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Abstract The study of several aspects of the collective dy-
namics of interacting neurons can be highly simplified if one
assumes that the statistics of the synaptic input is the same
for a large population of similarly behaving neurons (mean
field approach). In particular, under such an assumption, it is
possible to determine and study all the equilibrium points of
the network dynamics when the neuronal response to noisy,
in vivo-like, synaptic currents is known. The response func-
tion can be computed analytically for simple integrate-and-
fire neuron models and it can be measured directly in ex-
perimentsin vitro. Here we review theoretical and experi-
mental results about the neural response to noisy inputs with
stationary statistics. These response functions are important
to characterize the collective neural dynamics that are pro-
posed to be the neural substrate of working memory, deci-
sion making and other cognitive functions. Applications to
the case of time-varying inputs are reviewed in a compan-
ion paper (Giugliano et al 2008). We conclude that modified
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integrate-and-fire neuron models are good enough to repro-
duce faithfully many of the relevant dynamical aspects of the
neuronal response measured in experiments on real neurons
in vitro.

1 Introduction

Biological networks of neural cells are extremely compli-
cated dynamical systems which comprise a large number of
very diverse elements. Even within a single cortical column,
where the neurons are known to have similar response prop-
erties to external stimuli, the number of neurons can be as
large as 105, and the synaptic connections are of the order
of 109 (Braitenberg and Schüz 1991). A study of detailed
dynamical models of such networks is a difficult task. An
alternative approach is suggested by the analogy between
the neural circuits and physical systems like the spin glasses
in which the number of interacting elements is huge and
the long range interactions allow for important simplifica-
tions (Mezard et al 1987). The dynamics of every element,
the spin, are driven by the field generated by thousands of
other spins. If all spins have similar dynamical properties
and the interactions have the same statistical properties, then
the fields felt by different spins are approximately the same.
Analogously, the dynamics of a large population of interact-
ing neurons could be greatly simplified if we focus on the
statistical properties of the total synaptic currents. Such an
approach is named population density approach or mean-
field theory (Knight 1972a,b; Amit and Tsodyks 1991a,b;
Treves 1993; Abbott and van Vreeswijk 1993; Amit and
Brunel 1997b; Fusi and Mattia 1999; Brunel and Hakim
1999; Gerstner 2000; Nykamp and Tranchina 2000), as the
fields acting on different spins, or the total synaptic current
to different neurons, are replaced by their mean value across
a population of different interacting elements that behave in
a similar way. In earlier efforts (Knight 1972a,b), only the
mean current would be taken into account. More recently,
mean field theory has been extended to include both the aver-
age input current and the amplitude of its fluctuations (Amit
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and Tsodyks 1991a,b; Abbott and van Vreeswijk 1993; Amit
and Brunel 1997b).

Once we know the average input current, we need one
more element to characterize the dynamics of recurrent neu-
ral circuits. We need to know how the total somatic current
is transformed into trains of spikes, that in turn generate a
synaptic current in the connected neurons. If we have this
element, not only can we characterize the average firing rate
of a population, but we can also analyze the dynamical be-
havior of circuits in which populations of neurons gener-
ate inputs to themselves. This is fundamentally important to
study the attractor dynamics of recurrent neural circuits and
their states of persistent activity (Amit and Tsodyks 1991a,b;
Amit and Brunel 1997b; Wang 1999), i.e., attractor states
with many potential applications ranging from working mem-
ory (Amit 1995; Wang 2001; Brunel and Wang 2001) to de-
cision making (Rolls and Deco 2001; Wang 2002; Wong and
Wang 2006) and flexible sensorimotor mapping (Fusi et al
2007). The transduction function which transforms the so-
matic current into a train of spikes (namedresponse func-
tion in this article) provides a compact characterization of
the single neuron properties that are relevant to the collec-
tive behavior of large networks of similar cells. If the re-
sponse function is known, mean field theory allows us to
study systematically the behavior of large connected net-
works of spiking neurons (e.g., Amit and Brunel (1997b);
Brunel and Hakim (1999); Brunel (2000a,b); Mattia and Del Giu-
dice (2002); Fourcaud and Brunel (2002); Del Giudice et al
(2003); Renart et al (2003); Curti et al (2004); Richardson
(2007); Moreno-Bote et al (2008)). It is then valuable to ob-
tain a theoretical and experimental characterization of the
response function of cortical neurons, which depends on the
specific type of cell under consideration. One possibility is
to build a model, inject a typical current into a simulated
neuron, and observe its response. On the other hand, for sim-
ple enough model neurons, a theoretical response function
can be determined analytically, facilitating the applicabil-
ity of the theory and the comparison with the experimen-
tal data. This has been done for several models in the class
of integrate-and-fire (IF) neurons (e.g., Fourcaud and Brunel
(2002); Fourcaud-Trocmé et al (2003); Renart et al (2003);
La Camera et al (2004a); Moreno-Bote and Parga (2005);
Richardson (2007)). Experimentally, it is possible to mea-
sure neuronal response functions by injecting a real neuron
with an appropriate range of input currents and measuring
the neuron’s response (Rauch et al 2003; Giugliano et al
2004; La Camera et al 2006; Arsiero et al 2007).

Beside the theoretical importance of the response func-
tion to study network behavior, its experimental characteri-
zation can be used i) to classify neurons (e.g., quantify their
functional similarity); ii) to establish how well the simple
models of spiking neurons used in theoretical studies rep-
resent the behavior of real neurons; iii) to modify simple
model neurons so as to improve their ability to predict the
behavior of real neurons, sometimes simply by using effec-
tive parameters (i.e., those derived from fitting the theoreti-
cal response functions to the experimental ones). Often these

parameters are different from those directly estimated with
more traditional techniques.

In this article, we review the theoretical and experimental
characterization of the response function of cortical neurons
in the case of stationary statistics of the somatic current. In
particular, we review the results related to the stationary re-
sponse of the neuron on a time-scale or seconds, following
a phase of fast adaptation (hundreds of milliseconds) for the
pyramidal cells. The extension to the case of time-varying
statistics and to the response on longer time-scales is ad-
dressed in a companion article (Giugliano et al 2008). This
article is organized as follows. In Sec. 2, the relevant char-
acteristics of cortical spike trains are summarized. In Sec. 3,
the theory of the response function of cortical neurons is pre-
sented in the context of mean field theory. In Sec. 4, some
of the applications of the theory are reviewed. In Sec. 5, we
collate the various experimental characterizations of the re-
sponse function of pyramidal and fast spiking neurons ob-
tained in different areas of the rat neocortex, and compare
the theory to the data. We finally discuss some of the advan-
tages and some of the shortcomings of using the simplified
spiking models and the approach reviewed in this article.

2 Cortical spike trains

To develop a theory of the response of cortical neurons, we
must have an adequate understanding of the typical neuronal
spike patterns as observedin vivo. Recording neural activity
from the cerebral cortex of anesthetized and awake animals
has shown that such activity is highly variable. In particular,
it is observed i) a large variability in the inter-spike inter-
vals (ISIs) of the same neuron during spontaneous as well as
stimulus-driven activity (e.g., Noda and Adey (1970); Holt
et al (1996); Shinomoto et al (2003)); ii) a large trial-by-
trial variability of the spike count of the same neuron in re-
sponse to repeated, identical stimulation, which grows pro-
portionally with the average number of spikes (e.g., Gershon
et al (1998); Lee et al (1998); Oram et al (1999); Wiener
et al (2001)). Intracellular recordings of neural activity in
the intact brain have also shown the presence of a large vari-
ability at the level of the subthreshold membrane potential,
and have shed some light on the nature of this variability.
In Fig. 1 is shown the intracellular recording of the mem-
brane voltage of two pyramidal neurons from the visual cor-
tex of adult cats performed by Holt et al (1996): one from a
slice in response to a DC current injection (left); one from an
intact animal under DC current injection (middle); and one
under visual stimulation (right). Note how a constant current
stimulationin vitro elicits a fairly regular spike train (left),
whereas the same current injectedin vivo (middle) elicits an
irregular spike train very similar to that obtained in response
to a visual stimulation (right).
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Fig. 1 Neural activity in vitro and in vivo. Comparison of primary visual cortex cells from adult cats in slice andin vivo. Sample traces from 2
pyramidal neurons, one from a slice (left) and one from an intact animal on the boundary layers II and III that was stimulated by current injection
(middle) and by a bar moving along the receptive field (right). Note the lack of a large difference in spiking variability in response to current
and visual stimulation in the intact animal. Used and modified with permission from Holt et al (1996). Copyrightc© 1996 by the American
Physiological Society.
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Fig. 2 Neural activity in vitro in response toin vivo-like input cur-
rent. Three intracellular somatic recordings performedin vitro from
one pyramidal neuron from layer 5 of the somatosensory cortex of a
juvenile rat are shown. These somatic recordings were obtained in the
whole cell configuration under current clamp in response to current in-
jection modelled after Eq. 1 (Ornstein-Uhlenbeck process). Mean (mI ),
variance (s2

I ), and time correlation length (reported at the top of each
panel asτI ; see Eq. 1) of the input current were adjusted so as to have
roughly the same output spike rates (f ) but different coefficients of
variability (CV). See Rauch et al (2003) for details.

2.1 Recreatingin vivo-like activity in vitro

Whatever makes the neural activity irregular in an intact
brain is not present in the DC stimulationin vitro, the tra-
ditional probe of the physiological and cellular properties
of cortical neurons (e.g., Connors et al (1982); McCormick

et al (1985)). One explanation for this phenomenon lies in
the fact that a cortical neuron is constantly bombarded by
hundreds of seemingly erratic inputs. Indeed, whatever vari-
ability is contributed by the mechanism of action potential
generation (Gutkin and Ermentrout 1997), this is present
in both the cases illustrated in the left and middle plots of
Fig. 1, and thus it can not account for the striking difference
in variability. This explanation is confirmed by the fact that
the irregular activity shown in Fig. 1 can be recreatedin vitro
in response to fluctuating,in vivo-like current, as shown in
Fig. 2.

The current injected into the neuron shown in Fig. 2 was
modeled after an Ornstein-Uhlenbeck process (see e.g. (Cox
and Miller 1965; Gardiner 1985)),

dI = − I
τI

dt+
mI

τI
dt +sI

√

2dt
τI

ξt . (1)

The quantityξt in Eq. 1 is a Gauss-distributed variable with
zero mean and unitary variance, with the additional property
that〈ξtξt′〉= δ (t − t ′), whereδ is Dirac’s delta function and
〈·〉 means average over time. The processξt is often referred
to as ‘white noise’ in the literature. This condition defines a
delta-correlated process and means that two values ofξt at
different timest andt ′ are completely independent of each
other.I is Gauss-distributed at any timet, and after a tran-
sient of the order of theτI (the ‘correlation length’), con-
verges to a process with mean valuemI and standard devia-
tion sI . With the use of current Eq. 1 it is possible to generate
in vivo-like spike trainsin vitro with different firing rates,
and different variability at parity of firing rate, as shown in
Fig. 2. As we will show in Sec. 5, by tuning the values of pa-
rametersmI andsI a whole range ofin vivo-like spike trains
can be induced in the stimulated neuron.

2.2 Model reduction of cortical spike trains

In this article, we adopt the view that i) a spike train is com-
pletely defined by the sequence of its ISIs, and ii) a good
model reduction of cortical neurons is one that predicts well
its spike trains under conditions as close as possible to the
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one experimentally measured in the intact brain. How well,
it depends on the underlying problem that a network of spik-
ing neurons is called upon to describe, and different time
resolutions have been found to be optimal in different sys-
tems (see Victor (2005) for a review). Some authors have
assumed as a criterion that a large percentage of ISIs be pre-
dicted within±2 ms (Jolivet et al 2004, 2006, 2008). We
take a different approach and demand that the model neuron
reproduces well the first and second order statistics of spike
trains in response toin vivo-like current. A justification for
this criterion is that a level of detail at the millisecond scale
is not necessary for studying patterns of activity that do not
vary much on time-scales of seconds (Sec. 3.1).

We will characterize a spike train by its firing rate (spike
count in an interval divided by that interval’s duration) and
by its coefficient of variability, defined as the ratio of the
standard deviation to the mean of the ISIs. For stationary
spike trains, the firing rate quantifies also the average ISI,
and the coefficient of variability and firing rate together quan-
tify the variability of the ISIs. For non-stationary spike trains
other measures of variability have been devised and should
be used instead (Holt et al (1996); Shinomoto et al (2003);
Kostal et al (2007); see Gabbiani and Koch (1998) for a
primer on spike train analysis).

2.3 Stationarity of the statistics of the noisy input current

After a transient∼ τI , the currentI of Eq. 1 is auto-correlated
over a time of orderτI (its autocorrelation function isρ(t, t ′)=

s2
I e−|t−t′ |/τI , see e.g. Cox and Miller (1965)), and for very

shortτI approaches a white noise process. Even for finiteτI ,
however, and despite being highly fluctuating in time,I is
a stationary process in the statistical sense, since the statis-
tics of the current are completely characterized by the three
parametersmI , sI andτI , which are constant. In this sense,
the highly variable spike trains obtained in response to such
a current, shown in Fig. 2, are also stationary. Indeed, under
rather general conditions, the input current Eq. 1 can be gen-
erated at the soma of a target neuron by linear summation of
the post-synaptic potentials (PSPs) arising from many spike
trains that are in turn obtained in response to the same type
of current as Eq. 1.

The parametersmI , sI andτI represent, ideally, the most
important component of the presynaptic contributions to the
neuron under investigation. We shall link these parameters
to presynaptic parameters in a later section (Sec. 3.2). Non-
stationarity could arise from a time-dependence of any of
these parameters. In this manuscript, we will be dealing with
spike trains that are stationary in the sense defined above.

Having defined the scale at which we wish to character-
ize cortical spike trains, we move to the characterization of
the input-output relationship at the corresponding level of
description, i.e., the response function.

3 Theoretical analysis of the response of cortical
neurons

The response function characterizes the response of a neu-
ron to its somatic input current and thus plays an essential
role in the dynamics of neural circuits. In the simplified sce-
nario we are going to assume in the following, the average
somatic current and the amplitude of its fluctuations are the
only ingredients considered effective in driving the response
(for more complex scenarios, taking e.g. into account the
auto- and cross-correlations of input spike trains, see e.g.
Sakai et al (1999); Svirskis and Rinzel (2000); Salinas and
Sejnowski (2002); Moreno et al (2002); Doiron et al (2004);
Lerchner et al (2006); Moreno-Bote et al (2008)). Thus, we
shall define the response function as the output firing rate as
a function of the mean and variance of the input current. The
response function plays a central role in the mean field the-
ory of networks of spiking neurons (Knight 1972a,b; Amit
and Tsodyks 1991a,b; Abbott and van Vreeswijk 1993; Amit
and Brunel 1997b; Brunel and Sergi 1998; Fusi and Mat-
tia 1999; Brunel and Hakim 1999; Brunel 2000a,b; Nykamp
and Tranchina 2000; Fourcaud and Brunel 2002; Moreno
et al 2002; Mattia and Del Giudice 2002; Del Giudice et al
2003; Lindner et al 2002; Renart et al 2003; Richardson
2004; Moreno-Bote and Parga 2004; Gigante et al 2007a;
Richardson 2007; Moreno-Bote et al 2008). We provide a
brief introduction to this theory in the next subsection. For
a detailed mathematical exposition of the theory, the reader
is referred e.g. to Abbott and van Vreeswijk (1993); Fusi
and Mattia (1999); Brunel and Hakim (1999); Fourcaud and
Brunel (2002); Moreno-Bote and Parga (2005) and Richard-
son (2007).

3.1 Neuronal mean field approach

Consider the neural circuits depicted in Fig. 3. Starting from
a large network of interacting neurons (Fig. 3A), we group
together those neurons that presumably have a similar be-
havior in astatistical sense(for example they fire at the same
average rate). In this example, we consider two populations
of cells: pyramidal neurons, schematically drawn in black,
and gabaergic neurons, in gray. Two pyramidal neurons are
labelled in Fig. 3B as “1” and “2”; they receive direct synap-
tic input from other neurons in the same population (red),
and from the cells of the population of gabaergic neurons
(blue), which in turn produce the typical noisy input cur-
rents as shown in figure (“current into the soma”). Different
pyramidal neurons belonging to the same population will in
general be driven by different somatic inputs, either because
the pre-synaptic cells are different, or because the function
that transforms the pre-synaptic spikes into a somatic cur-
rent are different. However, the statistical properties of the
somatic currents might be the same across different neu-
rons of the same population. In the example of Fig. 3B, the
specific realizations of the noisy somatic currents generated
by the pyramidal neurons are clearly different. Nevertheless,
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into the soma
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23

11

10

23

19

Fig. 3 Mean field theory for neural circuits. A: Two distinct popu-
lations of different types of neurons: pyramidal (black) and gabaergic
cells (gray). Each population is made of different neurons that are ten-
tatively grouped together due to the similarities in the statistics of the
synaptic input and their response properties.B: Two cells (1 and 2, on
the right) from the population of pyramidal neurons. The other pyra-
midal neurons (in red labels) and the gabaergic neurons (blue labels)
that are connected (left) to the two cells shown on the right generate
an excitatory and an inhibitory somatic current. If the statistics of the
input currents to all pyramidal neurons is similar – same mean (red
and blue lines) and average amplitude of the fluctuations (red and blue
distributions) – then all the pyramidal neurons within the same pop-
ulation behave in a similar way and they can be replaced by a single
representative neuron (e.g., neuron 1).

the average (the red line) and the variance (red bell-shaped
curve) are approximately the same. Similarly, the mean and
the variance of the inhibitory input (in blue) are also approx-
imately the same. This means that if we replace the actual
somatic inputs with one having the same mean average and
variance across all neurons of the same population, we may
not make a large mistake. This is the basic approximation
of mean field theory: instead of considering the specific so-
matic input driving every individual neuron, we make the
assumption that the same fluctuating input drives all the neu-
rons. If all neurons react in the same way to the input, then
it is unnecessary to study a large number of neurons, as they
would all behave in the same way (in a statistical sense)
under the mean field assumption. Hence, an entire popula-

tion can be replaced by a single representative neuron which
is driven by the mean field. If we know how each neuron
transforms the somatic current into a train of spikes (their
response function), we then can fully characterize the popu-
lation dynamics.

This approach has been named “extended mean field the-
ory” by Amit and collaborators (Amit and Tsodyks 1991a,b;
Amit and Brunel 1997b) because it takes into account the
fluctuations of the input current. It is a stratagem that allows
us to reduce a population of similar neurons to the study of a
single representative neuron while, at the same time, taking
into consideration non negligible fluctuations. It is important
to include the fluctuations in the mean field approach not
only because they are observed in real neural circuits, but
also because they play an important role in working regimes
similar to those observedin vivo (Troyer and Miller 1997;
Fusi and Mattia 1999). When neurons are driven by fluctua-
tions, the generated spike trains are highly irregular (Fig. 2).
Moreover, the neurons are active also when driven by a mean
current that is below therheobase(i.e., the minimal non-
noisy current needed to generate an action potential). As we
will show in more detail in Sec. 4, this allows for the exis-
tence of stable states that have properties similar to those of
the spontaneous activity observedin vivo (Amit and Brunel
1997b).

The response of a population of neurons can be station-
ary, quasi-stationary or time-dependent. By quasi-stationary,
we mean slowly changing with time with respect to the rel-
evant time-scale of the neural dynamics, which could be
the membrane time constant in the case of single neurons,
or the transient response time of a population of neurons
considered as a unitary entity (Knight 1972a). In the quasi-
stationary case, the statistics of the input current produced
at the soma of each neuron, and the resulting spike trains
produced by the same neuron, have quasi-stationary prop-
erties (typically, mean, variance and autocorrelation), and
can be self-consistently described in the mean field approach
outlined above. The same approach can be extended to the
case of time-varying statistics of the input current, usually
with ad hocmodifications customized to work for the rel-
evant time-scale under consideration. Some of these exten-
sions are reviewed in the companion paper (Giugliano et al
2008), whereas in this article we consider the response of
cortical neurons in a regime of stationary or quasi-stationary
activity. In the next subsections, we consider its quantitative
development in the framework of networks of IF neurons.

3.2 The statistics of the somatic current for random
uncorrelated inputs

Assume that a neuron receives inputs fromNe excitatory and
Ni inhibitory neurons through synaptic contacts of strength
Je,i (in units of current), each neuron emitting independent
and irregular spike trains with firing rateνe,i , with each spike
contributing an exponentially shaped PSP with a decay time
constant ofτe,i , i.e. ∝ e−t/τe,i . For independent spike trains,
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the mean and the variance of the stochastic process,I , deriv-
ing from the summation of the PSPs emitted by the presy-
naptic neurons of the same typek∈ {e, i}, are given by

mk = NkJkνkτk, s2
k = 0.5NkJ

2
k νkτk. (2)

(A slight modification of the second of these equations is re-
quired if the synaptic weights are not identical but are drawn
from a probability distribution (Amit and Brunel 1997b; Curti
et al 2004)). We assume that a large number of small am-
plitude PSPs are required to reach the threshold. If this as-
sumption is sufficient for a diffusion approximation to hold
(Richardson and Gerstner 2005),I can be approximated by
the algebraic sum of two OU component processes each evolv-
ing according to Eq. 1, withmk, sk given by Eq. 2 andk ∈
{e, i}. If τe = τi ≡ τI , the two components can be merged in
the single equation (1) withmI = me−mi , s2

I = s2
e+s2

i (Amit
and Brunel 1997b).

3.3 The integrate-and-fire neuron

The characterization of the input current Eq. 1 requires only
a i) model for the PSPs, ii) the characterization of the spike
trains as independent stochastic processes, and iii) the con-
ditions for the diffusion approximation to be valid. To char-
acterize the output spike train in response to a current of type
Eq. 1, a model neuron must be specified. We are interested
in the firing rate and variability of the output spike train.
This can be calculated in analytical terms only if the model
neuron is simple enough, for example in the case of IF neu-
rons. A single-compartment IF neuron (Stein 1965; Knight
1972a; Tuckwell 1988) is completely characterized by its
membrane potential at the somaV, i.e., electro-tonic com-
pactness of the soma is assumed with no role for dendritic
nonlinearities (’point-neuron’ approximation). The membrane
potential integrates its inputs in a linear fashion. WhenV
reaches a thresholdθ , a spike is said to be emitted and the
neuron is clamped to a reset potentialVr for a refractory time
τr during which it is not sensitive to presynaptic or electrical
stimulation. IF neurons come is a large variety and most of
the material covered in this article applies to most types, see
e.g. La Camera et al (2004a). In the following, we shall limit
ourselves to the leaky IF (LIF) neuron driven by an input
currentI :
dV
dt

= −V −Vrest

τ
+

I
C

, (3)

whereVrest is the membrane resting potential,C is the mem-
brane capacitance, andτ = RC, whereR is the membrane
resistance. To emulate the noisy input current targeting neu-
ronsin vivo, the currentI is modeled as a stochastic process,
I(t) = ∑k∈{e,i} ∑t>t j,k

s(t − t j,k), wheres(t) is the PSP (here

∝ e−t/τe,i for consistency with Sec. 3.2), and{t j,k} are the
presynaptic spikes’ arrival times from excitatory (k = e) and
inhibitory (k = i) neurons respectively, both assumed to be
exponentially distributed (Poisson spike trains; this model is
usually credited to Stein (1965)). In the diffusion approx-
imation (Lánský and Sato 1999; Richardson and Gerstner

2005) – which, roughly speaking, holds when a large num-
ber of small amplitude PSPs are required to reach the thresh-
old – and for unitary PSPs (i.e., in the limitτe,i → 0, which
transforms the PSPs in delta functions), the subthreshold dy-
namics of the membrane potential obeys the stochastic dif-
ferential equation of the OU process,

dV = −V −Vrest

τ
dt+ µdt +σξt

√
dt, (4)

where

µ = mI/C, σ =
√

2τ ′sI/C (5)

are the average and standard deviation in unit time of the
membrane voltage, andξt is a Gaussian process with flat
spectrum and unitary variance as in Eq. 1.mI ands2

I are the
average and the variance of the synaptic input current, and√

2τ ′ is a factor to preserve units (τ ′ = 1 ms, see e.g. Rauch
et al (2003)). Under the conditions specified in Sec. 3.2,mI
ands2

I are given by

mI = NeJeνe−NiJiνi , s2
I = NeJ

2
eνe+NiJ

2
i νi . (6)

Note that here, unlike Eq. 2, the synaptic time constants do
not appear because we have performed the limitτe,i → 0.

3.4 The response function of integrate-and-fire neurons

The response function of the LIF neuron Eq. 4 is (Capoc-
elli and Ricciardi 1971; Amit and Tsodyks 1991a; Amit and
Brunel 1997b)

f = Φ(µ ,σ ;τ) ≡
[

τr + τ
∫ θ̂

V̂r

√
πeu2

(1+erf(u))du

]−1

, (7)

where the “hat” operation applied toθ andVr is defined by
ẑ≡ (z− µτ)/σ

√
τ , or ẑ = (Cz−mI τ)/sI

√
2τ ′τ upon use

of Eqs. 5 (Rauch et al 2003). To derive Eq. 7, the following
boundary conditions must be imposed on Eq. 4: the process
V ∈]−∞,θ [ is absorbed upon hitting the thresholdθ , and re-
enters its allowed domain fromVr after a refractory period
τr (see, e.g., Fusi and Mattia (1999)). These boundary con-
ditions formalize the emission of an action potential in this
model and are by far the most commonly used with IF neu-
rons. However, it must be noted that different spike genera-
tion mechanisms may produce a different neuronal response
to fluctuating input (Fourcaud-Trocmé et al 2003; Fourcaud-
Trocmé and Brunel 2005; Richardson 2007). Eq. 7 is plotted
in Fig. 4 for different values ofsI . Its analytical form holds
exactly for a white noise input, but only approximately for
an input given by the OU process Eq. 1 with a small time
constantτI . A better approximation than Eq. 7 for a smallτI
has been given by Brunel and Sergi (1998) and it amounts to
an effective modification of the threshold̂θ and reset poten-
tial V̂r (see also Fourcaud and Brunel (2002)). In the absence
of input fluctuations (e.g., forsI → 0), Eq. 7 reduces to the
well-known response function of the leaky integrator (e.g.,
Tuckwell (1988); Burkitt (2006)),

Φ(mI ) =

(

τr + τ ln
mI τ −CVr

mI τ −Cθ

)−1

Ξ (mI τ −Cθ) , (8)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

mean current [nA]

fi
ri

n
g

 r
a

te
 [

sp
ik

e
s/

s]

s = 0.5I

s = 0I

s = 0.3I

s = 0.1I

Fig. 4 Stationary response function of the LIF neuron.Response
function of the white-noise driven LIF neuron, Eq. 7. Each curve is the
f-I curve for a constant value of the standard deviation of the input cur-
rent,sI (nA). The rightmost curve is Eq. 7 in the limitsI → 0, i.e., Eq. 8.
Note the logarithmic singularity at rheobasemI = Cθ/τ ≈ 0.4 nA,
i.e., the minimal constant current required for an action potential to
be emitted in the absence of input fluctuations. Neuron parameters:
τ = 26.3 ms,τr = 9.4 ms,C = 0.53 nF, θ = 20 mV, Vr = 9.9 mV,
Vrest = 0 mV.

whereΞ(x) = 1 if x > 0, and zero otherwise.Cθ/τ is the
rheobase current for this model neuron (i.e., the minimal
input current required for an action potential to be emitted
in the absence of input fluctuations, see, e.g., Connors et al
(1982)). Note that the LIF neuron is not quiescent below
rheobase in the presence of input fluctuations, due to the oc-
casional input fluctuation able to drive the membrane poten-
tial across the threshold. In the literature, this activity regime
is called ‘noisy-dominated’, ‘fluctuation-dominated’, or sim-
ply ‘subthreshold’ regime. In the absence of fluctuations, no
spikes can be emitted for inputs below the rheobase. The
simplest response function used in the literature to model
this phenomenon is threshold-linear around the rheobase.
Instead, Eq. 8 has a singularity at rheobase, specifically, its
derivative with respect tomI diverges asmI → Cθ/τ. We
will come back to this point when discussing firing rate adap-
tation in Sec. 3.6.

3.5 The response function in the presence of reversal
potentials

The theory presented so far can be extended to the so-called
conductance-based IF neuron, or, more correctly, to the IF
neuron with reversal potentials. This model brings IF neu-
rons closer to biology by taking into account that the PSPs
are voltage-dependent, i.e., depend on the current state of the
neuronal membrane. Formally, the input currentI in Eq. 3
depends on the membrane potential asI = ∑x ḡx(Vx −V),
wherex identifies the type of receptor mediating the cur-

rent (e.g., AMPA, NMDA, etc.), ¯gx is its peak conductance,
andVx its reversal potential. We shall limit ourselves the LIF
neurons with only two classes of conductances, excitatory
and inhibitory, and will refer to it as the conductance-based
LIF neuron. Moreover, we will always consider constant ¯gxs,
even though it is more correct in some cases to model ¯gx as
voltage-dependent (e.g., Renart et al (2003)).

3.5.1 Conductance-based LIF neuron

The subthreshold membrane potential of the conductance-
based LIF neuron driven by stochastic spike trains as in Sec. 3.3
obeys

dV = −τ−1(V −Vrest)dt +ge(Ve−V)dPe+gi(Vi −V)dPi ,

wherege,i = C−1τḡe,i are dimensionless peak conductances,
Ve,i are the excitatory and inhibitory reversal potentials, and
dPe,i = ∑ j δ (t− te,i

j )dt are Poisson spike trains with parame-
ter (firing rate)νe,i . In the diffusion approximation (Sec. 3.2
and 3.3), which heuristically corresponds to replacingdPx
with νxdt+

√
νxdtξt , the equation can be put in a form very

similar to Eq. 4 (e.g., Hanson and Tuckwell (1983); Lánský
and Lánská (1987); Burkitt (2001)); see Table 1. A slightly
different model, where the conductances are taken to be OU
processes like Eq. 1, has been used by Destexhe and col-
laborators to recreate thein vivo-like activity in neocortical
neurons and investigate the role of noisy, background synap-
tic input on their integrative properties (“point-conductance”
neuron, see e.g. Destexhe et al (2001)).

The subthreshold behavior and the response function of
the conductance-based neuron (under the approximation dis-
cussed in the next subsection) are summarized in Table 1,
together with the analogous quantities for the current-based
neuron. From the table, it is apparent that the main differ-
ences with respect to the current-based IF neuron are: 1) the
fluctuations depend on the membrane voltage; 2) an input-
dependent, effective time constantτ∗ appears; 3) the param-
eterµ is not the average of the total input current (for exam-
ple, part of the input contributes to the leak term−V/τ∗ and
is not considered inµ); 4) the voltage is bounded from below
by the inhibitory reversal potential (belowVi inhibitory in-
puts become excitatory). Usually the last point is taken care
of by imposing a reflecting barrier atVi , i.e., a hard lower
bound for the membrane potential (Hanson and Tuckwell
1983; Lánský and Lánská 1987).

3.5.2 Gaussian approximation for the conductance-based
LIF neuron

The analytical form of the response function of this model
neuron in the diffusion approximation is known and can be
found in e.g. Johannesma (1968) and Richardson (2004).
When the diffusion approximation holds, another approxi-
mation, called the Gaussian, or ‘effective-time-constant’, ap-
proximation, is also valid, and allows for the response func-
tion to be put in a form very similar to Eq. 7 (Burkitt et al
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Table 1 Model equations and response function of the current-based and conductance-based LIF neuron (the latter, under the Gaussian approxi-
mation; see the text). Subscriptseandi stand for “excitatory” and “inhibitory”, respectively. Parameters defining the model neuron:Vrest, resting
membrane potential,τ , membrane time constant,C, membrane capacitance,θ , threshold for spike emission,Vr , reset voltage after spike emission,
τr , absolute refractory period,Ve,i , reversal potentials. Parameters defining the input:Ĵe,i , synaptic weights in units of voltage,ge,i =C−1τ ḡe,i > 0,
dimensionless peak conductances ( ¯ge,i , peak conductances),νe,i , firing rate of afferent neurons. The input parameters in units of current are given,
in both cases, bymI = Cµ andsI = Cσ/

√
2τ ′, with τ ′ = 1 ms. Note thatσ depends onV in the conductance-based model.

symbol description current-based conductance-based units

subthreshold Eq. forV dV = − V
τ∗ dt+ µdt+σ

√
dtξt (same) voltage

conditions for a spike ifV(t ′) = θ −→ spike,V = Vr for t ∈]t ′,t ′ + τr [ (same)

µ infinitesimal input current Ĵeνe−|Ĵi |νi τ−1Vrest+geVeνe+giViνi voltage· time−1

σ 2 infinitesimal input variance Ĵ2
eνe+ Ĵ2

i νi g2
e(Ve−V)2νe+g2

i (Vi −V)2νi voltage2 · time−1

τ∗ effective time constant τ (τ−1 +geνe+giνi)
−1 time

Φ response function
[

τr + τ∗ ∫ θ̂
V̂r

√
πeu2

(1+erf(u))du
]−1

(same) spikes· time−1

ẑ integrand of response function z−µτ∗

σ
√

τ∗
z−µτ∗

σ(V)|V=µτ∗
√

τ∗

2003). This form is given in Table 1. The table has been con-
structed so as to appreciate the formal similarity between the
response functions of the current- and conductance-based
LIF neurons under this approximation. The Gaussian ap-
proximation holds for

(g2
eνe+g2

i νi)τ∗/2≪ 1, (9)

which is also the limit in which the underlying diffusion ap-
proximation holds (Richardson 2004). The condition Eq. 9 is
fulfilled under typical cortical conditions (Richardson 2004;
La Camera et al 2004a). Heuristically, this approximation
amounts to neglecting the dependence of the diffusion coef-
ficient onV, by replacingσ(V) in Table 1 with its average
over the free (i.e., spike-less) process, turning the multiplica-
tive synaptic noise into an additive noise as in the current-
driven neuron, see Burkitt et al (2003); Richardson (2004);
La Camera et al (2004a); Richardson and Gerstner (2005)
for technical details.

3.5.3 Equivalence between the response function of the
conductance-based and current-based LIF neurons

Networks of current- and conductance-based neurons dif-
fer qualitatively in several respects (La Camera et al 2004b;
Richardson 2004; Vogels and Abbott 2005; Kumar et al 2008b,a).
However, Table 1 suggests the possibility to “map” one net-
work onto the other so as to have the same input-output rela-
tionship in both. Indeed, networks of current- and conductance-
based neurons can be made equivalent in terms of the pat-
terns of asynchronous firing rate activity they can express
(La Camera et al 2004b). In both the conductance- and current-
based IF neuron, the input spike trains were Poisson spike
trains characterized by the parameters setΩ ≡{νe, ḡe,νi , ḡi},
which can be taken to define the input. Given the same input
Ω , it is possible to find a Gauss-distributed current so that

the response function of the current-based neuron,Ω −→
Φ(Ω ), is the same as the response function of the conductance-
based neuron,Ω −→ ΦCB(Ω ). This holds for both delta-
correlated (Rauch et al 2003) and filtered synaptic inputs (τI
of few ms, La Camera et al (2004b)), and requires only a re-
definition of the connectivity of the network of current-based
neurons.

3.6 Firing rate adaptation

When cortical neurons are stimulated with somatic injec-
tions of sufficient strength, the initial rate at which action
potentials are emitted undergoes a decay with time, a phe-
nomenon called firing rate adaptation (McCormick et al 1985;
Lowen and Teich 1992; Fleidervish et al 1996; Sanchez-
Vives et al 2000; Reutimann et al 2004; Ulanovsky et al
2004; Descalzo et al 2005; La Camera et al 2006). This de-
cay can occur at different time-scales, and can lead either to
a stationary firing rate, as illustrated in Fig. 5, or, if stimu-
lation is sufficiently strong and prolonged, to the complete
cessation of spiking activity (Rauch et al 2003).

Firing rate adaptation is ubiquitous in cortical neurons
and affects their response to both constant and fluctuating
current injections. In models characterized by a threshold-
linear response function around the rheobase, firing rate adap-
tation provides a mechanism for decreasing the slope (or
gain) of the response without affecting its sensitivity to input
fluctuations (La Camera et al 2002), a property that is nec-
essary for IF neurons to reproduce the response function of
cortical neurons (Rauch et al 2003). In models characterized
by a highly non-linear response at the rheobase, like the LIF
model neuron in the absence of noise (Eq. 8), adaptation re-
moves the singularity and transforms the response function
in threshold-linear (Ermentrout 1998). Firing rate adaptation
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Fig. 5 Example of firing rate adaption. A spike train (shown at the
top) obtained from a dissociated cortical neuron, culturedin vitro, in
response to an input current modelled after Eq. 1, see Giugliano et al
(2004) for details. In the bottom panel are shown the temporal de-
cay of the instantaneous firing rate, measured as the running average
firing rate in a sliding window (circles), and its best exponential fit
(dashed line). The output firing rate, initially∼ 40 spikes/s, converges
to∼ 22 spikes/s after an exponential decay with time constant of about
2 s. Used and modified with permission from Giugliano et al (2004).
Copyright c© 2004 by the American Physiological Society.

+[N  ]i

+
N entry

output spike train

input spike train

AHP current

Fig. 6 Model of firing rate adaptation. Upon emission of a spike, a
quantity of a given ion speciesN enters the cell body (triangle) and
modifies the intracellular ion concentration[N]i , which then exponen-
tially decays to its resting value in a characteristic timeτN, see Eq. 10.
Under the conditions discussed in the text, this causes a feedback cur-
rent proportional to[N]i (AHP current), which in turn is responsible
for decreasing the output firing rate of the neuron.

also plays a variety of roles in the response to time-varying
input current (reviewed in Giugliano et al (2008)). The the-
ory developed so far is extended in this section to include
the effect of firing rate adaptation.

3.6.1 Minimal model of firing rate adaptation

Firing rate adaptation is a complex phenomenon affected by
different ion currents (see Table 1 of Sawczuk et al (1997)
for references and a list of possible mechanisms). We de-
scribe here a simple model based on a synthesis of the cel-
lular mechanisms underlying adaptationin vitro. The model
leads to an adapted response function good enough to cap-
ture the experimental ones (Rauch et al 2003; La Camera
et al 2004a; Giugliano et al 2004; La Camera et al 2006; Ar-
siero et al 2007). Upon emission of a spike, a quantityAN of

a given ion speciesN (one can think ofCa2+ or Na+) en-
ters the cell and modifies the intracellular ion concentration
[N]i , which then exponentially decays to its resting value in a
characteristic timeτN (see Fig. 6 for a schematic illustration
of this mechanism).[N]i dynamics are described by

d[N]i
dt

= − [N]i
τN

+AN ∑
k

δ (t − tk), (10)

where the sum is taken over all the spikes emitted by the neu-
ron up to timet. As a consequence, an outward,N-dependent
currentIahp = −gN[N]i , proportional to[N]i through the av-
erage peak conductancegN, results and causes a decrease in
the discharge rate. This current is commonly given the name
of afterhyperpolarization (AHP) (Sah 1996). This term en-
ters the right hand side of Eq. 4 for the membrane potential
as

dV = −V −Vrest

τ
dt−gN[N]idt + µdt+σξt

√
dt (11)

with boundary conditions onV as specified in the absence
of adaptation (Sect. 3.3).

3.6.2 Mean field theory of firing rate adaptation

For slow enough[N]i dynamics, the steady state (ss) intra-
cellular concentration of[N]i is proportional to the neuron’s
output firing rate in a time window of a fewτN:

[N]i,ss= τNAN ∑
tk<T

δ (t − tk) ≈ τNAN f . (12)

This causes a feedback currentIahp,ss proportional to[N]i,ss,
Iahp,ss = −gN[N]i,ss, which is in general a fluctuating vari-
able because the output spike train is (Fig. 6). Since[N]i dy-
namics are slow,Iahp,ss is only weakly fluctuating compared
to the input current, so that only the mean input current
mI =Cµ is affected significantly. The total current felt by the
neuron, spiking at ratef , is thenmI −α f , with α = gNτNAN,
plus the fluctuating component which is unaffected by adap-
tation (the case where this can not be assumed has been stud-
ied by Muller et al (2007)). This would cause the neuron to
fire at a reduced firing ratef1, which in turn causes the mean
current to be affected asmI −α f1, and so on. At equilib-
rium, the adapted firing rate can be numerically obtained by
solving the self consistent equation

f = Φ(mI −α f ,sI ), α = gNτNAN, (13)

which requires only the knowledge of the response function
Φ and the value ofα. The adapted firing rate is always a
stable fixed point of Eq. 13 (La Camera et al 2004a). The
adapted response function of the LIF neuron is shown in
Fig. 7 (dark curves). It can be noted that firing rate adap-
tation linearizes Eq. 8 around rheobase (Wang 1998). This
result holds for all model neurons whose response function
is highly non-linear at rheobase (Ermentrout 1998).
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Fig. 7 Stationary response function of the adapted LIF neuron.
Adapted response function of the white-noise driven LIF neuron,
Eq. 13 withΦ given by Eq. 7, plotted as in Fig. 4 (dark curves). Same
parameters as in Fig. 4, includingsI = 0, 0.1, 0.3 and 0.5 nA; adapta-
tion parameterα = 4 pA·s. The non-adapted response function, Eq. 7,
is also plotted for comparison (light curves). The rightmost curves are
the adapted (dark) and non-adapted (light) response function in the ab-
sence of input fluctuations (sI = 0), i.e., Eq. 13 withΦ given by Eq. 8
(dark), and Eq. 8 (light), respectively. Adaptation removes the singu-
larity of Eq. 8 by linearizingΦ around the rheobase, see the text for
details. Theinsetshows an enlargement of the region around rheobase
for the curves withsI = 0 and 0.1 nA.

3.6.3 Mean field theory of adaptation in the absence of
noise

In the absence of noise,[N]i dynamics are slow for large
τN, i.e., for ISI ≪ τN, since the ISI sets the time-scale of
the output spike train (Ermentrout 1998). ForτN ∼ 100 ms,
the value typically used in modeling studies (Wang 1998;
Ermentrout 1998; Liu and Wang 2001), this means that the
mean field approximation of the adapted firing rate breaks
down below 1/τN . 10 spikes/s. Experimentally, the time
constantτN of the dynamics underlying AHP summation
(Eq. 10) is found to vary in a wide range, from tens of mil-
liseconds (fast adaptation) to seconds (slow adaptation), see
e.g. Powers et al (1999); La Camera et al (2006). Slow adap-
tation is naturally amenable to mean field analysis, since a
τN of the order of seconds means a break-down point close
to vanishing firing rate. Not so for fast adaptation, however.
For e.g.τN ∼ 20 ms, in the absence of fluctuations the mean
field solution is predicted to break down below 50 spikes/s,
which is confirmed by simulations (Fig. 8, compare right-
most curve to symbols). In this case, the adaptation current
recovers too quickly to affect the output spike train, contrary
to the mean field prediction given by the self-consistent so-
lution of Eq. 13.
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Fig. 8 Comparison of the mean field theory of firing rate adapta-
tion with simulations. Response function of the adapting LIF neuron,
mean field theory (Eq. 13, dark lines) vs. simulations (Eqs. 10 and 11,
light symbols) withτN = 20 ms. The response functions are plotted as
in Fig. 4 with sI = 0 and 0.4 nA (from right to left). Neuron parame-
ters wereτ = 20 ms,τr = 5 ms,C = 0.5 nF,θ = 20 mV,Vr = 10 mV,
Vrest = 0 mV andα = 4 pA·s. Theinsetshows an enlargement of the
region around the rheobase for the curves withsI = 0. The mean field
approximation in the absence of noise breaks down forf . 50 spikes/s.

3.6.4 Mean field theory of adaptation in the presence of
noise

For fast adaptation, the mean field approach should fail also
in the presence of fluctuations, since in this case the condi-
tion ISI ≪ τN would be replaced by〈ISI〉 ≪ τN, where〈·〉 is
the average over the spike train. However, it turns out that in
a very irregular spike train, Eq. 13 predicts well the adapted
firing rate also if condition〈ISI〉 ≪ τN is violated (La Cam-
era et al 2004a). This is illustrated in Fig. 8 forτN = 20
(leftmost curve and symbols). In general, the agreement with
simulations improves with the amount of input fluctuations,
with the break-down point decreasing and approaching van-
ishing firing rates for large enough fluctuations. This may
be due to the fact that, in irregular spike trains, the distri-
bution of ISIs is typically skewed towards values that are
smaller than its mean, fulfilling the conditionISI ≪ τN most
of the time. A deeper analysis of this phenomenon (and of
mean-adaptation theories in general) can be found in Muller
et al (2007), and a population density analysis of networks
of adapting spiking neurons has been performed by Gigante
et al (2007a,b).

3.6.5 Adaptive conductance-based IF neuron

The model of firing rate adaptation of Sec. 3.6.2 is easily ex-
tended to the conductance-based IF neuron. The adapted re-
sponse function is given by the solution of the self-consistent
equation f = ΦCB(mI − α f ,sI ) (La Camera et al 2004a),
whereΦCB is the response function of the conductance-based
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Fig. 9 Adapted response function of the conductance-based LIF
neuron. Self-consistent solution off = ΦCB(mI − α f ,sI ) (lines)
against the simulations (symbols) of the full model (Table 1).ΦCB
is the response function of the conductance-based LIF neuron in the
Gaussian approximation (reported in Table. 1). The response functions
are plotted as ¯geνe → f at constant inhibition, withνi = 500 spikes/s,
ḡi = 1 nS throughout. Each curve is obtained moving alongνe and scal-
ing ḡe so thatσ 2

e ≡ ḡ2
eνe constant (σe = 7.0, 16.9, 33.1 nS/

√
s from

right to left), to allow comparison with the current-based neuron in
Figs. 4-7 (see Table 1 for an explanation of these symbols).Right in-
set: ḡe [nS] as a function ofνe [spikes/s] plotted as ¯ge vs log10(νe)).
Left inset:sample of membrane voltage (mV, top trace) and feedback
currentIahp (pA, bottom trace; see Sec. 3.6.1) as a function of time [s]
for the input point withµe = 783 nS/s,σe = 33.1 nS/

√
s. Adaptation

parameters:τN = 500 ms,gNAN = 8 pA (so thatα = 4 pA·s). Neuron
parameters:τr = 5 ms,C = 0.5 nF,θ = 20 mV,Vr = 10 mV,Vrest = 0,
τ = 20 ms,Ve = 70 mV,Vi = −10 mV. Used and modified with per-
mission from La Camera et al (2004a). Copyrightc© 2004 by The MIT
Press.

neuron, andmI andsI areµ andσ from Table 1 in units of
current. The agreement with simulations is shown in Fig. 9.
To allow for a comparison with the response function of the
current-based LIF neuron as shown in Fig. 7, wheresI is
constant in each curve,νe was increased while scaling ¯ge as
∼ 1/

√
νe, with ḡi , νi held constant. This corresponds to in-

creasingmI (as∼√
νe− ḡiνi) at constants2

I (∝ ḡ2
eνe+ ḡ2

i νi)
in the current-based neuron (see Table 1).

3.6.6 Other models of adaptation

Other models of firing rate adaptation are also in use in the
literature, among which an adapting threshold for spike emis-
sion (e.g., Holden (1976); Wilbur and Rinzel (1983); Liu and
Wang (2001); La Camera et al (2004a)) which is amenable
to the mean field approach described in this section. The
LIF neuron, endowed with such a mechanism, was found
equally able to fit the response function of rat pyramidal neu-
rons as did the model with AHP adaptation (La Camera et al
2004a). AHP Adaptation, however, is a more general mech-
anism and, in some sense, universal, in that most adapting
currents can be described by such a mechanism under rea-
sonable assumptions (Benda and Herz 2003). Other types

of adaptation phenomena, for example due to slow inactiva-
tion of Na+ channels (Fleidervish et al 1996), are present
in cortical neurons, and some can also be treated within the
mean field approach as done for AHP-dependent adaptation,
sometimes leading to qualitatively new phenomena like non-
monotonic response functions (Giugliano et al 2002).

4 Applications of the theory of cortical response
function

Many properties of the behavior of networks of spiking neu-
rons can be predicted from the knowledge of the single-
neuron response function. In this section we will review briefly
some of those properties related to the attractive dynamics
of recurrent networks, such as the possibility of the coex-
istence of spontaneous and stimulus-selective persistent ac-
tivity in the interval between two relevant events (Amit and
Brunel 1997b; Brunel 2000a), the characteristic times gov-
erning the transient response of the network to a stimulus
(Mattia and Del Giudice 2002; Renart et al 2003), and the
dynamics leading to perceptual, motor, or rule-based deci-
sions (Rolls and Deco 2001).

4.1 Attractors of the neural dynamics

Under the mean field assumption of Sec. 3.1, the shape of
the response function can be used to predict the stable ‘fixed
points’ of the dynamics of neural populations, also called
‘attractors’ because the collective activity of the population,
if close to the activity defined by those fixed points, tends
to merge into it. These attractors can be visualized as the
intersections of the response function with the unit straight
line, as shown in Fig. 10A. In the figure, both the input (hor-
izontal axis) and the output (vertical axis) is the firing rate
of the entire population, which in the logical construction of
mean field theory coincides with the firing rate of any rep-
resentative neuron (see Sec. 3.1). At the points in which the
response function (thick or thin curve) intersects the dashed
straight line, the output rate of each neuron of the population
equals its input rate. These fixed points are the attractors of
the population dynamics. Fixed points at which the slope of
the response function is smaller than 1 are stable attractors,
meaning that the collective behavior of the network in this
state is resumed after a temporary disturbance due to small
perturbations.

Since the parameters of the neuron and the properties of
the synaptic connections shape the response function (two
examples, the thick and the thin curves, are shown in Fig. 10A),
the response function can be used to infer the dynamical
properties of neural populations and, thus, of cortical cir-
cuits. We illustrate how with a few examples in the next sub-
sections, where we use the response function to infer the
possibility that the network can sustain a state of so-called
‘persistent activity’ in one or more firing rate regimes.
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4.2 Spontaneous activity

A spontaneous, not stimulus-driven neural activity at low fir-
ing rates has been interpreted as a global attractor of a recur-
rent network of spiking neurons (Amit and Brunel 1997b).
This activity is the result of the interaction between excita-
tory neurons, it is self-sustaining both in the presence and
in the absence of an external synaptic input, and is highly
irregular due to the disorder of synaptic connections (van
Vreeswijk and Sompolinsky 1996). The type of synaptic drive,
current-based vs. conductance-based, can play a decisive role
(Vogels and Abbott 2005; Kumar et al 2008b). For conductance-
based inputs, spontaneous activity can persist for long peri-
ods of time even in the absence of external inputs. The sur-
vival time of self-sustained activity increases exponentially
with network size (Kumar et al 2008b).

We base the examples of this section on networks of
current-driven LIF neurons. In the absence of noise, or when
the model neurons are insensitive to input fluctuations, the
activity either dies out or converges onto a pattern of firing
rates that are significantly higher than those typically ob-
served in cortical recordings in behaving animals (Miyashita
and Chang 1988; Amit and Brunel 1997b; Yakovlev et al
1998). Both possibilities can be predicted by the shape of
the response function as illustrated in Fig. 10A (thin curve).
For a collective activity above that represented by the open
circle, the activity will converge towards a higher activity
state (‘*’). Similarly, an initial activity below the same crit-
ical point will eventually die out, i.e., all neurons will stop
firing (the zero output rate in figure). This is because the
open circle represents a unstable fixed point of the popula-
tion dynamics.

In the presence of fluctuations, however, it is possible to
have a state of spontaneous activity at low firing rates, like
the closed circle marked “SA” in Fig. 10A. Notice the two
main ingredients for a finite spontaneous activity to be stable
in a single excitatory network of current-driven LIF neurons:
a change in convexity around rheobase due to the sensitivity
to input fluctuations (see the inset of Fig. 10A), and the pres-
ence of an external input (so that for a null recurrent input
the output firing rate of the population is higher than zero,
as shown in figure). If any of these ingredients is lacking,
the quiescent state is the only stable fixed point at low firing
rates in such a network.

4.3 Stimulus-selective persistent activity

The two closed circles that mark the intersection of the thick
response function with the straight line in Fig. 10A are both
stable attractors, or stable states of persistent activity. In prin-
ciple, any self-sustained network activity is to be labelled
as persistent activity, and that includes spontaneous activity,
persistent activity at higher firing rates, and the inter-trial ac-
tivity found in infero-temporal cortex of behaving macaques
(Yakovlev et al 1998). However, it is common in the litera-
ture to refer to persistent activity as to self-sustained activity
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Fig. 10 Prediction of network behavior by means of its single neu-
rons’ response function. A.At the points in which the response func-
tion (thick or thin curve) intersects the straight line (dashed), the output
rate of each neuron of the population equals its input rate (fixed points
of the population dynamics). In the case of the LIF neuron driven by a
noiseless input current (thin curve, Eq. 8), the activity either dies out to
zero firing rate or converges onto a pattern of firing rates that are sig-
nificantly higher than those typically observed in cortical recordingsin
vivo (“*”). In the presence of input fluctuations (thick curve, Eq. 7),
two stable points of self-sustained network activity can be found if ap-
propriate synaptic wights are chosen, which we call spontaneous activ-
ity (“SA”, ∼ 5 spikes/s), and persistent activity (“PA”,∼ 50 spikes/s).
The open circle is an unstable fixed point.Inset:enlargement of the re-
gion around SA showing that the slope of the response function is less
than 1 at this point.B. Fixed points of the network inA (thick curve)
as a function of the average recurrent synaptic weightsJ. Coexistence
of spontaneous and persistent activity is possible in the interval[J′,J′′]
(shaded area). The dark dashed curve is the ‘unstable manifold’, i.e.,
the continuous collection of all unstable fixed points in the bistable
region. The three fixed points shown inA are obtained forJ = J1. For
J < J′ (for example, atJ0), only spontaneous activity is stable, whereas
for J > J′′ (for example, atJ2), spontaneous activity is destabilized and
only persistent activity at high firing rate is stable.

that i) is expressed at higher firing rates than spontaneous
activity and ii) that can be obtained in a neural subpopula-
tion on top of, and without disrupting, the spontaneous ac-
tivity of the embedding network (Amit and Brunel 1997b).
Sometimes, the property of being stimulus-selective is also
assumed, that is, the state of persistent activity must be ig-
nited by the transient presentation (or the activation of an
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internal representation) of a particular class of stimuli, and
not just any stimulus. According to this definition, the low
rate stable point marked “SA” in Fig. 10A can be interpreted
as the state of spontaneous activity, whereas the high rate
point (PA) can be interpreted as a state of persistent activ-
ity. Indeed, the activity in state PA occurs at higher firing
rate than SA, and its presence does not destabilize SA (and
viceversa).

The conditions for stable coexistence of spontaneous and
persistent activity can be stated in terms of the parameters
defining the network (in particular, the synaptic strength),
and can be predicted from the way a parameter change shapes
the single neurons’ response function. In general, it is desir-
able that the coexistence of both fixed points can be found in
a whole interval of potentiated synaptic values. The proce-
dure for finding such interval involves the response function
and is best visualized with the help of bifurcation diagrams
(e.g., Amit and Brunel (1997b); Brunel (2000b); Del Giu-
dice et al (2003)). These diagrams depict the fixed points
of the network as a function of the strength of the synap-
tic couplings, as illustrated in Fig. 10B. When the synaptic
couplings are not potentiated enough, only the spontaneous
activity state can be stable (the region to the left ofJ′). When
synaptic strength is potentiated, thought of as the signature
of some learning process, a second stable fixed point can
be found at higher firing rate, for example the point marked
‘PA’. For yet stronger synapses (the region to the right of
J′′), the spontaneous activity state loses its stability and only
the higher rate persistent activity is stable. Bistability can
occur for any value of the potentiated synaptic strength in
the interval[J′,J′′]: the larger this interval, the more robust
the phenomenon.

Stimulus-selective persistent activity has been put for-
ward as a potential neural correlate of working memory of
sensory stimuli in prefrontal, infero-temporal and posterior
parietal cortex (Amit and Brunel 1997b). More specifically,
it is a model for delay activity, the neural activity observed
between two relevant events in the absence of external stim-
ulation (e.g., Fuster and Jervey (1981); Miyashita (1988);
Miyashita and Chang (1988); Funahashi et al (1989); Koch
and Fuster (1989); Wilson et al (1993); Yakovlev et al (1998);
for a review see Fuster (1995)). There is some experimental
support to the idea that the stimulus-selective activity ob-
served in infero-temporal cortex in 2-8 seconds delays dur-
ing a delayed-matching-to-sample task is the result of the
collective attractor behavior of large populations of neurons
(Amit et al 1997; Yakovlev et al 1998). The use of the re-
sponse function to locate these attractors can be applied to
networks with an arbitrary number of sub-populations (Amit
and Brunel 1997b; Mascaro and Amit 1999; Brunel 2000a),
also when the sub-populations share neurons coding for the
same subgroup of stimuli (La Camera 1999; Curti et al 2004),
and can be generalized to include firing rate adaptation with
the procedure of Sec. 3.6.2.

4.4 Network response to time varying inputs

So far (and in the remainder of this manuscript) we have
been concerned with stationary properties of the response
of cortical neurons (Sec. 3). The network dynamics can be
studied in the framework of mean field theory also when the
input statistics are not stationary. Some of these extensions
are reviewed in Giugliano et al (2008); here we mention
briefly a few applications of the stationary response func-
tion to the characterization of the transient behavior of the
network and its response to time-varying inputs.

For delta-correlated synaptic currents, the network re-
sponse to time varying inputs can be studied analytically
under specific simplifying assumptions and it is in general
rather complicated. The response time of the network in gen-
eral depends on the full distribution of the depolarizations
(V −Vrest) of all the neurons. For example, networks with
spontaneous activity react much faster than networks that are
completely silent, as many neurons are close to the thresh-
old for emitting a spike and they can contribute to increasing
rapidly the population firing rate (Amit and Brunel 1997a,b;
Fusi and Mattia 1999; van Rossum et al 2002). When the
distribution of depolarizations is important, the mean field
approach requires the solution of a full Fokker-Planck equa-
tion describing the time development of the population den-
sity (Knight 1972a; Fusi and Mattia 1999; Brunel and Hakim
1999; Nykamp and Tranchina 2000; Mattia and Del Giu-
dice 2002). In some cases, however, the transient dynamics
can be simplified to the point that it mostly depends on the
slope of the stationary response functionΦ(mI ,sI ) (Mattia
and Del Giudice 2002).

For more realistic synaptic currents, the study of tran-
sients can be further simplified. If the network dynamics are
faster than the integration time constants of the synaptic cur-
rents, it is often safe to assume that the network is constantly
at the equilibrium point of the Fokker-Planck equation (Re-
nart et al 2003; La Camera et al 2004a). This means that
for every synaptic input, we can replace the instantaneous
firing rate with the firing rate given by the stationary re-
sponse function. For realistic conditions, the reaction time
of networks of IF neurons (a few milliseconds) is shorter or
comparable to the integration time constants of AMPA- and
GABAA-, and much shorter than the dynamics of NMDA-
and GABAB-receptor-mediated current (from tens to hun-
dreds of milliseconds). This approximation is usually good
for signals that vary on time-scales of tens of milliseconds
and this approach is similar to the one described for adap-
tation in Sec. 3.6. A similar approximation can be used in
the presence of short-term (Tsodyks and Markram 1997;
Tsodyks et al 1998; Mongillo et al 2008) or long term synap-
tic plasticity (Del Giudice et al 2003; Amit and Mongillo
2003). For faster inputs a different approach is required and
is reviewed in Giugliano et al (2008).

These and other examples show that the stationary re-
sponse function, which by definition is supposed to char-
acterize only stationary network states, can also be used to
infer some of the dynamic behaviors of networks.
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4.5 Decision making in cortical circuits

In the case of ambiguous or barely perceivable sensory stim-
uli, we are sometimes required to make a decision about the
identity of the stimulus and generate a particular percept.
Such a process is similar to the selection of an action in re-
sponse to the occurrence of one or more events and it is also
part of the cognitive processes related to decision making.
In recent models, each possible decision has been associated
with a particular attractor of the neural dynamics, represent-
ing e.g. perceptual decisions (Wang 2002; Wong and Wang
2006), decisions about actions in response to visual stimuli
(Fusi et al 2007), and rule-based decisions such as those oc-
curring in cognitive tasks like the Wisconsin Card Sorting
Test (Rolls and Deco 2001). The same approach can be used
in general models of working memory in which every mental
state is an attractor of the neural dynamics and it represents a
particular disposition to behavior (Rigotti et al 2008). Rele-
vant events or sensory stimuli trigger a competition between
the neural populations corresponding to different percepts
or actions. The competition results from the recurrent self-
excitation of each decision population and the mutual sup-
pression due to inhibitory neurons. The stable fixed points
of the dynamics correspond to particular decisions that are
mutually exclusive. As in the case of stimulus-selective de-
lay activity, the set of equilibrium points corresponding to
the attractors can be studied with a mean field approach and
are related to the properties of the single-neurons’ response
functions.

Other potential applications of the concept of response
function are related to the role played by gain modulation
(Salinas and Thier 2000; Salinas and Sejnowski 2001; Larkum
et al 2004), balanced synaptic inputs (Burkitt 2001; Burkitt
et al 2003), and neuromodulators (Brunel and Wang 2001;
Thurley et al 2008) in the dynamics of cortical circuits.

5 The response function of cortical neurons

The applications of the mean field approach and the concept
of response function reviewed in the previous section de-
pend on several assumptions; in particular, on the assump-
tion that the neurons can be described as IF neurons, or at
least that their response can be accurately predicted by the
response function of IF neurons. This warrants investiga-
tion of whether or not this fundamental assumption is cor-
rect. Is the response of cortical neurons toin vivo-like input
current well described by the response function of IF neu-
rons? If yes, which type of cortical neurons? Which type of
IF neuron? And how accurate the predictions of the theory
are? Recently, quantitative answers have been given to all of
these questions in rat cortical neurons of the pyramidal and
fast-spiking (FS) type in layer 2/3 (L2/3) and layer 5 (L5)
of somatosensory cortex (SSC), in rat pyramidal neurons of
L2/3 of medial prefrontal cortex (mPFC), and in neurons
from dissociated cultures of rat neocortex. In this section,
we review briefly the main results, starting from the essen-

tial facts regarding the experimental and fitting procedures.
The reader is referred to the original papers for a more com-
prehensive account (Rauch et al 2003; Giugliano et al 2004;
La Camera et al 2006; Arsiero et al 2007).

5.1 Experimental and fitting procedures

An in vivo-like current modelled after Eq. 1 was injected
into the soma of the neurons in the current clamp configu-
ration, and the membrane potential was recorded from the
same electrode. Recordings were performed at∼ 35◦C in all
studies apart from the case of cultured neurons (Giugliano
et al 2004), where they were performed at room tempera-
ture. The dendrites were cut to ensure that the only source
of input fluctuations came from the injected current, so as
to allow for complete control of the input and to prevent the
generation of non-linear dendritic events like calcium spikes
(Larkum et al 1999, 2004). The correlation length of the cur-
rent,τI in Eq. 1, was between 1 and 10ms (mostly 1ms). The
parametersmI andsI were chosen randomly for each record-
ing, from a pre-defined pool of values which had been pre-
viously shown to drive the target neurons within their phys-
iological range. Given thatτI was constant for each cell, the
current was characterized by the pair{mI ,sI}. The same pair
was used from one to five times for each cell, to control for
the stability of the recordings (in terms of membrane resis-
tance, spike shape, and firing rate). Each repetition, how-
ever, used a new realization of the random noise,ξt in Eq. 1.
If the percentage of unstable recording was above a given
threshold, the cell was declared unstable and was not con-
sidered for further analysis. A second criterion to be passed
was the quasi-stationarity of the response. The firing rate of
the neuron was considered quasi-stationary if its value in the
last second of stimulation was within a given range of the
firing rate in the first second of stimulation, despite firing
rate adaptation (present also in stable recordings). The dura-
tion of each recording was of the order of seconds, from a
minimum of 4 to a maximum of 60 seconds, to ensure that
the response would settle into its quasi-stationary regime.
Most recordings used durations of the order of 10 seconds.
In some cases, the duration was adaptively adjusted depend-
ing on the firing rate of the neuron. For stable cells, repeti-
tions across{mI ,sI} pairs (when available) were averaged,
and the average was taken as the mean firing rate in re-
sponse to the injected current. Given the small number of
repetitions, and the fact that at small firing rates the Gaus-
sian model of random errors does not hold for probabilities,
the confidence interval around the measured firing rate,∆ f ,
was not given by the standard error of the mean. Instead, a
binomial model for the emission of a spike in a tiny interval
was used to derive an adaptation of the Wilson ‘score’ equa-
tion (Meyer 1965; Brown et al 2001) with a limiting proce-
dure on the duration of the binning interval (La Camera et al
2006). The theoretical adapted stationary response function
(Eq. 13 withΦ given by Eq. 7) was fitted to the experimental
quasi-stationary firing rates, via a least-square minimization
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Fig. 11 Response functions of FS neurons. Best-fits of the adapted LIF response function, Eq. 13 withΦ given by Eq. 7, to the experimental
response of four FS interneurons from L5 (A) and two interneurons from L2/3 (B) of rat SSC. Symbols are experimental quasi-stationary firing
rates, full lines are the model fits to the data. The output firing rates are plotted as in Fig. 4, withsI that ranged from 10 to 200 pA (see Fig. 3 of
La Camera et al (2006) for details). The best fit parameters are reported in the left top corner of each plot (the average best fit parameters across
fitted cells are reported in Tab. 2).P is the probability that aχ2 variable with the same number of degrees of freedom is larger than the best-fit
one. A fit was accepted ifP > 0.01.d is the absolute discrepancy, i.e., the average (across all points) absolute difference between the measured
and the theoretical frequencies of the best-fit curves. Used and modified with permission from La Camera et al (2006). Copyrightc© 2006 by
the American Physiological Society.

of χ2 = ∑i

(

f th
i − f exp

i
∆ fi

)2

, where f th
i and f exp

i are the theo-

retical and experimental firing rates, respectively, and the
sum runs over all data points. Minimization was achieved
by tuning the neuron parameters in Eq. 7 and the adaptation
parameterα of Eq. 13 with a Montecarlo procedure. Since
θ ,Vr andC are not independent parameters (in Eq. 7 they
appear always in the formCθ andCVr ), θ was set arbitrarily
to 20 mV in all studies. Finally, notice that due to the use
of finite (albeit small)τI for the current Eq. 1, the corrected
version of the response function given in Brunel and Sergi
(1998); Fourcaud and Brunel (2002) should be used in place
of Eq. 7 (see also Sec. 3.4). However, this correction predicts
a phenomenon, the crossing off-I curves with differentσs
for large input current, which was not observed in the exper-

iments (Rauch et al 2003; Giugliano et al 2004; La Camera
et al 2006; Arsiero et al 2007). For this reason, and given
that τI was extremely small (= 1 ms) in most cases, Eq. 7
was preferred in fitting the theory to the data.

5.2 Fast-spiking neurons

The experimental response functions of rat FS interneurons
in L2/3 and L5 of SSC of the rat are shown in Fig. 11 (sym-
bols). The response functions in the two layers were only
slightly different. Up to all frequencies which are sustain-
able by the neuron, the response function was very well de-
scribed by the adapted response function of the LIF neu-
ron, i.e., Eq. 13 withΦ given by Eq. 7 (lines in Fig. 11)
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(La Camera et al 2006). A discrepancy was observed be-
tween the effective parameters of the neurons (i.e., the best-
fit parameter values of the capacitance and membrane time
constant) and the same parameter values estimated more di-
rectly through a classical impulsive- and step-protocol pro-
cedure. This means that, for the IF neuron to reproduce the
response of real neurons,effectiveparameters must be used
(see Tab. 2). Such parameters compensate for the lack of
biophysical detail and other simplifications made in IF neu-
rons (e.g., real neurons are not point neurons nor are electro-
tonically compact).

5.3 Pyramidal neurons

5.3.1 Pyramidal neurons from the somatosensory cortex of
rats

The response function of pyramidal neurons from L5 of rat
SSC was well described by the response functions of the
LIF neuron (see Rauch et al (2003) for examples). A sec-
ond type of IF neuron, the linear IF neuron with a floor
(Abbott and van Vreeswijk 1993; Fusi and Mattia 1999),
also gave a good description (Rauch et al 2003). This model
neuron, however, described less well the response function
of cultured neurons (Giugliano et al 2004)), and were not
suited to to describe the response of FS neurons (La Cam-
era et al 2006). The effective parameters of the LIF neuron
were different from, and not correlated with, the directly-
estimated parameters of the real neurons in acute slices, but
were rather close to the directly estimated parameters in cul-
tured neurons. This could be explained by the compactness
and smaller size of the cultured neurons, making the point-
approximation implicit in the model work better (this argu-
ment, however, does not seem to hold for FS neurons). Pyra-
midal neurons of the SSC were not very sensitive to the ef-
fect of input fluctuations, especially if compared to FS neu-
rons and pyramidal neurons of the mPFC. A more complete
comparison is given in a later section.

5.3.2 Pyramidal neurons from the medial prefrontal cortex
of rats

Many pyramidal neurons in L5 of the rat mPFC (Fig. 12,
symbols) displayed a sensitivity to input fluctuations far greater
than predicted by the theory developed in Sec. 3 (cfr. Eq. 7
and Fig. 7) resulting in a saturating and ’divergent’ response
function (Arsiero et al 2007). These neurons retain a large
dependence on input fluctuations well above threshold and,
in fact, close to saturation, where an additional increase of
the average input will not cause any increase of the output
firing rate. The resulting shape of the response function is
still convex near threshold, but divergent in the high out-
put rate range (Fig. 12). The phenomenon is possibly due to
after-hyperpolarization currents (Higgs et al 2006) as well
as to the slow inactivation of sodium channels (Arsiero et al
2007). In support of this hypothesis, the response function
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Fig. 12 Response functions of rat medial prefrontal cortex. Re-
sponse function and IF model reduction of four mPFC L5 pyrami-
dal neurons. Fitting procedure and plots as in Fig. 11. The model
response function is defined by the self-consistent solution off =
Φ(mI − α f ,sI ,τr(sI )), whereΦ is the response function of the LIF
neuron, Eq. 7, andτr(sI ) = τr + ω/sI is a fluctuation-dependent re-
fractory period. Theω-dependent model was used to account for the
divergence of the response curves at large input current for different
amplitudes of the input fluctuations (from right to left,sI = 50, 150
and 300 pA). Reproduced and modified with permission from Arsiero
et al (2007). Copyrightc© 2007 by the Society for Neuroscience.
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Table 2 Best-fit parameters of the adaptive LIF neuron to the experimental response functions of neurons from several areas of rat neocortex.
Parameters values are reported as mean± SD. Parameters are as defined in Sec. 3.3:τ : membrane time constant:C, membrane capacitance,Vr :
reset voltage after spike emission,τr : absolute refractory period.α is the adaptation parameter defined in Eq. 13, andω is the divergence factor
defined in Sec. 5.3.2. The threshold for spike emission,θ , was set arbitrarily to 20 mV in all cases (see Sec. 5.1 for details). A positiveω for
the mPFC neurons means that the response at large input current differed for different amounts of input fluctuations, see the text for details. The
ω-dependent model was not used in the other cases (-).

FS, L5 FS, L2/3 PYR, L5 PYR, L5 (mPFC) cultured

α [pA s] 0.8±0.5 1.0±0.9 10.8±6.3 3.9±2.5 6.4±4.5
τr [ms] 1.4±2.1 3.3±2.6 9.4±6.5 12.5±4.2 23.0±22.6
Vr [mV] 8.8±9.4 5.3±11.3 9.9±10.2 1.3±4.3 10.6±14.1
τ [ms] 7.5±1.5 8.3±3.6 26.3±13.2 30.1±11.3 30.1±21.4
C [pF] 80±13 140±48 530±290 285.1±111.2 86.5±56.6
ω [ms/pA] - - - 14.3±19.7 -
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Fig. 14 Response functions of pyramidal and FS neurons.Compar-
ison between the quasi-stationary response functions of FS neurons of
L5 and L2/3 of SSC (La Camera et al 2006), pyramidal (PYR) neurons
from SSC (Rauch et al 2003) and mPFC (Arsiero et al 2007), and dis-
sociated cultures of rat neocortex (Giugliano et al 2004). The steady
state responses were obtained using the average best-fit parameters of
Table 2 withsI = 0, 0.1, and 0.2 nA, and are plotted as in Fig. 4. Used
and modified with permission from (La Camera et al 2006). Copyright
c© 2006 by the American Physiological Society.

of a Hodgkin-Huxley model endowed with slow inactiva-
tion of sodium channels exhibits the same properties (Ar-
siero et al 2007). The LIF neuron endowed with a refractory
period that readjusts its value depending on the variance of
the input is a minimal spiking model able to capture this phe-
nomenon. In such a model, the absolute refractory time re-
sults from the sum of two contributions: a constant term,τr ,
and a termω/sI , decreasing withsI : τr(sI ) = τr +ω/sI . The
effective refractory period is thus smaller for larger fluctua-
tions, increasing the firing rate in response to the same mean
input, as shown in Fig. 13. The adapted response function
for this model fits well the experimental functions measured
in mPFC (Fig. 12) and allows for several predictions to be
made about the behavior of networks of mPFC neurons (Ar-
siero et al 2007).

5.4 Comparison among the response functions of pyramidal
and FS neurons

Fig. 14 shows the comparison between the response func-
tions of pyramidal and FS neurons. In each class, the re-
sponse function was obtained by using the average best-fit
parameters across cells reported in Table 2, and three values
of sI were used in each case to show the dependence on the
input fluctuations. The ranges of both the average and the
variance of the current cover the actual physiological ranges
found in the experiments. The maximal output firing rates in
figure are the maximal firing rates sustainable by the neurons
during the experiments. Thus, Fig. 14 provides at a glance a
comparison of the ‘average’ response function of neurons
from different preparations, together with their physiologi-
cal range of operation in response toin vivo-like input cur-
rent.

It can be noted that the maximal firing rate sustainable
by FS neurons is much larger than in pyramidal neurons
(∼ 200 spikes/s vs.∼ 50 spikes/s). Moreover, FS neurons
have a much larger response to fluctuations at rheobase, and
a smaller effectiveC, τ andτr (Table 2). Overall, these re-
sults imply that FS neurons respond faster and to a much
higher extent to input changes than pyramidal neurons.

5.5 Variability of the inter-spike intervals

The coefficient of variability (CV), defined as the ratio be-
tween the standard deviation and the average of the ISIs,
was used to assess the spike train variability (Stein 1965;
Reich et al 1997; Gabbiani and Koch 1998; Shadlen and
Newsome 1998; Kostal et al 2007). Strictly speaking, this
measure can be meaningfully applied only to stationary or
quasi-stationary spike trains (see Sec. 2.2), which is the case
we consider in this article. Two typical cases for FS interneu-
rons are shown in Fig. 15 for one L5 (left) and one L2/3
(right) interneuron, together with the prediction of the LIF
model neuron whose parameters were tuned to fit the fir-
ing rates only (full lines). The variability of FS neurons are
contrasted in the same figure with the typical variability of
pyramidal neurons from SSC and mPFC (dashed lines). The
comparison shown in the figure confirms the larger sensi-
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Fig. 15 Coefficient of variability (CV) of pyramidal and FS neurons. Comparison of CV of FS (full lines and symbols) and pyramidal
(PYR) neurons (dashed lines) from SSC (left) and mPFC (right) of the rat. Symbols (FS) and dashed lines (PYR) are experimental data for
a representative neuron in each class; full lines are the best fits of the CV of the LIF model neuron to the data from FS neurons (symbols).
CV values are plotted as a function of the neuron’s output rate at constant magnitude of the input fluctuations,sI , with (from bottom to top):
sI (FS,L5) = 20, 50, 100 and 150 pA;sI (FS,L2/3) = 10, 50, 100 and 150 pA;sI (SSC,PYR) = 50, 150 and 300 pA;sI (mPFC,PY R) = 50, 150
and 300 pA. Different fluctuations’ ranges were used in different preparations due to different physiological properties of the neurons (note the
different scales for the horizontal axis). In the fitting procedure, the neuron parameters were tuned to match both CV and firing rate for all data
points, i.e., for all{mI ,sI} pairs used for each fitted cell. For both fitted FS cells shown here, the adaptive LIF neuron withτα = 500 ms was used.
Inset: segment of the voltage trace for the point indicated by the arrow (calibration bars: 100 ms and 20 mV). The CV of this point is enhanced
by the “stuttering” behavior of the spike train and can not be captured by the model. Used and modified with permission from (La Camera et al
2006). Copyrightc© 2006 by the American Physiological Society.

tivity to fluctuations in FS neurons, compared to pyrami-
dal neurons, implied by the shape of the response functions
shown in Fig. 14. Although the variability of mPFC pyrami-
dal neurons is higher than in SSC, and contrary to the effect
on the firing rate (Sec. 5.3.2), the sensitivity of the CV to the
input fluctuations is comparable in SSC and mPFC (dashed
lines in both panels).

6 Discussion

The complexity and heterogeneity of cortical circuits (Gupta
et al 2000; Elston 2002; DeFelipe et al 2002; Douglas and
Martin 2004; Ohki and Reid 2007) calls for guiding prin-
ciples that allow us to simplify the models of the building
blocks of the brain (neurons and synapses, for example),
and to understand the collective behavior of a large num-
ber of interacting cells. Given the difficulty of the task, the
use of simple, but appropriate, spiking models is necessary.
Effective minimal models of neurons should be able to gen-
erate trains of spikes that can be compared with those ob-
served in the brain. The IF model, pioneered by Lapicque
(1907, 2007) and rediscovered by Stein (1965) (see e.g. Ab-
bott (1999); Brunel and van Rossum (2007)), is widely used
to analyze the behavior of a large number of interacting neu-

rons, but it has often been considered too simple to describe
the rich dynamics of real neurons.

Results obtained in the last decade, however, have shown
that the IF neuron is better than expected and quite success-
ful at describing many of the known dynamical properties
that are relevant for the collective behavior of networks of
neurons. The spike response of neurons of different corti-
cal areas can be reproduced quantitatively by IF models at
the level of the first and second moment of the statistics of
ISIs, as reviewed in this article, and at the level of the timing
of individual spikes (Jolivet et al 2006), with a remarkable
degree of accuracy.

There are at least two reasons for this success. The first
one is that simplified neuron models are effective models, in
the sense that they are not meant to reproduce the rich exper-
imental phenomenology of the neuronal dynamics, but are
designed to capture only the single neuron properties that are
relevant for a particular collective behavior. From this per-
spective, the guidance provided by the mean field approach
has played an important role. The second reason is that effec-
tive neuron models are entirely determined by a very small
number of independent parameters. With the current experi-
mental techniques, it is prohibitive to measure directly all the
parameters that are needed for a detailed conductance-based
model of the Hodgkin-Huxley type. Thus, one needs to make
assumptions about the parameters that are not measured di-
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rectly. These assumptions are usually based on other exper-
imental results in which the average values across several
neurons are measured. Given the high level of heterogeneity
of neurons, averaging often fails to describe what happens in
a particular cell (Golowasch et al 2002), whereas simplified
models in which all parameters can be measured directly are
more successful. Simplified models with a small number of
parameters are also instrumental to study the heterogeneity
of the functional properties of the cells. Models with a large
number of parameters are often under-determined, i.e., they
reproduce the accessible experimental data equally well with
different sets of parameters. In this case, a study of the vari-
ability across neurons would be complicated by the presence
of a variance component due to the ambiguity in the param-
eter estimation. Instead, the effective reduction of cortical
firing patterns in terms of IF neurons (Sec. 5 and Table 2) is
rather sensitive to small differences in the fitted cells, and ad-
ditional differences can be revealed by comparing the model
reductions to different types of IF neurons (Rauch et al 2003;
Giugliano et al 2004; La Camera et al 2006).

There are also limitations in the use of highly simplified
neuron models. More detailed models can give indications
about how the neuronal properties are affected by neuro-
modulators and by modifications in ionic concentrations that
are not easily accessible in experiments performedin vitro
(Meunier and Segev 2002). Detailed models can also sug-
gest how the dendritic structure and the ion dynamics can af-
fect the statistics of the total synaptic current (see e.g. (Lon-
don and Segev 2001)) (somatic current injection is admit-
tedly a very artificial way of stimulating a neuron). On the
other hand, there is unfortunately no standard model of cor-
tical neuron. Detailed models reproduce specific phenom-
ena and give useful indications about the underlying mech-
anisms, but they rarely produce predictions of new phenom-
ena, similarly to what happens for highly simplified models.
Recent discoveries of new phenomena like adaptation of fast
spiking neurons on long time-scales (Reutimann et al 2004;
Descalzo et al 2005; La Camera et al 2006) and the ability
of prefrontal neurons to act as integrators (Winograd et al
2008) were obtained in experiments and were not predicted
by the state-of-the-art detailed neuron models.
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Fourcaud-Trocmé N, Hansel H, van Vreeswijk C, Brunel N (2003)
How spike generation mechanisms determine the neuronal re-
sponse to fluctuating inputs. J Neurosci 23:11,628–11,640

Funahashi S, Bruce C, Goldman-Rakic P (1989) Mnemonic coding
of visual space in the monkey’s dorsolateral prefrontal cortex. J
Neurophysiol 61:331–349

Fusi S, Mattia M (1999) Collective behavior of networks with linear
(VLSI) integrate and fire neurons. Neural Computation 11:633–
652

Fusi S, Asaad W, Miller E, Wang X (2007) A neural circuit model of
flexible sensorimotor mapping: learning and forgetting on multiple
timescales. Neuron 54:319–333

Fuster J, Jervey J (1981) Inferotemporal neurons distinguish and retain
behaviorally relevant features of visual stimuli. Science 212:952–
955

Fuster JM (1995) Memory in the cerebral cortex. MIT Press
Gabbiani F, Koch C (1998) Principles of spike train analysis. Methods

in Neuronal Modeling: From Synapses to Networks, C Koch and I
Segev, eds, 2 edition, MIT Press: Cambridge, MA pp 313–360

Gardiner CW (1985) Handbook of stochastic methods. Springer
Gershon E, Wiener M, Latham P, Richmond B (1998) Coding strate-

gies in monkey V1 and inferior temporal cortices. J Neurophysiol
79:11351144

Gerstner W (2000) Population dynamics of spiking neurons: fast
transients, asynchronous states, and locking. Neural Computation
12:43–90

Gigante G, Del Giudice P, Mattia M (2007a) Frequency-dependent
response properties of adapting spiking neurons. Math Biosci
207:336–351

Gigante G, Mattia M, Del Giudice P (2007b) Diverse population-
bursting modes of adapting spiking neurons. Phys Rev Lett
98:148,101

Giugliano M, La Camera G, Rauch A, Lüscher HR, Fusi S (2002) Non-
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Lánský P, Sato S (1999) The stochastic diffusion models of nerve mem-
brane depolarization and interspike interval generation. Journal of
the Peripheral Nervous System 4:27–42

Lapicque L (1907) Recherches quantitatives sur lexcitation electrique
des nerfs traitee comme une polarization. J Physiol Pathol Gen
9:620–635

Lapicque L (2007) Quantitative investigations of electrical nerve exci-
tation treated as polarization. 1907. Biol Cybern 97:341–349



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21

Larkum M, Senn W, Lscher H (2004) Top-down dendritic input in-
creases the gain of layer 5 pyramidal neurons. Cereb Cortex
14:1059–1070

Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism
for coupling inputs arriving at different cortical layers. Nature
398:338–341

Lee D, Port N, Kruse W, Georgopoulos A (1998) Variability and Cor-
related Noise in the Discharge of Neurons in Motor and Parietal
Areas of the Primate Cortex. J Neurosci 18(3):1161–1170

Lerchner A, Ursta C, Hertz J, Ahmadi M, Ruffiot P, Enemark S (2006)
Response variability in balanced cortical networks. Neural Com-
put 18(3):634–659

Lindner B, Schimansky-Geier L, Longtin A (2002) Maximizing spike
train coherence or incoherence in the leaky integrate-and-fire
model. Phys Rev E Stat Nonlin Soft Matter Phys 66:031,916

Liu YH, Wang XJ (2001) Spike-frequency adaptation of a generalized
leaky integrate-and-fire model neuron. Journal of Computational
Neuroscience 10:25–45

London M, Segev I (2001) Synaptic scaling in vitro and in vivo. Nat
Neurosci 4:853–855

Lowen S, Teich M (1992) Auditory-nerve action potentials form a non-
renewal point process over short as well as long time scales. J
Acoust Soc Am 92(2 Pt 1):803–806

Mascaro M, Amit D (1999) Effective neural response function for col-
lective population states. Network: Computation in Neural Sys-
tems 10:351–373

Mattia M, Del Giudice P (2002) Population dynamics of interacting
spiking neurons. Phys Rev E 66:051,917

McCormick DA, Connors BW, Lighthall JW, Prince D (1985) Compar-
ative electrophysiology of pyramidal and sparsely stellate neurons
of the neocortex. J Neurophysiol 54:782–806

Meunier C, Segev I (2002) Playing the devil’s advocate: is the
Hodgkin-Huxley model useful? Trends Neurosci 25:558–563

Meyer PL (1965) Introductory Probability and Statistical Applications.
Addison Welsley, Reading Mass., page 287

Mezard M, Parisi G, Virasoro MA (1987) Spin glass theory and be-
yond. Singapore: World Scientific

Miyashita Y (1988) Neural correlate of visual associative long-term
mamory in the primate temporal cortex. Nature 335:817–820

Miyashita Y, Chang H (1988) Neural correlate of pictorial short-term
memory in the primate temporal cortex. Nature 331:68–70

Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working
memory. Science 319:1543–1546

Moreno R, de la Rocha J, Renart A, Parga N (2002) Response of
spiking neurons to correlated inputs. Physical Review Letters
89:288,101

Moreno-Bote R, Parga N (2004) Role of synaptic filtering on the firing
response of simple model neurons. Phys Rev Lett 92:028,102

Moreno-Bote R, Parga N (2005) Membrane potential and response
properties of populations of cortical neurons in the high conduc-
tance state. Phys Rev Lett 94:088,103

Moreno-Bote R, Renart A, Parga N (2008) Theory of input spike auto-
and cross-correlations and their effect on the response of spiking
neurons. Neural Comput 20:1651–1705

Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency
adapting neural ensembles: beyond mean adaptation and renewal
theories. Neural Comput 19:2958–3010

Noda H, Adey W (1970) Firing variability in cat association cortex
during sleep and wakefulness. Brain Res 18:513–526

Nykamp D, Tranchina D (2000) A population density approach that
facilitates large-scale modeling of neural networks: analysis and
an application to orientation tuning. J Comput Neurosci 8:19–50

Ohki K, Reid R (2007) Specificity and randomness in the visual cortex.
Curr Opin Neurobiol 17:401–407

Oram M, Wiener M, Lestienne R, Richmond B (1999) Stochastic na-
ture of precisely timed spike patterns in visual system neural re-
sponses. J Neurophysiol 81:30213033

Powers R, Sawczuk A, Musick J, Binder M (1999) Multiple mecha-
nisms of spike-frequency adaptation in motoneurones. J Physiol
(Paris) 93:101–114
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