “state1” space is worth explor-
ing in order to solve a particular task. In fact, the size of the 
state space might consist of dozens of dimensions, which 
precludes whatever sort of enumerative search for a solu-
tion. It is not always true that the solution belongs to the 
whole state space; on the contrary, in many cases the actual 
problem rests on a lower dimensionality manifold [6]. This 
suggests that, if the learning process is carried out together 
with the identification of the relevant sub-manifold, a com-
plete exhaustive search can be avoided. 
It turns out that learners have two competing requirements 
in terms of exploring the control/state space, and in respond-
ing as much as possible appropriately to stimuli (i.e. exploit 
their knowledge). Recent research on human development 
suggests that such exploration component might be provided 
naturally by noise. In fact, newborns show several noise 
sources due to incomplete structures (non-myelinated neu-
rons are an example [7]), to unnecessary neural branching 
[8], and to the use of random behavior actively [9]. This role 
of noise during learning resembles the use, in system theory, 
of broadband (e.g. white noise) input signals for system 
identification purposes. 
Besides, other researchers provided evidences for the exis-
tence of a strong “goal-directed” behavioral component, 
even in newborns [10]. The fact that the behavior is goal-
directed can speed up the acquisition of the appropriate con-
troller with respect to a fully random explorative search. In 
this last case, the learner has to visit all possible states prior 
to any actual control; otherwise, a possibly useful part of the 
state space might remain unexplored. It is also worth noting 
that the cooperation of many control loops developing with 
different time spans can help in reducing the already men-
tioned exploration space in the sense that each control loop 
may generate a bias for subsystems that develop later. In the 
context of “computational motor control”, one notable ex-
ample of such a schema is the feedback-error learning model 
[11]. In this case, an inverse modeling is carried out through 
the interaction of a learner with a much simpler feedback 
loop. Similar multi-loop structures can also be observed in 
the brain. An example of this process is the so-called corti-
cal take-over, where cortical areas develop on top of sub-
cortical structures [12]. The delay and bandwidth involved 
in the various structures can be different thus providing the 
basis for faster reactions (reflex-like) and accurate control at 
the same time (consider, for instance, the visuo-vestibular 
integration). 
Implicit in the preceding discussion is the assumption that 
the learning agent is “functional” from the beginning, which 
means that the training data must be collected “on-line”. 
This is a major constraint for biological as well as artificial 
systems. Concerning biological systems, it is clear that they 
cannot be some sorts of “blank slate” at birth; they rather 
need to have some useful bootstrap functionality. These 
                                                           
1 The state space can be a proper state space, the parameters mani-
fold, or a combination of the two depending on the kind of learning 
algorithm considered. 

“initial behaviors” are usually reflex-like and stimulus 
bound in nature. They can be thought as the initial “bias2”, 
and perhaps their role is indeed that of guiding the system 
through feasible regions of the state space. 
It is worth stressing that the exploration-exploitation trade-
off is closely related to the well-known engineering problem 
called “the curse of the dimensionality” [13]. In fact, the 
need for representational resources grows exponentially 
with respect to a linear growth of the number of dimensions. 
For an on-line learner, the time to explore the state space 
would suffer of this remarkable growth. 
Of course, this is far from being a complete argument on 
what Sejnowski and colleagues [14] called the “theoretical 
pressures”, although we may conjecture on why develop-
ment is a necessary procedure to simplify learning, and why 
developing systems can be superior in terms of skill acquisi-
tion. For instance, the “bias-variance” dilemma can be han-
dled by controlling the complexity of the learning structure 
[5]. In biological systems, this is thought to happen during 
development; it is not only a competitive learning but also a 
growth process. As already mentioned, the brain is not a 
monolithic controller, and consequently the sequence of de-
velopmental events (i.e. when different subparts get acti-
vated) is important. We also argued that noise plays a fun-
damental role in driving exploration, therefore, the fact that 
the newborn is perceptually and motorically limited can be 
seen as a positive factor. 
In summary, we argue that we can borrow these mecha-
nisms in the process of designing an artificial autonomous 
system and, furthermore, we can notice that part of this ma-
chinery is only effective in the context of a developing agent 
interacting with the environment [14-16]. 

BUILDING THE DEVELOPING SYSTEM 

The experimental setup (see Figure 1 below) consists of a 
five degrees of freedom robot head (designed and realized at 
Lira Lab), and an off-the-shelf six degrees of freedom robot 
manipulator (an Unimation Puma260), both mounted on a 
rotating base: i.e. the torso. The kinematics resembles that of 
the upper part of the human body although with less degrees 
of freedom. From the sensory point of view, the Babybot is 
equipped with two space-variant cameras [17], an inertial 
sensor simulating the vestibular system [18], and proprio-
ceptive information through motor encoders. The robot is 
controlled by a set of PCs – ranging from Pentium II to Pen-
tium III processors – each running Windows NT and con-
nected by a fast Ethernet link. In order to provide the neces-
sary interface with the hardware (i.e. sensors and motors) 
some machines are equipped with motion control boards, 
frame grabbers, AD converters, etc. In particular one ma-
chine controls the robot arm and the torso, another one the 
head, and a third computer carries on the visual processing. 
Concerning the software, it adheres to DCOM, a standard, 
which allows running objects among the various machines. 
The reference task, for this discussion, is the coordination of 

                                                           
2 Proper bias selection leads to another impasse usually called the 
bias-variance dilemma. 



eye-head-arm movements, with the aim of gazing and reach-
ing for visually identified objects in extrapersonal space. 

 

Figure 1 – The experimental setup. The 12 degrees of freedom hu-
manoid robot described in the experiment. 

In practice, the system is able “at birth” to move the eyes 
only. Control, at that stage, is a mixture of random and goal-
directed movements. Concerning the head-arm coordination, 
the robot possesses at the beginning only a reflexive behav-
ior simulating basic muscular synergies and spinal reflexes. 
The initial task of the control process is that of calibrating 
the closed loop gains. It is worth stressing that even at the 
very beginning the system is already moving in a “goal-
directed” manner, although noise dominates the actual 
movements. In successive phases, the robot starts learning 
fast eye movements (saccades), but only the eyes are mov-
ing. Indeed, this is necessary because otherwise the neck 
motion would disturb the estimation of the required eye 
commands (i.e. part of the required eye movement would be 
indirectly performed by the head motion). 
Once eyes are under “proper” control, the whole head starts 
moving, at this point, the eye controllers are well formed 
and can be used to help coordination of the redundant eye-
head degrees of freedom. Concurrently, reaching steadily 
improves by storing more information in a head-arm coordi-
nation map; as a result, the initial reflexes become part 
themselves of the coordinative action. Because reaching de-
pends on gazing, during the initial phases, reaching im-
proves slowly. Later on, as soon as gazing gets to a reason-
able performance level, also reaching improves quickly. It is 
worth stressing that, from the robot’s point of view, motor 
control can be seen as “learning” to combine the initial 
“skills” – i.e. reflexes – in order to obtain voluntary goal-
directed movements. 
A sort of vestibulo-ocular reflex (VOR) is always on. The 
robot learns the appropriate eye compensatory responses by 
minimizing a performance measure of image stabilization 
(i.e. the optic flow). When the first multi-joints eye-head 
movements are practiced, the VOR is already effective in 
facilitating coordination [19]. 
Once head and arm controls are in place, the robot can ori-
ent appropriately toward moving stimuli, follow them while 
moving, and eventually, touches the tracked object. Roughly 
speaking, Babybot starts by looking at objects, which are 
identified by means of color and motion. It can correctly 
perform saccadic eye movements, and it possesses a sort of 
smooth pursuit ability. It is worth mentioning that only the 

eyes are controlled directly by means of visual information 
(the neck and arm follow). The redundant DOF are easily 
“centrally” coordinated. This ability to gaze is the first step 
toward yet another visually driven behavior: i.e. reaching. 
By mapping gaze direction into appropriate motor com-
mands, the robot can effectively reach for objects in ex-
trapersonal space. This map, at least initially, does not nec-
essarily, brings the end-effector near the fixation point. 
However, instead of correcting the error by moving the arm, 
the direction of gaze is redirected to the end-effector and the 
arm motor command previously issued is associated to the 
new eye position. As the learning process proceeds, the ini-
tial arm motion gets closer and closer to the visual target, 
and eventually, the corrective gaze shift will not be neces-
sary unless kinematic changes occur. For a complete de-
scription of the learning sequence, see [20]. Moreover, 
thanks to a low stiffness controller, Babybot can safely in-
teract with humans and the external environment. If our will 
is to build a truly autonomous system, this robot-
environment-humans interaction is of paramount impor-
tance. 
Learning of the various maps is carried out by a growing 
neural gas type network, which is able to tune its growth 
rate on the basis of the approximation error. By tailoring the 
model complexity to the actual approximation requests, the 
network can avoid over-fitting and over-smoothing. 
Figure 2 shows the trajectories of the fixation point and the 
arm end-point. They have been acquired during an unre-
strained experiment: i.e. an experimenter handled a target, in 
such a way to cause the robot to react. The whole experi-
ment endured for about half an hour during which joint posi-
tions were recorded at 25Hz rate. Figure 3 plots saccades 
during the initial phases of learning. Abscissa and ordinates, 
in this case, represents the image plane. Note that all trajec-
tories are actually converging to the fovea. 

CONCLUSION 

This paper presented a proposal for a novel approach aimed 
at the design and comprehension of complex systems. This 
approach arose by observing how biological systems solve 
the problem of learning and adaptation during the early 
stages of their lives. We tried to isolate those aspects, which 
may be relevant both for the construction of artificial sys-
tems and for advancing our understanding of the corre-
sponding brain functions. An important point worth stress-
ing is that the brain cannot be seen as a monolithic structure, 
but rather we need to look at it as a developing system, 
where many subparts optimally interact. This internal or-
ganization might indeed facilitate learning and in this sense 
it is worth copying when one goes through the design of an 
“artificial adaptive agent”. We are aware that we did not 
provide any formal justification, but at least we provided 
hints on what aspects might be relevant. Finally, by using a 
“learning by doing” philosophy, we built a humanoid robot, 
and “programmed” it following some of the biological as-
pects we denoted as “relevant” for artificial development. 
The robot indeed faced problems, such as moving many de-
grees of freedom by employing many different cooperating 
controllers. This is exactly the point, how should we connect 



all these modules together? Consider that they are not sepa-
rated because all of them act on the same non-linear physi-
cal plant. Consequently, interactions must be explicitly 
taken into account. We devised a solution, where the timing 
of adaptation is carefully (but not too much) programmed. 
That is, the solution goes by creating a proper time slot for 
each subpart (slots do not need to be temporally separated 
one from another). Inside this “critical periods”, adaptation 
can effectively take place without disturbing much the other 
modules. This is important, especially in the early phases, 
when plasticity must be high (i.e. exploration) in order to 
quickly acquire a consistent behavior. Yet another type of 
interaction occurs: modules that develop first influence 
modules that develop later. Consequently, the “explored 
state space” depends much on how these early controllers 
behave. Each module can function as a “bootstrap” proce-
dure for other subsystems. This is exactly “constructive 
learning” on a coarse scale, where entire streams, areas, con-
trollers can be considered as “basis modules”. Constructive 
learning is thought to be superior to other learning tech-
niques (pruning based). So, the spotlight moved from learn-

ing itself to the process of learning: i.e. development. What 
and how could be learned is determined by the learner’s de-
velopmental stage, that is, by what the state of the whole 
system is in terms of the other subparts (e.g. the robot could 
not move the neck without controlling the eyes first). 
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Figure 2 – Gazing and reaching. Two trajectories are shown, the
fixation point and the arm end-point (100 samples are dis-
played). The simple wire-frame model represents the robot.
Small circles indicate joints; solid lines are the links. 
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Figure 3 Eyes trajectories in the image plane. Coordinates are 
expressed in pixels. 


