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Abstract The study of several aspects of the collective dyategrate-and-fire neuron models are good enough to repro-
namics of interacting neurons can be highly simplified if onduce faithfully many of the relevant dynamical aspects of the
assumes that the statistics of the synaptic input is the saneeironal response measured in experiments on real neurons
for a large population of similarly behaving neurons (mean vitro.

field approach). In particular, under such an assumption, it is

possible to determine and study all the equilibrium points of

the network dynamics when the neuronal response to noisy,

in vivo-like, synaptic currents is known. The response fung- Introduction

tion can be computed analytically for simple integrate-and-

fire neuron models and it can be measured directly in &jological networks of neural cells are extremely compli-
mental results about the neural response to noisy inputs Wity diverse elements. Even within a single cortical column,
stationary statistics. These response functions are imporigfiere the neurons are known to have similar response prop-
to characterize the collective neural dyna_mlcs that are Pitties to external stimuli, the number of neurons can be as
posed to be the neural substrate of working memory, degirge as 18, and the synaptic connections are of the order
sion making and othe_r cognitive funct|o_ns. Appllcanons tgf 10° (Braitenberg and Schiiz 1991). A study of detailed
the case of time-varying inputs are reviewed in a compagynamical models of such networks is a difficult task. An
the neural circuits and physical systems like the spin glasses
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and Tsodyks 1991a,b; Abbott and van Vreeswijk 1993; Amgarameters are different from those directly estimated with
and Brunel 1997b). more traditional techniques.

Once we know the average input current, we need one |n this article, we review the theoretical and experimental
more element to characterize the dynamics of recurrent netaracterization of the response function of cortical neurons
ral circuits. We need to know how the total somatic currei the case of stationary statistics of the somatic current. In
is transformed into trains of spikes, that in turn generateparticular, we review the results related to the stationary re-
synaptic current in the connected neurons. If we have thisonse of the neuron on a time-scale or seconds, following
element, not only can we characterize the average firing ratghase of fast adaptation (hundreds of milliseconds) for the
of a population, but we can also analyze the dynamical hgrramidal cells. The extension to the case of time-varying
havior of circuits in which populations of neurons genestatistics and to the response on longer time-scales is ad-
ate inputs to themselves. This is fundamentally important #gessed in a companion article (Giugliano et al 2008). This
study the attractor dynamics of recurrent neural circuits agéticle is organized as follows. In Sec. 2, the relevant char-
their states of persistent activity (Amit and Tsodyks 1991a,héteristics of cortical spike trains are summarized. In Sec. 3,
Amit and Brunel 1997b; Wang 1999), i.e., attractor stat@e theory of the response function of cortical neurons is pre-
with many potential applications ranging from working mergented in the context of mean field theory. In Sec. 4, some
ory (Amit 1995; Wang 2001; Brunel and Wang 2001) to dexf the applications of the theory are reviewed. In Sec. 5, we
cision making (Rolls and Deco 2001; Wang 2002; Wong arllate the various experimental characterizations of the re-
Wang 2006) and flexible sensorimotor mapping (Fusi et bonse function of pyramidal and fast spiking neurons ob-
2007). The transduction function which transforms the sggined in different areas of the rat neocortex, and compare
matic current into a train of spikes (namegsponse func- the theory to the data. We finally discuss some of the advan-
tion in this article) provides a compact characterization @ges and some of the shortcomings of using the simplified
the single neuron properties that are relevant to the collegiking models and the approach reviewed in this article.
tive behavior of large networks of similar cells. If the re-
sponse function is known, mean field theory allows us to
study systematically the behavior of large connected net-
works of spiking neurons (e.g., Amit and Brunel (1997b);

Brunel and Hakim (1999); Brunel (2000a,b); Mattia and Del Giu-

dice (2002); Fourcaud and Brunel (2002); Del Giudice et al
(2003); Renart et al (2003); Curti et al (2004); Richardsch Cortical spike trains
(2007); Moreno-Bote et al (2008)). It is then valuable to ob-

tain a theoretical and experimental characterization of thg develop a theory of the response of cortical neurons, we
response function of cortical neurons, which depends on {h¢st have an adequate understanding of the typical neuronal
specific type of cell under consideration. One possibility igike patterns as observiedvivo. Recording neural activity

to build a model, inject a typical current into a simulategtom the cerebral cortex of anesthetized and awake animals
neuron, and observe its response. On the other hand, for §i%s shown that such activity is highly variable. In particular,
ple enough model neurons, a theoretical response functipps gpserved i) a large variability in the inter-spike inter-
can be determined analytically, facilitating the applicabilzys (1S|s) of the same neuron during spontaneous as well as
ity of the theory and the comparison with the experimenymylus-driven activity (e.g., Noda and Adey (1970); Holt
tal data. This has been done for several models in the class; (1996); Shinomoto et al (2003)); ii) a large trial-by-

of integrate-and-fire (IF) neurons (e.g., Fourcaud and Brungh yariability of the spike count of the same neuron in re-
(2002); Fourcaud-Trocmé et al (2003); Renart et al (2003),5se to repeated, identical stimulation, which grows pro-

La Camera et al (2004a); Moreno-Bote and Parga (200p)tionally with the average number of spikes (e.g., Gershon
Richardson (2007)). Experlmgntally, it is p_ossmle to meg; g (1998); Lee et al (1998); Oram et al (1999); Wiener
sure neuronal response functions by injecting a real neurgn,| (2001)). Intracellular recordings of neural activity in
with an appropriate range of input currents and measurifig intact brain have also shown the presence of a large vari-
the neuron’s response (Rauch et al 2003; Giugliano etfijity at the level of the subthreshold membrane potential,
2004; La Camera et al 2006; Arsiero et al 2007). and have shed some light on the nature of this variability.

Beside the theoretical importance of the response furn-Fig. 1 is shown the intracellular recording of the mem-
tion to study network behavior, its experimental charactebirane voltage of two pyramidal neurons from the visual cor-
zation can be used i) to classify neurons (e.g., quantify th&sx of adult cats performed by Holt et al (1996): one from a
functional similarity); ii) to establish how well the simpleslice in response to a DC current injection (left); one from an
models of spiking neurons used in theoretical studies raptact animal under DC current injection (middle); and one
resent the behavior of real neurons; iii) to modify simplander visual stimulation (right). Note how a constant current
model neurons so as to improve their ability to predict thimulationin vitro elicits a fairly regular spike train (left),
behavior of real neurons, sometimes simply by using effe@hereas the same current injectedivo (middle) elicits an
tive parameters (i.e., those derived from fitting the theoretiregular spike train very similar to that obtained in response
cal response functions to the experimental ones). Often thé&sa visual stimulation (right).
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Fig. 1 Neural activity in vitro and in vivo. Comparison of primary visual cortex cells from adult cats in sliceiandvo. Sample traces from 2

pyramidal neurons, one from a slice (left) and one from an intact animal on the boundary layers Il and Il that was stimulated by current injection
(middle) and by a bar moving along the receptive field (right). Note the lack of a large difference in spiking variability in response to current

and visual stimulation in the intact animal. Used and modified with permission from Holt et al (1996). CofgridBd6 by the American
Physiological Society.

et al (1985)). One explanation for this phenomenon lies in

T,=1ms, f= 5.6 spikes/s, CV = 0.63 the fact that a cortical neuron is constantly bombarded by
hundreds of seemingly erratic inputs. Indeed, whatever vari-
ability is contributed by the mechanism of action potential
generation (Gutkin and Ermentrout 1997), this is present
in both the cases illustrated in the left and middle plots of
Fig. 1, and thus it can not account for the striking difference
in variability. This explanation is confirmed by the fact that
the irregular activity shown in Fig. 1 can be recredtedtro
in response to fluctuatingn vivo-like current, as shown in
Fig. 2.

The current injected into the neuron shown in Fig. 2 was
modeled after an Ornstein-Uhlenbeck process (see e.g. (Cox
and Miller 1965; Gardiner 1985)),

T,=50ms, f=7.4 spikes/s, CV =1.27

dl = — gt Mg, /2%, 1)
T,= 100 ms, f = 6 spikes/s, CV = 1.32 T T T
The quantityé; in Eq. 1 is a Gauss-distributed variable with
50 mv zero mean and unitary variance, with the additional property
that(& &) = o(t —t’), whered is Dirac’s delta function and
(-) means average over time. The proc&ss often referred
to as ‘white noise’ in the literature. This condition defines a
500 ms delta-correlated process and means that two valués aif
different timest andt’ are completely independent of each
Fig. 2 Neural activity in vitro in response toin vivo-like input cur- O-ther'l Is Gauss-distributed at ,any tmgand aﬂer,a tran-
rent. Three intracellular somatic recordings performedsitro from sient of the order of the (the ‘correlation length’), con-

one pyramidal neuron from layer 5 of the somatosensory cortex oV&rJes to a process with mean valoeand standard devia-
juvenile rat are shown. These somatic recordings were obtained in then ;. With the use of current Eq. 1 it is possible to generate

whole cell configuration under current clamp in response to current iy vivo-like spike trainsin vitro with different firing rates,
jection modelled after Eq. 1 (Ornstein-Uhlenbeck process). Megh ( C%nd different variability at parity of firing rate, as shown in

variance §), and time correlation length (reported at the top of each. . . ;
panel ag; see Eqg. 1) of the input current were adjusted so as to ha &0 2. As we will show in Sec. 5, by tuning the values of pa-

roughly the same output spike ratefy put different coefficients of rametersn ands; a whole range oin vivo-like spike trains
variability (CV). See Rauch et al (2003) for details. can be induced in the stimulated neuron.

2.1 Recreatingn vivo-like activity in vitro 2.2 Model reduction of cortical spike trains

Whatever makes the neural activity irregular in an intat this article, we adopt the view that i) a spike train is com-
brain is not present in the DC stimulatiam vitro, the tra- pletely defined by the sequence of its ISIs, and ii) a good
ditional probe of the physiological and cellular propertiemodel reduction of cortical neurons is one that predicts well
of cortical neurons (e.g., Connors et al (1982); McCormidks spike trains under conditions as close as possible to the
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one experimentally measured in the intact brain. How wel, Theoretical analysis of the response of cortical
it depends on the underlying problem that a network of spikeurons

ing neurons is called upon to describe, and different time

resolutions have been found to be optimal in different sy$he response function characterizes the response of a neu-
tems (see Victor (2005) for a review). Some authors haygn to its somatic input current and thus plays an essential
assumed as a criterion that a large percentage of ISIs be pige in the dynamics of neural circuits. In the simplified sce-
dicted within£2 ms (Jolivet et al 2004, 2006, 2008). Weyario we are going to assume in the following, the average
take a different approach and demand that the model neutgynatic current and the amplitude of its fluctuations are the
reproduces well the first and second order statistics of spily ingredients considered effective in driving the response
trains in response tim vivolike current. A justification for (for more complex scenarios, taking e.g. into account the
this criterion is that a level of detail at the millisecond Scalﬁuto_ and cross-correlations of input Spike trains' see e.g.
is not necessary for studying patterns of activity that do nghkaj et al (1999); Svirskis and Rinzel (2000); Salinas and
vary much on time-scales of seconds (Sec. 3.1). Sejnowski (2002); Moreno et al (2002); Doiron et al (2004);
We will characterize a spike train by its firing rate (spikéerchner et al (2006); Moreno-Bote et al (2008)). Thus, we
count in an interval divided by that interval’s duration) andhall define the response function as the output firing rate as
by its coefficient of variability, defined as the ratio of the function of the mean and variance of the input current. The
standard deviation to the mean of the ISIs. For stationaigsponse function plays a central role in the mean field the-
spike trains, the firing rate quantifies also the average 18ty of networks of spiking neurons (Knight 1972a,b; Amit
and the coefficient of variability and firing rate together quaand Tsodyks 1991a,b; Abbott and van Vreeswijk 1993; Amit
tify the variability of the 1SIs. For non-stationary spike traingnd Brunel 1997b; Brunel and Sergi 1998; Fusi and Mat-
other measures of variability have been devised and shoti&l1999; Brunel and Hakim 1999; Brunel 2000a,b; Nykamp
be used instead (Holt et al (1996); Shinomoto et al (2003nd Tranchina 2000; Fourcaud and Brunel 2002; Moreno
Kostal et al (2007); see Gabbiani and Koch (1998) for et al 2002; Mattia and Del Giudice 2002; Del Giudice et al
primer on spike train analysis). 2003; Lindner et al 2002; Renart et al 2003; Richardson
2004; Moreno-Bote and Parga 2004; Gigante et al 2007a;
Richardson 2007; Moreno-Bote et al 2008). We provide a
brief introduction to this theory in the next subsection. For
a detailed mathematical exposition of the theory, the reader
is referred e.g. to Abbott and van Vreeswijk (1993); Fusi
and Mattia (1999); Brunel and Hakim (1999); Fourcaud and

. . Brunel (2002); Moreno-Bote and Parga (2005) and Richard-
After atransient- 1;, the current of Eq. 1 is auto-correlated o, (2007).

over a time of order, (its autocorrelation function jg(t,t’) =

Set-Ul/1 see e.g. Cox and Miller (1965)), and for very
shortr; approaches a white noise process. Even for finite
however, and despite being highly fluctuating in tirhés

a stationary process in the statistical sense, since the StﬁlshSider the neural circuits depicted in Fig. 3 Starting from

tics of the current are completely characterized by the th £%arge network of interacting neurons (Fig. 3A), we grou
parametersn, § and 1, which are constant. In this sense 9 9 9. , WE group
uf&ggth(_er thosc_a neurons that presumably h_ave a similar be-
a current, shown in Fig. 2, are also stationary. Indeed, uné@;”rgr '2 ?:tt:)tlsitrzctﬂi:ilzgr?rIeéxevrgpclﬁgs]iegefrlrte\}/v %t trg)e 3?;3(?”5
rather general conditions, the input current Eq. 1 can be gen- g. s pie, : Pop
o) fcells. pyramidal neurons, schematically drawn in black,

erated at the soma of a target neuron by linear summation : . ;
# d gabaergic neurons, in gray. Two pyramidal neurons are

the post-synaptic potentials (PSPs) arising from many SPIKE iied in Fig. 3B as “1” and “2": they receive direct synap-

trains that are in turn obtained in response to the same t¥c input from other neurons in the same population (red)

of current as Eq. 1. ; .

) and from the cells of the population of gabaergic neurons
~ The parametensy, 5 andt, represent, ideally, the most(pye), which in turn produce the typical noisy input cur-
important component of the presynaptic contributions to thignts as shown in figure (“current into the soma”). Different
neuron under investigation. We shall link these paramet@j#amidal neurons belonging to the same population will in
to presynaptic parameters in a later section (Sec. 3.2). Ngjaneral be driven by different somatic inputs, either because
stationarity could arise from a time-dependence of any @fe pre-synaptic cells are different, or because the function
these parameters. In this manuscript, we will be dealing wighat transforms the pre-synaptic spikes into a somatic cur-
spike trains that are stationary in the sense defined abovgent are different. However, the statistical properties of the

Having defined the scale at which we wish to charactesematic currents might be the same across different neu-
ize cortical spike trains, we move to the characterization afns of the same population. In the example of Fig. 3B, the
the input-output relationship at the corresponding level epecific realizations of the noisy somatic currents generated
description, i.e., the response function. by the pyramidal neurons are clearly different. Nevertheless,

2.3 Stationarity of the statistics of the noisy input current

3.1 Neuronal mean field approach
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tion can be replaced by a single representative neuron which
is driven by the mean field. If we know how each neuron
transforms the somatic current into a train of spikes (their
response function), we then can fully characterize the popu-
lation dynamics.

This approach has been named “extended mean field the-
ory” by Amit and collaborators (Amit and Tsodyks 1991a,b;
Amit and Brunel 1997b) because it takes into account the

B Current into fluctuations of the input current. It is a stratagem that allows
the soma N\f - us to reduce a population of similar neurons to the study of a

, single representative neuron while, at the same time, taking
into consideration non negligible fluctuations. It is important
to include the fluctuations in the mean field approach not
only because they are observed in real neural circuits, but
also because they play an important role in working regimes
similar to those observeit vivo (Troyer and Miller 1997;
Fusi and Mattia 1999). When neurons are driven by fluctua-
tions, the generated spike trains are highly irregular (Fig. 2).
Moreover, the neurons are active also when driven by a mean
current that is below theheobase(i.e., the minimal non-
noisy current needed to generate an action potential). As we
will show in more detail in Sec. 4, this allows for the exis-
tence of stable states that have properties similar to those of
the spontaneous activity obseniadvivo (Amit and Brunel
1997hb).

The response of a population of neurons can be station-
ary, quasi-stationary or time-dependent. By quasi-stationary,
we mean slowly changing with time with respect to the rel-
evant time-scale of the neural dynamics, which could be
Fig. 3 Mean field theory for neural circuits. A: Two distinct popu- the membrane time constant in the case of single neurons,
lations of different types of neurons: pyramidal (black) and gabaergi the transient response time of a population of neurons
cells (gray). Each population is made of different neurons that are tefpnsidered as a unitary entity (Knight 1972a). In the quasi-

tatively grouped together due to the similarities in the statistics of t%‘fationary case, the statistics of the input current produced
synaptic input and their response propertigsTwo cells (1 and 2, on ’

the right) from the population of pyramidal neurons. The other pyr&t the soma of each neuron, and the resulting spike trains
midal neurons (in red labels) and the gabaergic neurons (blue lab@ipduced by the same neuron, have quasi-stationary prop-
that are connected (left) to the two cells shown on the right generagties (typically, mean, variance and autocorrelation), and
an excitatory and an inhibitory somatic current. If the statistics of theg pe self-consistently described in the mean field approach

input currents to all pyramidal neurons is similar — same mean (r :
and blue lines) and average amplitude of the fluctuations (red and b flined above. The same approach can be extended to the

distributions) — then all the pyramidal neurons within the same pofaS€ of time'Var}’ing .StatiStiCS of _the input current, usually
ulation behave in a similar way and they can be replaced by a singith ad hocmodifications customized to work for the rel-

representative neuron (e.g., neuron 1). evant time-scale under consideration. Some of these exten-
sions are reviewed in the companion paper (Giugliano et al
2008), whereas in this article we consider the response of

cortical neurons in a regime of stationary or quasi-stationary

the average (the r_ed line) and the variance (red beII-sha% %vity. In the next subsections, we consider its quantitative
curve) are approxmat_el_y the_ same. Similarly, the mean ag elopment in the framework of networks of IF neurons
the variance of the inhibitory input (in blue) are also approx- '

imately the same. This means that if we replace the actual

somatic inputs with one having the same mean average and

variance across all neurons of the same population, we n#ag The statistics of the somatic current for random

not make a large mistake. This is the basic approximatigicorrelated inputs

of mean field theory: instead of considering the specific so-

matic input driving every individual neuron, we make thé&ssume that a neuron receives inputs fidgexcitatory and
assumption that the same fluctuating input drives all the néi-inhibitory neurons through synaptic contacts of strength
rons. If all neurons react in the same way to the input, thégi (in units of current), each neuron emitting independent
itis unnecessary to study a large number of neurons, as tiég irregular spike trains with firing ratg;, with each spike
would all behave in the same way (in a statistical sengg)ntributing an exponentially shaped PSP with a decay time
under the mean field assumption. Hence, an entire popuanstant ofte;, i.e. O e Y/Tei, For independent spike trains,

. b ) Total current -

into the soma

@ L

@ U e e

[ IR YN
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the mean and the variance of the stochastic protedsyiv- 2005) — which, roughly speaking, holds when a large num-

ing from the summation of the PSPs emitted by the predyer of small amplitude PSPs are required to reach the thresh-

naptic neurons of the same type {e,i}, are given by old — and for unitary PSPs (i.e., in the lintid; — 0, which
N § — 05NLI2 5 transforms the PSPs in delta functions), the subthreshold dy-

M = Nk VieTk, = -9l Vi @ hamics of the membrane potential obeys the stochastic dif-

(A slight modification of the second of these equations is réerential equation of the OU process,

quired if the synaptic weights are not identical but are drawn V — Viest

from a probability distribution (Amit and Brunel 1997b; Cur@lV = ————dt+ pudt+ o&Vdt, (4)

et al 2004)). We assume that a large number of small AMhere

plitude PSPs are required to reach the threshold. If this as-

sumption is sufficient for a diffusion approximation to hold! = M/C, 0 =v21's/C )

(Richardson and Gerstner 2005);an be approximated byare the average and standard deviation in unit time of the

the algebraic sum of two OU component processes each enmwbrane voltage, anfl is a Gaussian process with flat

ing according to Eq. 1, witlmy, s¢ given by Eqg. 2 ank € spectrum and unitary variance as in Equ.andq2 are the

{e,i}. If e = 1 = 17, the two components can be merged iaverage and the variance of the synaptic input current, and

the single equation (1) withy =me—m;, & =3+ (Amit /277 is a factor to preserve units’(= 1 ms, see e.g. Rauch

and Brunel 1997b). et al (2003)). Under the conditions specified in Sec. 82,
ands’ are given by

3.3 The integrate-and-fire neuron m = NeJeVe—NiJivi, 5 = NeJiVe+NiFui. (6)
Note that here, unlike Eq. 2, the synaptic time constants do

The characterization of the input current Eq. 1 requires ontypt appear because we have performed the ligit- 0.

a i) model for the PSPs, ii) the characterization of the spike

trains as independent stochastic processes, and iii) the con- ) _ )

ditions for the diffusion approximation to be valid. To char3-4 The response function of integrate-and-fire neurons
acterize the output spike train in response to a current of type ) )

Eq. 1, a model neuron must be specified. We are interesjl‘gét_i3 response function of the LIF neuron Eq. 4 is (Capoc-
in the firing rate and variability of the output spike train€lli and Ricciardi 1971; Amit and Tsodyks 1991a; Amit and
This can be calculated in analytical terms only if the mod8runel 1997b)
neuron is simple enough, for example in the case of IF neu- 8 -1
rons. A single-compartment IF neuron (Stein 1965; Knight= ®(u,0;1) = |1 +T/ \/ﬁe”2 (1+erf(u))du| ,(7)
1972a; Tuckwell 1988) is completely characterized by its Vi

membrane potential at the sofai.e., electro-tonic com- where the “hat” operation applied handV; is defined by
pactness of the soma is assumed with no role for dendrijic- (;_ ;1) /5./7 , or 2= (Cz— m1)/5+/2T'T upon use
nonlinearities ('point-neuron’ approximation). The membrad}%qs_ 5 (Rauch et al 2003). To derive Eq. 7, the following
potential integrates its inputs in a linear fashion. Whkén boundary conditions must be imposed on Eq. 4: the process
reaches a threshol@, a spike is said to be emitted and thg, €] — 0, 8] is absorbed upon hitting the threshélgand re-
neuron is clamped to a reset potentiafor a refractory time enters its allowed domain frov after a refractory period

Tr during which it is not sensitive to presynaptic or electric| (see, e.g., Fusi and Mattia (1999)). These boundary con-
stimulation. IF neurons come is a large variety and most gfjons formalize the emission of an action potential in this
the material covered in this article applles.to most types, S@@del and are by far the most commonly used with IF neu-
e.g. La Camera et al (2004a). In the following, we shall limi,ns However, it must be noted that different spike genera-
ourselves to the leaky IF (LIF) neuron driven by an inpyjon mechanisms may produce a different neuronal response

currentl: to fluctuating input (Fourcaud-Trocmé et al 2003; Fourcaud-
dV _ V—Viest N I 3) Trocmé and Brunel 2005; Richardson 2007). Eq. 7 is plotted
dt T C’ in Fig. 4 for different values o . Its analytical form holds
whereVies is the membrane resting potenti@lis the mem- exactly for a white noise input, but only approximately for

brane capacitance, armd= RC, whereR is the membrane an input given by the OU process Eq. 1 with a small time
resistance. To emulate the noisy input current targeting né@nstantr;. A better approximation than Eq. 7 for a small
ronsin vivo, the current is modeled as a stochastic proces$§as been given by Brunel and Sergi (1998) and it amounts to
I(t) = Ykefei} Test; St —tjx), wheres(t) is the PSP (here an effective modification of the threshofdand reset poten-

‘ tial V; (see also Fourcaud and Brunel (2002)). In the absence

0 e !/Tei for consistency with Sec. 3.2) ard; x} are the ) .
; i LY of input fluctuations (e.g., fog — 0), Eq. 7 reduces to the
presynaptic spikes’ arrival times from excitatoky €) and ell-known response function of the leaky integrator (e.g.,

inhibitory (k = i) neurons respectively, both assumed to Bié( i .
exponentially distributed (Poisson spike trains; this model yckwell (1988); Burkitt (2006))1’

usually credited to Stein (1965)). In the diffusion approx- mt1—-CVi\ ~_

imation (Lansky and Sato 1999; Richardson and GerstriBfM) = T+ TIn mr—-ce,) (m7-C8), (8)
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rent (e.g., AMPA, NMDA, etc.)gy is its peak conductance,
andV its reversal potential. We shall limit ourselves the LIF

50 5=05 neurons with only two classes of conductances, excitatory
—_ _ and inhibitory, and will refer to it as the conductance-based
N $=0.3 . . =
>3 P LIF neuron. Moreover, we will always consider constgys,
g 40 = even though it is more correct in some cases to mgdek
‘S 30 — §=0 voltage-dependent (e.g., Renart et al (2003)).
wv
]
- -
& 20! 3.5.1 Conductance-based LIF neuron
cEn The subthreshold membrane potential of the conductance-
= 107 based LIF neuron driven by stochastic spike trains as in Sec. 3.3

0 : obeys
0 02 04 06 08 T gve—r YV —Veg)dt+Ge(Ve—V)dR+g (Vi —V)dR,

mean current [nA _ . .
[nA] wherege; = C‘lrgai are dimensionless peak conductances,

Ve, are the excitatory and inhibitory reversal potentials, and

Fig. 4 Stationary response function of the LIF neuron.Response dRj = ZJ 5(t —t?’i)dt are Poisson spike trains with parame-
function of the white-noise driven LIF neuron, Eq. 7. Each curve is tEe 7f' . t I In the diffusi imati S 32
1 curve for a constant value of the standard deviation of the input c4i" (firing rate)ve;. In the diffusion approximation (Sec. 3.

rent, (NA). The rightmost curve is Eq. 7 in the linit— 0, i.e., Eq. 8. and 3.3), which heuristically corresponds to replaaitigy
Note the logarithmic singularity at rheobasg = C8/1 ~ 0.4 nA,  with wdt + /W dté;, the equation can be put in a form very
i.e., the minimal constant current required for an action potential g}m”ar to Eq. 4 (e.g., Hanson and Tuckwell (1983); Lansky
be emitted in the absence of input fuctuatons. Neuron parameteftiy | anska (1987); Burkitt (2001)); see Table 1. A slightly
Viest = 0 mV. different model, where the conductances are taken to be OU
processes like Eq. 1, has been used by Destexhe and col-
laborators to recreate the vivo-like activity in neocortical
where=(x) =1 if x > 0, and zero otherwis€68/7 is the neurons and investigate the role of noisy, background synap-
rheobase current for this model neuron (i.e., the minimiit input on their integrative properties (“point-conductance”
input current required for an action potential to be emittetturon, see e.g. Destexhe et al (2001)).
in the absence of input fluctuations, see, e.g., Connors et alThe subthreshold behavior and the response function of
(1982)). Note that the LIF neuron is not quiescent belothe conductance-based neuron (under the approximation dis-
rheobase in the presence of input fluctuations, due to the oassed in the next subsection) are summarized in Table 1,
casional input fluctuation able to drive the membrane potetiegether with the analogous quantities for the current-based
tial across the threshold. In the literature, this activity reginreeuron. From the table, it is apparent that the main differ-
is called ‘noisy-dominated’, ‘fluctuation-dominated’, or simences with respect to the current-based IF neuron are: 1) the
ply ‘subthreshold’ regime. In the absence of fluctuations, filuctuations depend on the membrane voltage; 2) an input-
spikes can be emitted for inputs below the rheobase. Tiependent, effective time constaritappears; 3) the param-
simplest response function used in the literature to modskry is notthe average of the total input current (for exam-
this phenomenon is threshold-linear around the rheobagke, part of the input contributes to the leak ter /T* and
Instead, Eq. 8 has a singularity at rheobase, specifically,igsiot considered ip); 4) the voltage is bounded from below
derivative with respect ton diverges asmy — CO8/1. We by the inhibitory reversal potential (below inhibitory in-
will come back to this point when discussing firing rate adaputs become excitatory). Usually the last point is taken care
tation in Sec. 3.6. of by imposing a reflecting barrier &, i.e., a hard lower
bound for the membrane potential (Hanson and Tuckwell
1983; Lansky and Lanska 1987).

3.5 The response function in the presence of reversal

potentials 3.5.2 Gaussian approximation for the conductance-based
LIF neuron

The theory presented so far can be extended to the so-called

conductance-based IF neuron, or, more correctly, to the TRe analytical form of the response function of this model

neuron with reversal potentials. This model brings IF neaeuron in the diffusion approximation is known and can be

rons closer to biology by taking into account that the PSRsund in e.g. Johannesma (1968) and Richardson (2004).

are voltage-dependent, i.e., depend on the current state ofWieen the diffusion approximation holds, another approxi-

neuronal membrane. Formally, the input curreimh Eq. 3 mation, called the Gaussian, or ‘effective-time-constant’, ap-

depends on the membrane potentiall as 3,0x(Vx —V), proximation, is also valid, and allows for the response func-

wherex identifies the type of receptor mediating the cution to be put in a form very similar to Eq. 7 (Burkitt et al
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Table 1 Model equations and response function of the current-based and conductance-based LIF neuron (the latter, under the Gaussian approxi-

mation; see the text). Subscrigandi stand for “excitatory” and “inhibitory”, respectively. Parameters defining the model nedignresting
membrane potentiat, membrane time consta@, membrane capacitand, threshold for spike emissio¥;, reset voltage after spike emission,

T;, absolute refractory periolle;, reversal potentials. Parameters defining the infautsynaptic weights in units of voltaggsj =C11Qei > 0,
dimensionless peak conductancgs (peak conductances)e;, firing rate of afferent neurons. The input parameters in units of current are given,

in both cases, byny = Cp ands = Co/+/21/, with T/ = 1 ms. Note that depends oW in the conductance-based model.

symbol  description current-based conductance-based units
subthreshold Eq. fo¥ dV = — X dt+ pdt+ oV/dt& (same) voltage
conditions for a spike ¥ (t')=06 — spikeV =V, fort €]t’,t' + ;[ (same)
u infinitesimal input current Jeve — |JAi Vi T Wiest+ GeVeVe + GV, Vi voltage- time™?!
o? infinitesimal input variance ~ 2ve + J2v; B (Ve—V)2ve+ @M —V)2v  voltagé - time™!
T effective time constant T (1714 geVe+givi)t time
5 -1
® response function T+T f\79r \/ﬁe'J2 (1+erf(u))du (same) spikestime™!
5 B : z—ut* z—ut*
2 integrand of response function e =

2003). This form is given in Table 1. The table has been catre response function of the current-based neutdr,—
structed so as to appreciate the formal similarity between tHg Q), is the same as the response function of the conductance-
response functions of the current- and conductance-babaded neuron — @®cg(Q). This holds for both delta-

LIF neurons under this approximation. The Gaussian agorrelated (Rauch et al 2003) and filtered synaptic inpiits (

proximation holds for of few ms, La Camera et al (2004b)), and requires only a re-
2 o ok definition of the connectivity of the network of current-based
(geve+ gi Vi)T /2 <1, (9) neurons.

which is also the limit in which the underlying diffusion ap-

proximation holds (Richardson 2004). The condition Eq. 9 is

fulfilled under typical cortical conditions (Richardson 20043 6 Firing rate adaptation
La Camera et al 2004a). Heuristically, this approximation

amounts to neglecting the dependence of the diffusion cogfnen cortical neurons are stimulated with somatic injec-
ficient onV, by replacingo (V) in Table 1 with its average tions of sufficient strength, the initial rate at which action
over the free (i.e., spike-less) process, turning the multipliggptentials are emitted undergoes a decay with time, a phe-
tive synaptic noise into an additive noise as in the curretomenon called firing rate adaptation (McCormick et al 1985;
driven neuron, see Burkitt et al (2003); Richardson (2004)gwen and Teich 1992; Fleidervish et al 1996; Sanchez-
La Camera et al (2004a); Richardson and Gerstner (20@a)es et al 2000; Reutimann et al 2004; Ulanovsky et al
for technical details. 2004; Descalzo et al 2005; La Camera et al 2006). This de-
cay can occur at different time-scales, and can lead either to
3.5.3 Equivalence between the response function of the a stationary firing rate, as illustrated in Fig. 5, or, if stimu-
conductance-based and current-based LIF neurons lation is sufficiently strong and prolonged, to the complete
cessation of spiking activity (Rauch et al 2003).
Networks of current- and conductance-based neurons dif- Firing rate adaptation is ubiquitous in cortical neurons
fer qualitatively in several respects (La Camera et al 2004nd affects their response to both constant and fluctuating
Richardson 2004; Vogels and Abbott 2005; Kumar et al 20@8ioraint injections. In models characterized by a threshold-
However, Table 1 suggests the possibility to “map” one ndirear response function around the rheobase, firing rate adap-
work onto the other so as to have the same input-output refation provides a mechanism for decreasing the slope (or
tionship in both. Indeed, networks of current- and conductageie) of the response without affecting its sensitivity to input
based neurons can be made equivalent in terms of the platstuations (La Camera et al 2002), a property that is nec-
terns of asynchronous firing rate activity they can expresssary for IF neurons to reproduce the response function of
(La Camera et al 2004b). In both the conductance- and curcentical neurons (Rauch et al 2003). In models characterized
based IF neuron, the input spike trains were Poisson spikea highly non-linear response at the rheobase, like the LIF
trains characterized by the parameter<®et {ve,0e, Vi,0i}, model neuron in the absence of noise (Eq. 8), adaptation re-
which can be taken to define the input. Given the same inpabves the singularity and transforms the response function
Q, it is possible to find a Gauss-distributed current so thiatthreshold-linear (Ermentrout 1998). Firing rate adaptation
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a given ion specieBl (one can think ofca?* or Nat) en-
40 N AT A ters the cell and modifies the intracellular ion concentration

é oo%oom [N];, which then exponentially decays to its resting value in a
X © N e o K S & characteristic timey (see Fig. 6 for a schematic illustration
& 20 A WS P g R of this mechanism)N]; dynamics are described by
0 5 10 15 200 4Nk NI
time [s] % = —[T—&' +ANZCS(t_tk)7 (10)

Fig. 5 Example of firing rate adaption. A spike train (shown at the \yhare the sum is taken over all the spikes emitted by the neu-
top) obtained from a dissociated cortical neuron, cultureditro, in

response to an input current modelled after Eq. 1, see Giugliano ef @) UP to timé. As a consequence, an outwarddependent
(2004) for details. In the bottom panel are shown the temporal deurrentlanp = —gn[NJ;, proportional toNJ; through the av-

cay of the instantaneous firing rate, measured as the running averaggge peak conductangg, results and causes a decrease in
firing rate in a sliding window (circles), and its best exponential fifo discharge rate. This current is commonly given the name

(dashed line). The output firing rate, initially 40 spikes/s, converges o :
to ~ 22 spikes/s after an exponential decay with time constant of ab&It afterhyperpolarization (AHP) (Sah 1996). This term en-

2's. Used and modified with permission from Giugliano et al (2004)rs the right hand side of Eq. 4 for the membrane potential

Copyright(© 2004 by the American Physiological Society. as
. V —Viest )
deffdtng[N]ldt+udt+GEt\/ﬁ (11)
U T with boundary conditions ok as specified in the absence
S 7 of adaptation (Sect. 3.3).
input spike train
\\ /N+e”try 3.6.2 Mean field theory of firing rate adaptation
( For slow enoughN]; dynamics, the steady state (ss) intra-
-~ AHPcurrent  cellular concentration dNJ; is proportional to the neuron’s
output firing rate in a time window of a fewy:
| [N]i.ss= TNAN ot —tx) =~ INANT. (12)
output spike train be<
This causes a feedback currégd,ss proportional toN]; ss,

Fig. 6 Model of firing rate adaptation. Upon emission of a spike, a lanpss = —On[NJiss Which is in general a fluctuating vari-

guantity of a given ion specied enters the cell body (triangle) and . P . ]
modifies the intracellular ion concentrati@];, which then exponen- able because the output spike train'is (Fig. 6). Sihdedy

tially decays to its resting value in a characteristic trgesee Eq. 10. namiCS_ are slowgnpssis only weakly ﬂUCtuating_ compared
Under the conditions discussed in the text, this causes a feedback torthe input current, so that only the mean input current

rent proportional tNJ; (AHP current), which in turn is responsible iy = Cu is affected significantly. The total current felt by the
for decreasing the output firing rate of the neuron. neuron, spiking at raté, is thenm, — a f, with @ = gy TnA,
plus the fluctuating component which is unaffected by adap-
i tion (the case where this can not be assumed has been stud-

also plays a variety of roles in the response to time-varyit. .
input current (reviewed in Giugliano et al (2008)). The th €d by Muller et al (2007)). This would cause the neuron to

ory developed so far is extended in this section to inclu Leata reduced firing rath, which in turn causes the mean
the effect of firing rate adaptation. current to be affected a® — a f1, and so on. At equilib-

rium, the adapted firing rate can be numerically obtained by

. . ) solving the self consistent equation
3.6.1 Minimal model of firing rate adaptation

. o f=om—af,s), a=gvnnAn, (13)
Firing rate adaptation is a complex phenomenon affected by
different ion currents (see Table 1 of Sawczuk et al (199Which requires only the knowledge of the response function
for references and a list of possible mechanisms). We de-and the value ofx. The adapted firing rate is always a
scribe here a simple model based on a synthesis of the &thble fixed point of Eq. 13 (La Camera et al 2004a). The
lular mechanisms underlying adaptatiarvitro. The model adapted response function of the LIF neuron is shown in
leads to an adapted response function good enough to daig- 7 (dark curves). It can be noted that firing rate adap-
ture the experimental ones (Rauch et al 2003; La Caméagion linearizes Eq. 8 around rheobase (Wang 1998). This
et al 20044a; Giugliano et al 2004; La Camera et al 2006; Aresult holds for all model neurons whose response function
siero et al 2007). Upon emission of a spike, a quamiyof is highly non-linear at rheobase (Ermentrout 1998).
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Fig. 7 Stationary response function of the adapted LIF neuron
Adapted response function of the white-noise driven LIF neuro
Eq. 13 with® given by Eq. 7, plotted as in Fig. 4 (dark curves). Sal

Fig. 8 Comparison of the mean field theory of firing rate adapta-
tlon with simulations. Response function of the adapting LIF neuron,
Mean field theory (Eq. 13, dark lines) vs. simulations (Egs. 10 and 11,

parameters as in Fig. 4, includisg= 0, 0.1, 0.3 and 05 nA; adapta- jght symbols) withty = 20 ms. The response functions are plotted as
tion parametenr = 4 pA-s. The non-adapted response function, Eq. " Fig. 4 withs — 0 and 04 nA (from right to left). Neuron parame-

is also plotted for comparison (light curves). The rightmost curves A8 s werer = 20 ms.T. =5 ms.C=05nF. 6 = 20 mV.V. = 10 mV.
the adapted (dark) and non-adapted (light) response function in the %;t —0mV anda ’:r4 PAS. Theinsetshows an enla'rgrement of the

sence of input fluctuations(= 0), i.e., Eq. 13 withd given by Eq. 8 region around the rheobase for the curves itk 0. The mean field
(dark), and Eq. 8 (light), respectively. Adaptation removes the sing pproximation in the absence of noise breaks dowri f§50 spikes/s
larity of Eq. 8 by linearizing® around the rheobase, see the text fof ~ '

details. Thansetshows an enlargement of the region around rheobase
for the curves witt = 0 and 01 nA. ) o
3.6.4 Mean field theory of adaptation in the presence of

noise

For fast adaptation, the mean field approach should fail also
in the presence of fluctuations, since in this case the condi-
3.6.3 Mean field theory of adaptation in the absence of  tion1SI < 1y would be replaced byISI) < 1y, where(-) is
noise the average over the spike train. However, it turns out that in
a very irregular spike train, Eq. 13 predicts well the adapted
firing rate also if condition(ISI) <« 1y is violated (La Cam-

In the absence of noisé\]; dynamics are slow for large €ra €t al 2004a). This is illustrated in Fig. 8 fog =20
v, i.e., for ISl < 1y, since the ISI sets the time-scale ofleftmostcurve and symbols). In general, the agreement with
the output spike train (Ermentrout 1998). Fgr~ 100 ms, S|_mulat|ons improves W_lth the amount of input quctugtlons,
the value typically used in modeling studies (Wang 199#ith the break-down point decreasing and approaching van-
Ermentrout 1998; Liu and Wang 2001), this means that tH&'ing firing rates for large enough fluctuations. This may
mean field approximation of the adapted firing rate breaR§ due to the fact that, in irregular spike trains, the distri-
down below 1y < 10 spikes/s. Experimentally, the timdoution of ISI§ is typlcally.s.kewed towqrds values that are
constantry of the dynamics underlying AHP Sum,‘naﬁorpmalIer_than its mean, fqu|II|ng the cqndltlmﬁl < Ty most

(Eg. 10) is found to vary in a wide range, from tens of milof the time. A deeper analysis of this phenomenon (and of
liseconds (fast adaptation) to seconds (slow adaptation), §éan-adaptation theories in general) can be found in Muller
e.g. Powers et al (1999); La Camera et al (2006). Slow ad&b-l (2007), and a population density analysis of networks
tation is naturally amenable to mean field analysis, sincef@dapting spiking neurons has been performed by Gigante
v of the order of seconds means a break-down point cld¥eal (2007a,b).

to vanishing firing rate. Not so for fast adaptation, however.

For e.g.ty ~ 20 ms, in the absence of fluctuations the me&@6.5 Adaptive conductance-based IF neuron

field solution is predicted to break down below 50 spikes/s,

which is confirmed by simulations (Fig. 8, compare righfFhe model of firing rate adaptation of Sec. 3.6.2 is easily ex-
most curve to symbols). In this case, the adaptation curréehded to the conductance-based IF neuron. The adapted re-
recovers too quickly to affect the output spike train, contragponse function is given by the solution of the self-consistent
to the mean field prediction given by the self-consistent sequationf = @cg(m — af,s) (La Camera et al 2004a),
lution of Eq. 13. where®cg is the response function of the conductance-based



O©CO~NOOOTA~AWNPE

11
80 60 of adaptation phenomena, for example due to slow inactiva-
—_ 40 tion of Na™ channels (Fleidervish et al 1996), are present
v in cortical neurons, and some can also be treated within the
8 60" 20 mean field approach as done for AHP-dependent adaptation,
= 0 sometimes leading to qualitatively new phenomena like non-
% -60 monotonic response functions (Giugliano et al 2002).
@ 40;
©
D 20¢ 4 Applications of the theory of cortical response
E function
A? Many properties of the behavior of networks of spiking neu-
00 600 800 1000 1200 rons can be predicted from the knowledge of the single-

Je Ve [n S/S] neuron response function. In this section we will review briefly
some of those properties related to the attractive dynamics
Fio. 9 Adapted function of th 4 hased El of recurrent networks, such as the possibility of the coex-
A Saeﬁgiorzgfsﬁ’gr?feso‘ﬂ%fno? i%g:(nmluiteg'fes;)aaﬁ]es istence of spontaneous and stimulus-selective persistent ac-
against the simulations (symbols) of the full model (Table @y tiVity in the interval between two relevant events (Amit and
is the response function of the conductance-based LIF neuron in Beunel 1997b; Brunel 2000a), the characteristic times gov-
Gaussian approximation (reported in Table. 1). The response functigfipiing the transient response of the network to a stimulus
are plotted ageVe — f at constant inhibition, withy; = 500 spikes/s, (Mattia and Del Giudice 2002; Renart et al 2003), and the

g = 1 nS throughout. Each curve is obtained moving alesand scal- . . ;
ing Ge S0 thata? = G2ve constant 6 — 7.0, 169, 331 nSA/S from dynamics leading to perceptual, motor, or rule-based deci-

right to left), to allow comparison with the current-based neuron HIONS (Rolls and Deco 2001).
Figs. 4-7 (see Table 1 for an explanation of these symbBight in-

set: ge [NS] as a function of/e [spikes/s] plotted age Vs l0g;o(Ve)).

Left inset:sample of membrane voltage (mV, top trace) and feedback

currentlanp (PA, bottom trace; see Sec. 3.6.1) as a function of time [g]. 1 Attractors of the neural dynamics
for the input point withpe = 783 nS/s,ge = 33.1 nSA/s. Adaptation

t =500 = 8 pA (so thata = 4 pAs). N ' .
Bgrrzrrﬂgégf‘: 5 msrgsf“(‘)g’“m: QF’: 2(3?“\,6\14 _ 1Opm\,3{,re;ir8n Under the mean field assumption of Sec. 3.1, the shape of

T =20 msVe = 70 mV,V, = —10 mV. Used and modified with per- the response function can be used to predict the stable ‘fixed
mission from La Camera et al (2004a). Copyright2004 by The MIT  points’ of the dynamics of neural populations, also called
Press. ‘attractors’ because the collective activity of the population,

if close to the activity defined by those fixed points, tends
¢ to merge into it. These attractors can be visualized as the
intersections of the response function with the unit straight
gﬁe, as shown in Fig. 10A. In the figure, both the input (hor-
IZzontal axis) and the output (vertical axis) is the firing rate
of the entire population, which in the logical construction of
mean field theory coincides with the firing rate of any rep-
resentative neuron (see Sec. 3.1). At the points in which the
response function (thick or thin curve) intersects the dashed
straight line, the output rate of each neuron of the population
equals its input rate. These fixed points are the attractors of
3.6.6 Other models of adaptation the population dynamics. Fixed points at which the slope of

the response function is smaller than 1 are stable attractors,

Other models of firing rate adaptation are also in use in theeaning that the collective behavior of the network in this
literature, among which an adapting threshold for spike engtate is resumed after a temporary disturbance due to small
sion (e.g., Holden (1976); Wilbur and Rinzel (1983); Liu angerturbations.
Wang (2001); La Camera et al (2004a)) which is amenable Since the parameters of the neuron and the properties of
to the mean field approach described in this section. Ttiee synaptic connections shape the response function (two
LIF neuron, endowed with such a mechanism, was fouegamples, the thick and the thin curves, are shown in Fig. 10A),
equally able to fit the response function of rat pyramidal nethe response function can be used to infer the dynamical
rons as did the model with AHP adaptation (La Camera et@operties of neural populations and, thus, of cortical cir-
2004a). AHP Adaptation, however, is a more general medhuits. We illustrate how with a few examples in the next sub-
anism and, in some sense, universal, in that most adaptisgtions, where we use the response function to infer the
currents can be described by such a mechanism under pssibility that the network can sustain a state of so-called
sonable assumptions (Benda and Herz 2003). Other tyfeyrsistent activity’ in one or more firing rate regimes.

neuron, andn, ands areu ando from Table 1 in units o
current. The agreement with simulations is shown in Fig.
To allow for a comparison with the response function of t
current-based LIF neuron as shown in Fig. 7, whgrés
constant in each curvee was increased while scaling as
~ 1/,/Ve, with g;, v held constant. This corresponds to in
creasingn (as~ /Ve — giVi) at constant’ (0 g2ve + G2Vi)

in the current-based neuron (see Table 1).



O©CO~NOOOTA~AWNPE

12

(o]
o

4.2 Spontaneous activity

A spontaneous, not stimulus-driven neural activity at low fir-
ing rates has been interpreted as a global attractor of a recur-
rent network of spiking neurons (Amit and Brunel 1997b).
This activity is the result of the interaction between excita-
tory neurons, it is self-sustaining both in the presence and
in the absence of an external synaptic input, and is highly
irregular due to the disorder of synaptic connections (van
Vreeswijk and Sompolinsky 1996). The type of synaptic drive,
current-based vs. conductance-based, can play a decisive role ‘ ‘ ‘ ‘
(Vogels and Abbott 2005; Kumar et al 2008b). For conductance- 0 20 40 60 80
based inputs, spontaneous activity can persist for long peri- input firing rate [spikes/s]

ods of time even in the absence of external inputs. The sur-
vival time of self-sustained activity increases exponentially
with network size (Kumar et al 2008b).

We base the examples of this section on networks of
current-driven LIF neurons. In the absence of noise, or when
the model neurons are insensitive to input fluctuations, the
activity either dies out or converges onto a pattern of firing
rates that are significantly higher than those typically ob-
served in cortical recordings in behaving animals (Miyashita
and Chang 1988; Amit and Brunel 1997b; Yakovlev et al
1998). Both possibilities can be predicted by the shape of
the response function as illustrated in Fig. 10A (thin curve).
For a collective activity above that represented by the open
circle, the activity will converge towards a higher activity
state (*). Similarly, an initial activity below the same crit-
ical point will eventually die out, i.e., all neurons will stop
firing (the zero output rate in figure). This is because thég. 10 Prediction of network behavior by means of its single eu-

; ; i ns’ response function. A.At the points in which the response func-
ggﬁr&;;\rgﬁizpresents a unstable fixed point of the pOpu!%n (thick or thin curve) intersects the straight line (dashed), the output

] o ] rate of each neuron of the population equals its input rate (fixed points

In the presence of fluctuations, however, it is possible édthe population dynamics). In the case of the LIF neuron driven by a
have a state of spontaneous activity at low firing rates, likeiseless input current (thin curve, Eg. 8), the activity either dies out to
the closed circle marked “SA’ in Fig. 10A. Notice the twcgero firing rate or converges onto a pattern of firing rates that are sig-

L . o - ificantly higher than those typically observed in cortical recordings
main ingredients for a finite spontaneous activity to be statgﬁo (). In the presence of input fluctuations (thick curve, Eq. 7),

in a single excitatory network of current-driven LIF neuronsivo stable points of self-sustained network activity can be found if ap-
a change in convexity around rheobase due to the sensitivitypriate synaptic wights are chosen, which we call spontaneous activ-

to input fluctuations (see the inset of Fig. 10A), and the pre§. ("SA", ~ 5 spikes/s), and persistent activity (*PAY, 50 spikes/s).
e open circle is an unstable fixed poilmset: enlargement of the re-

: L
ence of an .e?(temal input (so that f(_)r a_nU|_| recurrent inp Ig)n around SA showing that the slope of the response function is less
the output firing rate of the population is higher than zerghan 1 at this pointB. Fixed points of the network i (thick curve)
as shown in figure). If any of these ingredients is lackings a function of the average recurrent synaptic weigh@oexistence
the quiescent state is the only stable fixed point at low ﬁrirﬂjlnsIOOﬂtaﬂeouS and persistent activity is possible in the inteidl’]
: (Shaded area). The dark dashed curve is the ‘unstable manifold’, i.e.,
rates in such a network. ) , : >rabie )
the continuous collection of all unstable fixed points in the bistable
region. The three fixed points shownAnare obtained fod = J;. For
J < J (for example, aflp), only spontaneous activity is stable, whereas

. . . L. for J > J” (for example, afly), spontaneous activity is destabilized and
4.3 Stimulus-selective persistent activity only persistent activity at high firing rate is stable.

(@]
o

N
o

output firing rate [spikes/s]
N
o

(=)

(@]
o

PA

N
o

fixed points [spikes/s]
D
o

SA

o

J, o,

The two closed circles that mark the intersection of the thick

response function with the straight line in Fig. 10A are both

stable attractors, or stable states of persistent activity. In prihat i) is expressed at higher firing rates than spontaneous
ciple, any self-sustained network activity is to be labellegkctivity and ii) that can be obtained in a neural subpopula-
as persistent activity, and that includes spontaneous activitgn on top of, and without disrupting, the spontaneous ac-
persistent activity at higher firing rates, and the inter-trial ativity of the embedding network (Amit and Brunel 1997b).
tivity found in infero-temporal cortex of behaving macaqueSometimes, the property of being stimulus-selective is also
(Yakovlev et al 1998). However, it is common in the literaassumed, that is, the state of persistent activity must be ig-
ture to refer to persistent activity as to self-sustained activityted by the transient presentation (or the activation of an
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internal representation) of a particular class of stimuli, add4 Network response to time varying inputs
not just any stimulus. According to this definition, the low

rate stable point marked “SA’ in Fig. 10A can be interpretego far (and in the remainder of this manuscript) we have
as the state of spontaneous activity, whereas the high neé&&n concerned with stationary properties of the response
point (PA) can be interpreted as a state of persistent acéf-cortical neurons (Sec. 3). The network dynamics can be
ity. Indeed, the activity in state PA occurs at higher firingtudied in the framework of mean field theory also when the
rate than SA, and its presence does not destabilize SA (afgut statistics are not stationary. Some of these extensions
viceversa). are reviewed in Giugliano et al (2008); here we mention
briefly a few applications of the stationary response func-

o . tion to the characterization of the transient behavior of the
The conditions for stable coexistence of spontaneous 8 vork and its response to time-varying inputs.

persistent activity can be stated in terms of the parameters For delta-correlated synaptic currents, the network re-

defining the network (in particular, the synaptic strengthgEonse to time varying inputs can be studied analytically
u

and can be predicted from the way a parameter change shg dar specific simplifying assumptions and it is in general

T e e o hercomplcatec. The response ime of the netor 1 gen-
. : b eral depends on the full distribution of the depolarizations
a whole interval of potentiated synaptic values. The proc

dure for finding such interval involves the response functitﬁn/ — Viest) OF all the neurons. For example, networks with
sg)ontaneous activity react much faster than networks that are

and is best visualized with the help of bifurcation diagrank :
; ] . - completely silent, as many neurons are close to the thresh-
(e.g., Amit and Brunel (1997b); Brunel (2000b); Del Giu Id for emitting a spike and they can contribute to increasing

dice et al (2003)). These diagrams depict the fixed poinis_. T ; )
of the network as a function of the strength of the syna{:_x—p'dly the population firing rate (Amit and Brunel 1997a,b;

X ; ; i usi and Mattia 1999; van Rossum et al 2002). When the
tic couplings, as illustrated in Fig. 108. When the Synaptlé"lstribution of depolarizations is important, the mean field

couplings are not potentiated enough, only the spontane%%s . :

= : , proach requires the solution of a full Fokker-Planck equa-
activity state can b_e stable (the region to the left 01fWhen tion describing the time development of the population den-
synaptic strength is potentiated, thought of as the signatur;

of some learning process. a second stable fixed point & (Knight 1972a; Fusi and Mattia 1999; Brunel and Hakim
ning pro ' ¢ p 9; Nykamp and Tranchina 2000; Mattia and Del Giu-
be found at higher firing rate, for example the point marke

‘PA’. For yet stronger synapses (the region to the right lice 2002). In some cases, however, the transient dynamics
J"), the spontaneous activity state loses its stability and on?lan be simplified to the point that it mostly depends on the

the higher rate persistent activity is stable. Bistability caﬁ?g)ﬁ)gr g;ﬁdsiéaet'gggg response functirim;, s) (Mattia

occur for any value of the potentiated synaptic strength in o .
For more realistic synaptic currents, the study of tran-

the interval[J’,J"]: the larger this interval, the more robust RO .
the phenomenon. sients can be further simplified. If the network dynamics are

faster than the integration time constants of the synaptic cur-
rents, itis often safe to assume that the network is constantly
Stimulus-selective persistent activity has been put faat the equilibrium point of the Fokker-Planck equation (Re-

ward as a potential neural correlate of working memory 8grt et al 2003; La Camera et al 2004a). This means that
sensory stimuli in prefrontal, infero-temporal and posterid@r every synaptic input, we can replace the instantaneous
parietal cortex (Amit and Brunel 1997b). More specificallyiring rate with the firing rate given by the stationary re-
it is a model for delay activity, the neural activity observegponse function. For realistic conditions, the reaction time
between two relevant events in the absence of external stehnetworks of IF neurons (a few milliseconds) is shorter or
ulation (e.g., Fuster and Jervey (1981); Miyashita (1988¢mparable to the integration time constants of AMPA- and
Miyashita and Chang (1988); Funahashi et al (1989); Ko&hABAAa-, and much shorter than the dynamics of NMDA-
and Fuster (1989); Wilson et al (1993); Yakovlev et al (1998nd GABAg-receptor-mediated current (from tens to hun-
for a review see Fuster (1995)). There is some experimerfigds of milliseconds). This approximation is usually good
support to the idea that the stimulus-selective activity ofr signals that vary on time-scales of tens of milliseconds
served in infero-temporal cortex in 2-8 seconds delays d@?d this approach is similar to the one described for adap-
ing a delayed-matching-to-sample task is the result of tk&fion in Sec. 3.6. A similar approximation can be used in
collective attractor behavior of large populations of neurofige presence of short-term (Tsodyks and Markram 1997;
(Amit et al 1997; Yakovlev et al 1998). The use of the refsodyks etal 1998; Mongillo et al 2008) or long term synap-
sponse function to locate these attractors can be appliedi€oplasticity (Del Giudice et al 2003; Amit and Mongillo
networks with an arbitrary number of sub-populations (Am#003). For faster inputs a different approach is required and
and Brunel 1997b; Mascaro and Amit 1999; Brunel 20004}, reviewed in Giugliano et al (2008).
also when the sub-populations share neurons coding for theThese and other examples show that the stationary re-
same subgroup of stimuli (La Camera 1999; Curti et al 2004ponse function, which by definition is supposed to char-
and can be generalized to include firing rate adaptation walbterize only stationary network states, can also be used to
the procedure of Sec. 3.6.2. infer some of the dynamic behaviors of networks.
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4.5 Decision making in cortical circuits tial facts regarding the experimental and fitting procedures.
The reader is referred to the original papers for a more com-

In the case of ambiguous or barely perceivable sensory stipnehensive account (Rauch et al 2003; Giugliano et al 2004;

uli, we are sometimes required to make a decision about {teeCamera et al 2006; Arsiero et al 2007).

identity of the stimulus and generate a particular percept.

Such a process is similar to the selection of an action in re-

sponse to the occurrence of one or more events and it is SP & . tal and fitti d

part of the cognitive processes related to decision making: xpenmental and fiting procedures

In recent models, each possible decision has been associgtted ok t modelled after Eq. 1 iniected

with a particular attractor of the neural dynamics, represel Nl 1N VIVO-IIKE current mocelled aiter £q. 1 was injecte

ing e.g. perceptual decisions (Wang 2002; Wong and Wa%c_’ the soma of the neurons in the current clamp configu-

2006), decisions about actions in response to visual stim ion, and the membra_ne potential was feco“jed. from the
ne electrode. Recordings were performed 85°C in all

(Fusi et al 2007), and rule-based decisions such as those . T
gtudles apart from the case of cultured neurons (Giugliano

curring in cognitive tasks like the Wisconsin Card Sortin
Test (Rolls and Deco 2001). The same approach can be u Eal 2004), where they were performed at room tempera-

in general models of working memory in which every mentdfe- Tfseﬂ detnd;!tes were lejt to 3?59“? ﬂ:a;[jthe onl¥ source
state is an attractor of the neural dynamics and it representy éf?lpu . uctua |c?nts camte IrO:‘nth e |njetc ed tcurren : St(:has
particular disposition to behavior (Rigotti et al 2008). Reld? allow for complete control of the input and to prevent the
vant events or sensory stimuli trigger a competition betwe fneration of non-linear dendritic events like calcium spikes
the neural populations corresponding to different perce lrsarkum etal 1999, 2004). The correlation length of the cur-

or actions. The competition results from the recurrent sef€t T in EG. 1, was between 1 and 10ms (mostly 1ms). The

excitation of each decision population and the mutual SuBgrameterm ands were chosen randomly_ for each record-
, from a pre-defined pool of values which had been pre-

pression due to inhibitory neurons. The stable fixed poid&g v sh 1o drive the t ¢ ithin their oh
of the dynamics correspond to particular decisions that é’l’%’us. yIS own %. rlvethe arge neutrontst| In h elr”ptr?/s—
mutually exclusive. As in the case of stimulus-selective di'0gical range. Given tha was constant for each cell, the

lay activity, the set of equilibrium points corresponding ggurrentwas characterized by the p@it, s }. The same pair

the attractors can be studied with a mean field approach ltjsg.?. tfrorptgne to f|\(/j(_e times ff’r eachfcell, t% control er
are related to the properties of the single-neurons’ respoﬁ g stability of the recordings (in terms of mem rane resis-
functions. tance, spike shape, and firing rate). Each repetition, how-

Other potential applications of the concept of respon tir’ used a rt1ew re?llzat;oglof the r%'_‘dom ncﬁsgj Eq. 1. .
function are related to the role played by gain modulati € percentage of unstable recording was above a given

(Salinas and Thier 2000; Salinas and Sejnowski 2001; Lar (rj shglg, t?etﬁell Wasl dchaAwed uns(;ab!te e}nd twf' not COTj'
et al 2004), balanced synaptic inputs (Burkitt 2001; Burkift Sred for furtner analysis. A second criterion to be passe

et al 2003), and neuromodulators (Brunel and Wang 20 %S the qua3|—stat|or_1§r|ty(§)f the _re?ptc_)nse. T?Et} f'”nlg rateﬂg)f
Thurley et al 2008) in the dynamics of cortical circuits. neuron was considered quasi-stationary It its value in the
last second of stimulation was within a given range of the

firing rate in the first second of stimulation, despite firing
rate adaptation (present also in stable recordings). The dura-
5 The response function of cortical neurons tion of each recording was of the order of seconds, from a
minimum of 4 to a maximum of 60 seconds, to ensure that
The applications of the mean field approach and the conctp response would settle into its quasi-stationary regime.
of response function reviewed in the previous section delost recordings used durations of the order of 10 seconds.
pend on several assumptions; in particular, on the assuriipsome cases, the duration was adaptively adjusted depend-
tion that the neurons can be described as IF neurons, omaton the firing rate of the neuron. For stable cells, repeti-
least that their response can be accurately predicted by tiibas acros§m,s } pairs (when available) were averaged,
response function of IF neurons. This warrants investigand the average was taken as the mean firing rate in re-
tion of whether or not this fundamental assumption is casponse to the injected current. Given the small number of
rect. Is the response of cortical neurongrteivo-like input repetitions, and the fact that at small firing rates the Gaus-
current well described by the response function of IF nesian model of random errors does not hold for probabilities,
rons? If yes, which type of cortical neurons? Which type dfie confidence interval around the measured firing gafe,
IF neuron? And how accurate the predictions of the theomas not given by the standard error of the mean. Instead, a
are? Recently, quantitative answers have been given to albofomial model for the emission of a spike in a tiny interval
these questions in rat cortical neurons of the pyramidal awds used to derive an adaptation of the Wilson ‘score’ equa-
fast-spiking (FS) type in layer 2/3 (L2/3) and layer 5 (L5)ion (Meyer 1965; Brown et al 2001) with a limiting proce-
of somatosensory cortex (SSC), in rat pyramidal neuronsdfre on the duration of the binning interval (La Camera et al
L2/3 of medial prefrontal cortex (mPFC), and in neurong006). The theoretical adapted stationary response function
from dissociated cultures of rat neocortex. In this sectioft.q. 13 with® given by Eq. 7) was fitted to the experimental
we review briefly the main results, starting from the essequasi-stationary firing rates, via a least-square minimization
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Fig. 11 Response functions of FS neuron8est-fits of the adapted LIF response function, Eqg. 13 withiven by Eq. 7, to the experimental
response of four FS interneurons from L&) @nd two interneurons from L2/Bj of rat SSC. Symbols are experimental quasi-stationary firing
rates, full lines are the model fits to the data. The output firing rates are plotted as in Fig. 4, théhranged from 10 to 200 pA (see Fig. 3 of

La Camera et al (2006) for details). The best fit parameters are reported in the left top corner of each plot (the average best fit parameters across

fitted cells are reported in Tab. Z.is the probability that &2 variable with the same number of degrees of freedom is larger than the best-fit

one. A fit was accepted P > 0.01.d is the absolute discrepancy, i.e., the average (across all points) absolute difference between the measured

and the theoretical frequencies of the best-fit curves. Used and modified with permission from La Camera et al (2006). Gy2@dfhby
the American Physiological Society.

fih_£xP 2 iments (Rauch et al 2003; Giugliano et al 2004; La Camera

of x> =i | 77 , where i and " are the theo- o 2006; Arsiero et al 2007). For this reason, and given
retical and experimental firing rates, respectively, and tHeat 7 was extremely small 1 ms) in most cases, Eq. 7
sum runs over all data points. Minimization was achieveias preferred in fitting the theory to the data.

by tuning the neuron parameters in Eq. 7 and the adaptation

parameter of Eg. 13 with a Montecarlo procedure. Since

6,V andC are not independent parameters (in E_q. 7_ they, Fast-spiking neurons

appear always in the for@8 andCV;), 6 was set arbitrarily

to 20 mV in all studies. Finally, notice that due to the usgyg eynerimental response functions of rat FS interneurons

of finite (albeit small)r; for the current Eq. 1, the correcteqn_ L2/3 and L5 of SSC of the rat are shown in Fig. 11 (sym-

version of the response function given in Brunel and Sergb|s)_ The response functions in the two layers were only

(1998); Fourcaud and Brunel (2002) should be used in plaggyyy, different. Up to all frequencies which are sustain-

of Eq. 7 (see also Sec. 3.4). However, this correction predi(é e by the neuron, the response function was very well de-

a phenomenon, the crossingfelf curves with differenos eiipeq py the adapted response function of the LIF neu-

for large input current, which was not observed in the expegs, i o Eq. 13 with® given by Eq. 7 (lines in Fig. 11)
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(La Camera et al 2006). A discrepancy was observed be-
tween the effective parameters of the neurons (i.e., the best- 40
fit parameter values of the capacitance and membrane time_
constant) and the same parameter values estimated more di£ 20 o
rectly through a classical impulsive- and step-protocol pro- & i
cedure. This means that, for the IF neuron to reproduce the=
response of real neuronsffectiveparameters must be used w
(see Tab. 2). Such parameters compensate for the lack ofy
biophysical detail and other simplifications made in IF neu- E
rons (e.g., real neurons are not point neurons nor are electros, 49

tonically compact). =
20 s asts
/A)/ <t
0— ﬁAAA—LA—A—A—

0 400 800 1200 0 400 800 1200

firi

5.3 Pyramidal neurons

5.3.1 Pyramidal neurons from the somatosensory cortex of
rats mean current [pA]

The response function of pyramidal neurons from L5 of r&tg. 12 Response functions of rat medial prefrontal cortexRe-
SSC was well described by the response functions of tpRense function and IF model reduction of four mPFC L5 pyrami-

al neurons. Fitting procedure and plots as in Fig. 11. The model
LIF neuron (see Rauch et al (2003) for examples). A Serqéasponse function is defined by the self-consistent solutiorfi ef

ond type of IF neuron, the linear IF neuron with a floolpm — ot 5, 1,(s)), where @ is the response function of the LIF

(Abbott and van Vreeswijk 1993; Fusi and Mattia 1999heuron, Eq. 7, and:(s/) = T + w/s is a fluctuation-dependent re-
also gave a good description (Rauch et al 2003). This mod#@Ftory period. Thew-dependent model was used to account for the
yergence of the response curves at large input current for different

neuron, however, described less well the response funCtzfaBmplitudes of the input fluctuations (from right to leét,= 50, 150

of cultured neurons (Giugliano et al 2004)), and were nQtq 300 pA). Reproduced and modified with permission from Arsiero
suited to to describe the response of FS neurons (La Cadtal (2007). Copyright©) 2007 by the Society for Neuroscience.

era et al 2006). The effective parameters of the LIF neuron
were different from, and not correlated with, the directly-
estimated parameters of the real neurons in acute slices, but

were rather close to the directly estimated parameters in cul- o=0 10

tured neurons. This could be explained by the compactness

and smaller size of the cultured neurons, making the point- / 5

approximation implicit in the model work better (this argu-

ment, however, does not seem to hold for FS n_e_urons). Pyra- 01 03 05 0 10 20 30 43 50
midal neurons of the SSC were not very sensitive to the ef- A

fect of input fluctuations, especially if compared to FS neu- @ [ms pA]
rons and pyramidal neurons of the mPFC. A more complete
comparison is given in a later section.

0 10 20 30 40
# cells

o=28 o =50

firing rate [spike/s]

5.3.2 Pyramidal neurons from the medial prefrontal cortex
of rats

0 10 20 30 40

 ——

0.1 03 05 01 03 05
mean current [nA]

Many pyramidal neurons in L5 of the rat mPFC (Fig. 12,
symbols) displayed a sensitivity to input fluctuations far greater
than predicted by the theory developed in Sec. 3 (cfr. Eq. 7
and Fig. 7) resulting in a saturating and 'divergent’ responggy. 13 Role of parameterw in the high output rate regime of neo-
function (Arsiero et al 2007). These neurons retain a largertical neurons. Pictorial response functions plotted as in Fig. 4 for
dependence on input fluctuations well above threshold afftee different values &f (in each plot) andw (in different plots). Top

; ; s ; rignt: w's best-fit values in pyramidal neurons from L5 of mPFC of the
in fact, close to saturation, where an additional mcreaserg“(See Fig. 12 for a few examples). The largeithe more divergent

the average input will not cause any increase of the outRid response curves at large input current for different amplitudes of the
firing rate. The resulting shape of the response functioniigut fluctuations. Reproduced and modified with permission from Ar-
still convex near threshold, but divergent in the high ousiero etal (2007). Copyrighf©) 2007 by the Society for Neuroscience.
put rate range (Fig. 12). The phenomenon is possibly due to

after-hyperpolarization currents (Higgs et al 2006) as well

as to the slow inactivation of sodium channels (Arsiero et al

2007). In support of this hypothesis, the response function
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Table 2 Best-fit parameters of the adaptive LIF neuron to the experimental response functions of neurons from several areas of rat neocortex.
Parameters values are reported as me&D. Parameters are as defined in Sec. 8. &aembrane time constar@@; membrane capacitancé,

reset voltage after spike emissiap; absolute refractory periodx is the adaptation parameter defined in Eq. 13, @ns the divergence factor

defined in Sec. 5.3.2. The threshold for spike emissirwas set arbitrarily to 20 mV in all cases (see Sec. 5.1 for details). A positifce

the mPFC neurons means that the response at large input current differed for different amounts of input fluctuations, see the text for details. The
w-dependent model was not used in the other cases (-).

FS, L5 FS, L2/3 PYR, L5 PYR, L5 (mPFC) cultured

a [pAs] 0.8+£05 10+09 108+6.3 39+25 6.4+45
7, [ms] 14+21 33£26 94+6.5 125+4.2 230+ 226
V; [mV] 8.8+94 53+113 99+102 13+43 106+14.1
T [ms] 75+15 83+36 263+132 301+113 301+214
C [pF] 80+13 140+ 48 530+ 290 2851+1112 865+ 56.6
w[ms/pA] - - - 143+197 -

5.4 Comparison among the response functions of pyramidal

200 and FS neurons

L2/3, FS

Fig. 14 shows the comparison between the response func-
tions of pyramidal and FS neurons. In each class, the re-
sponse function was obtained by using the average best-fit
parameters across cells reported in Table 2, and three values
of 5 were used in each case to show the dependence on the
input fluctuations. The ranges of both the average and the
L5. PYR L5, PYR variang:e of the cu;rent cover the aqtual physiolqgical ranges
o0 PEC found in the experiments. The maximal output firing rates in
\)\&0‘ m——— figure are the maximal firing rates sustainable by the neurons
0 ¢ . ‘ ‘ ‘ j during the experiments. Thus, Fig. 14 provides at a glance a
0 02 04 06 08 1 12 comparison of the ‘average’ response function of neurons
mean current [nA] from different preparations, together with their physiologi-
cal range of operation in responseimovivo-like input cur-
Fig. 14 Response functions of pyramidal and FS neuron€ompar- rent. ) o ]
ison between the quasi-stationary response functions of FS neurons oflt can be noted that the maximal firing rate sustainable
L5 and L2/3 of SSC (La Camera et al 2006), pyramidal (PYR) neurobyy FS neurons is much larger than in pyramidal neurons
from SSC (Rauch et al 2003) and mPFC (Arsiero et al 2007), and dis;, 200 spikes/s vs~ 50 spikes/s). Moreover, FS neurons

sociated cultures of rat neocortex (Giugliano et al 2004). The ste -
state responses were obtained using the average best-fit paramet YE a much larger response to fluctuations at rheobase, and

Table 2 withs =0, 0.1, and 02 nA, and are plotted as in Fig. 4. Used@ smaller effectiveC, T andt; (Table 2). Overalll, these re-
and modified with permission from (La Camera et al 2006). Copyrigsults imply that FS neurons respond faster and to a much
(© 2006 by the American Physiological Society. higher extent to input changes than pyramidal neurons.

150¢

100¢

50+

firing rate [spikes/s]

5.5 Variability of the inter-spike intervals

of a Hodgkin-Huxley model endowed with slow inactivaThe coefficient of variability (CV), defined as the ratio be-
tion of sodium channels exhibits the same properties (Aween the standard deviation and the average of the ISls,
siero et al 2007). The LIF neuron endowed with a refractoryas used to assess the spike train variability (Stein 1965;
period that readjusts its value depending on the varianceR#ich et al 1997; Gabbiani and Koch 1998; Shadlen and
the input is a minimal spiking model able to capture this ph&lewsome 1998; Kostal et al 2007). Strictly speaking, this
nomenon. In such a model, the absolute refractory time maeasure can be meaningfully applied only to stationary or
sults from the sum of two contributions: a constant term, quasi-stationary spike trains (see Sec. 2.2), which is the case
and aternmw/s, decreasing witls;: 7, (S) = T, + w/s. The we consider in this article. Two typical cases for FS interneu-
effective refractory period is thus smaller for larger fluctuaens are shown in Fig. 15 for one L5 (left) and one L2/3
tions, increasing the firing rate in response to the same mégght) interneuron, together with the prediction of the LIF
input, as shown in Fig. 13. The adapted response functimmodel neuron whose parameters were tuned to fit the fir-
for this model fits well the experimental functions measureadg rates only (full lines). The variability of FS neurons are
in mPFC (Fig. 12) and allows for several predictions to bmontrasted in the same figure with the typical variability of
made about the behavior of networks of mPFC neurons (Aryramidal neurons from SSC and mPFC (dashed lines). The
siero et al 2007). comparison shown in the figure confirms the larger sensi-
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Fig. 15 Coefficient of variability (CV) of pyramidal and FS neurons. Comparison of CV of FS (full lines and symbols) and pyramidal

(PYR) neurons (dashed lines) from SSC (left) and mPFC (right) of the rat. Symbols (FS) and dashed lines (PYR) are experimental data for
a representative neuron in each class; full lines are the best fits of the CV of the LIF model neuron to the data from FS neurons (symbols).
CV values are plotted as a function of the neuron’s output rate at constant magnitude of the input fluctyatiatis (from bottom to top):

s (FSL5) = 20, 50, 100 and 150 pAs (FS,L2/3) = 10, 50, 100 and 150 pAs (SSCPY R = 50, 150 and 300 pAs;(mPFCPY R = 50, 150

and 300 pA. Different fluctuations’ ranges were used in different preparations due to different physiological properties of the neurons (note the
different scales for the horizontal axis). In the fitting procedure, the neuron parameters were tuned to match both CV and firing rate for all data
points, i.e., for al{my,s } pairs used for each fitted cell. For both fitted FS cells shown here, the adaptive LIF neurag wiB00 ms was used.

Inset segment of the voltage trace for the point indicated by the arrow (calibration bars: 100 ms and 20 mV). The CV of this point is enhanced

by the “stuttering” behavior of the spike train and can not be captured by the model. Used and modified with permission from (La Camera et al
2006). Copyright© 2006 by the American Physiological Society.

tivity to fluctuations in FS neurons, compared to pyramiens, but it has often been considered too simple to describe
dal neurons, implied by the shape of the response functidghe rich dynamics of real neurons.

shown in Fig. 14. Although the variability of mPFC pyrami-  Results obtained in the last decade, however, have shown
dal neurons is higher than in SSC, and contrary to the effeght the IF neuron is better than expected and quite success-
on the firing rate (Sec. 5.3.2), the sensitivity of the CV to thg| at describing many of the known dynamical properties
input fluctuations is comparable in SSC and mPFC (dashggdt are relevant for the collective behavior of networks of
lines in both panels). neurons. The spike response of neurons of different corti-
cal areas can be reproduced quantitatively by IF models at
the level of the first and second moment of the statistics of
ISIs, as reviewed in this article, and at the level of the timing

6 Discussion of individual spikes (Jolivet et al 2006), with a remarkable

degree of accuracy.

The complexity and heterogeneity of cortical circuits (Gupta There are at least two reasons for this success. The first
et al 2000; Elston 2002; DeFelipe et al 2002; Douglas ande is that simplified neuron models are effective models, in
Martin 2004; Ohki and Reid 2007) calls for guiding printhe sense that they are not meant to reproduce the rich exper-
ciples that allow us to simplify the models of the buildingmental phenomenology of the neuronal dynamics, but are
blocks of the brain (neurons and synapses, for examplégsigned to capture only the single neuron properties that are
and to understand the collective behavior of a large numelevant for a particular collective behavior. From this per-
ber of interacting cells. Given the difficulty of the task, thepective, the guidance provided by the mean field approach
use of simple, but appropriate, spiking models is necessdrgs played an important role. The second reason is that effec-
Effective minimal models of neurons should be able to getive neuron models are entirely determined by a very small
erate trains of spikes that can be compared with those olnmber of independent parameters. With the current experi-
served in the brain. The IF model, pioneered by Lapicqumeental techniques, itis prohibitive to measure directly all the
(1907, 2007) and rediscovered by Stein (1965) (see e.g. Adarameters that are needed for a detailed conductance-based
bott (1999); Brunel and van Rossum (2007)), is widely usedodel of the Hodgkin-Huxley type. Thus, one needs to make
to analyze the behavior of a large number of interacting neassumptions about the parameters that are not measured di-
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rectly. These assumptions are usually based on other expetit D, Brunel N (1997a) Dynamics of a recurrent network of spiking

imental results in which the average values across severalneurons before and following learning. Network: Computation in

; ; +,Neural Systems 8:373-404
neurons are measured. Given the high level of hetemgen%!;%t D, Brunel N (1997b) Model of global spontaneous activity and

of neurons, averaging often fails to describe what happens i’ ¢ structured (learned) delay activity during delay. Cerebral
a particular cell (Golowasch et al 2002), whereas simplified Cortex 7:237-252

models in which all parameters can be measured directly &veit D, Tsodyks M (1991a) Quantitative study of attractor neural net-
more successful. Simplified models with a small number of work retrieving at low spike rates: I. Substrate-spikes, rates and

t Iso inst tal to study the het .. neuronal gain. Network 2:259-273
parameters are also instrumental to study the heterogengiy; p, Tsodyks M (1991b) Quantitative study of attractor neural net-

of the functional properties of the cells. M0d9|5_ with a large work retrieving at low spike rates: Il. Low-rate retrieval in sym-
number of parameters are often under-determined, i.e., theymetric networks. Network 2:275-294

reproduce the accessible experimental data equally well witfit D, Fusi S, Yakovlev V (1997) Paradigmatic working memory
. (attractor) cell in IT cortex. Neural Conmputation 9:1071-1093

dlﬁerent sets of parameters. In this Ca_se, a study of the VoLt DJ, Mongillo G (2003) Spike-driven synaptic dynamics generat-
ability across neurons would be complicated by the presenceing working memory states. Neural Computation 15:565-596

of a variance component due to the ambiguity in the paramrsiero M, Liischer HR, Lundstrom B, Giugliano M (2007) The Im-
eter estimation. Instead, the effective reduction of cortical Ppact of Input Fluctuations on the Frequency-Current Relationships

- ; i« Of Layer 5 Pyramidal Neurons in the Rat Medial Prefrontal Cortex.
firing patterns in terms of IF neurons (Sec. 5 and Table 2) is I Neurosci 27-3274-3284

rather sensitive to small differences in the fitted cells, and agksnga J, Herz A (2003) A universal model for spike-frequency adap-
ditional differences can be revealed by comparing the model tation. Neural Computation 15:2523-2564
reductions to different types of IF neurons (Rauch et al 2003@aitenberg V, Schiiz A (1991) Anatomy of the cortex. Berlin:

Giugliano et al 2004; La Camera et al 2006). Springer-Verlag

. . . . . grown LD, Tony Cai T, DasGupta A (2001) Interval estimation for a
There are also limitations in the use of highly simplified  pinomial proportion. Statistical Science 16:101-133

neuron models. More detailed models can give indicatioBginel N (2000a) Dynamics of sparsely connected networks of exci-
about how the neuronal properties are affected by neuro- tatory and inhibitory spiking neurons. Journal of Computational

e . ; Neuroscience 8:183-208
modulators .and by mo.dlflc.atlons In 1onic Concem.ratlons th@Funel N (2000b) Persistent activity and the single &élicurve in a
are not easily accessible in experiments perforinedtro cortical network model. Network 11:261—280

(Meunier and Segev 2002). Detailed models can also S@gunel N, Hakim V (1999) Fast global oscillations in networks of
gest how the dendritic structure and the ion dynamics can af- integrate-and-fire neurons with low firing rates. Neural Compu-

feti ; _ tation 11:1621-1671
]:jeCt thedStSatIStICSZOOfot;le total Sytrlaptlc Cu:r.er.]t (?.ee eg ((jLO runel N, van Rossum M (2007) Lapicque’s 1907 paper: from frogs to
on and Segev 2001)) (somatic current injection is admit-" o ate-and-fire. Biol Cybern 97:337—339
tedly a very artificial way of stimulating a neuron). On th@runel N, Sergi S (1998) Firing frequency of leaky integrate-and-fire

other hand, there is unfortunately no standard model of cor- neurons with synaptic currents dynamic. J Theor Biol 195:87-95
tical neuron. Detailed models reproduce specific phenoﬁfunel N, Wang XJ (2001) Effects of neuromodulation in a cortical

. PR : _ network model of object working memory dominated by recurrent
ena and give useful indications about the underlying mech inhibition. Journal of Computational Neuroscience 11:63-85

anisms, but they rarely produce predictions of new phenoguiitt A (2006) A review of the integrate-and-fire neuron model: 1.
ena, similarly to what happens for highly simplified models. Homogeneous synaptic input. Biol Cybern 95:1-19

Recent discoveries of new phenomena like adaptation of f&gtkitt AN (2001) Balanced neurons: analysis of leaky integrate-and-

il e ; . fire neurons with reversal potentials. Biol Cybern 85:247-255
spiking neurons on '9”9 time-scales (Reutimann et al 20. ‘hrkitt AN, Meffin H, Grayden DB (2003) Study of neuronal gain in
Descalzo et al 2005; La Camera et al 2006) and the ability 5 conductance-based leaky integrate-and-fire neuron model with
of prefrontal neurons to act as integrators (Winograd et al balanced excitatory and inhibitory input. Biol Cybern 89:119-125
2008) were obtained in experiments and were not predictéabocelli R, Ricciardi L (1971) Diffusion approximation and first pas-

_Af _ ; sage time problem for a model neuron. Kybernetik 8:214-223
by the state-of-the-art detailed neuron models. Connors B, Gutnick M, Prince D (1982) Electrophysiological proper-

ties of neocortical neurons in vitro. J Neurophysiol 48:1302-1320
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