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Abstract The response of a population of neurons to tim@bserved rhythmic activity of cultures of neurons. We then
varying synaptic inputs can show a rich phenomenologshow how cortical neurons adapt on multiple time-scales in
hardly predictable from the dynamical properties of the merasponse to input with stationary statisticsvitro. Next,
brane’s inherent time constants. For example, a networkweé review how it is possible to study the general response
neurons in a state of spontaneous activity can respond gigeperties of a neural circuit to time-varying inputs by es-
nificantly more rapidly than each single neuron taken imtimating the response of single neurons to noisy sinusoidal
dividually. Under the assumption that the statistics of thmurrents. Finally, we address the dendrite-soma interactions
synaptic input is the same for a population of similarly ben cortical neurons leading to gain modulation and spike
having neurons (mean field approximation), it is possiblrsts, and show how these effects can be captured by a two-
to greatly simplify the study of neural circuits, both in theompartment integrate-and-fire neuron. Most of the experi-
case in which the statistics of the input are stationary (reental results reviewed in this article have been successfully
viewed in La Camera et al 2008) and in the case in whichproduced by simple integrate-and-fire model neurons.
they are time-varying and unevenly distributed over the den-

dritic tree. Here we review theoretical and experimental re-
sults on the single-neuron properties that are relevant ®fntroduction
the dynamical collective behavior of a population of neu-

rons. We focus on the response of integrate-and-fire neurqfisyrons in the intact brain of the mammalian cortex are
and real cortical neurons to long-lasting, noisyyivo-like ~ griven by the synaptic current generated by thousands of
stationary inputs and show how the theory can predict tBgher neurons. As their activity is determined by the spikes
of large populations of neurons, it is important to study and
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spontaneous activity will exhibit reaction times that are sighe field of Neuroscience with a successful reductionist ap-
nificantly shorter than the membrane time constant (see, egggach is further examined in the Discussion.

van Rossum et al (2002)), because the depolarizations are

distributed in the whole interval between the resting poten-

tial and the threshold for spike emission. As a consequenie], Response function of the leaky IF neuron

some of the neurons are ready to generate an action potential

quickly (order of one millisecond) in response to a stimuvost of the material reviewed in this article is based on, or
lus. Other single-neuron properties, like adaptation on timis-related to, the response function of the adaptive leaky IF
scales of hundreds of milliseconds to seconds, are also re@dF) neuron, reviewed in detail in the companion article
ily reflected by the population response. The extension (@fa Camera et al 2008), to which the reviewer is referred
mean field approach to include non-stationary properties ¢ a more detailed exposition. We report here the main for-
the focus of this review. mulae for convenience. The LIF neuron is completely char-

We start by presenting an example where the quasi-sta@i6if4iged by its membrane potentidl, which evolves ac-
response properties of single neurons allow one to mak@ding to
guantitative predictions on the rhythmic activity exhibitegjy V—Vieg |
by networks of dissociated neurons (Giugliano et al 200 =-———*+2x 1)

T C’
We then show how single neurons and populations of neu-.. . o o .
rons exhibit firing rate adaptation on multiple time-scald{il & thresholdd is reached. At this time, a spike is said

(La Camera et al 2006), even in response to inputs Wit be emitted an¥ is clamped to a reset potentMl for a

stationary statistics. Studies of the population responser‘?(graCtory periodr;, after which motion resumes according

fast-varying inputs are reviewed next. In such a case, fifeEd: 1.Vies is the membrane’s resting potentiélis the

full mathematical machinery of the so-called “populatioH"“':'.mtbrane ca%q0|tanqe;tRC, Wh?"?l_R 1S thei rtnetrﬂbrang
density approach”, based on the solution of a Fokker-Plaffic!Stance, andis an input current. 10 émulate th€ noisy

equation, would in general be needed (Knight 1972; Aljiput current target_ing Neuros vivo, th_e cu_rrenl is qu' .
bott and ,van Vreeswijk 1993: Treves 1993; Fusi and’M led as a stochastic process. In the diffusion approximation

tia 1999; Brunel and Hakim 1999; Nykamp and Tranchi ansky and Sato 1999; Richardson and Gerstner 2005), the

2000). However, recent studies on simple integrate-and-1‘§‘r'l1.‘bthreShOId dynamics of the membrane potential obeys the

(IF) model neurons revealed that it is possible to prediﬁEOChaStiC differential equation of the Ornstein-Uhlenbeck
the population response to an arbitrary time-varying ian{ocess (Tuckwell 1988),

by knowing the response of single neurons to the sinusoid V —Vies

components that make the input signal (Brunel et al 2001 =~ ¢ dt + pdt + o& v, ©
Fourcaud and Brunel 2002). The single-neuron response

be estimated in the case of IF model neurons, or it can be

measured directly for real cortical cells (Kondgen et al 2008) = m; /C, o=V2r's/C €)

Because of the features of sodium-mediated action poteps yhe average and standard deviation in unit time of the
tials, cortical neurons are surprisingly good at relaying faﬂembrane voltage, angl is a Gaussian process with flat

temporal information, while dynamical response attenuatigpectrum and unitary variancey and 2 are the average

and distortions affect t.he mput-ou_tput transfer propernes_ OV, the variance of the synaptic input current, gf&F’ is
for very fast (3 5ms) input transients. In all these studieggctor to preserve units.

IF neurons with firing rate adaptation and other small mod- e stationary response function of the model neuron de-

|f|cat|qns could prechct quantitatively many aspects of thg,eq by Eq. 2, with spike and reset mechanisms as specified

behavior of real cortical neurons. above, is by definition the output firing rate as a function of
In the last section we turn back to the static properti¢gonstantyn, ands;, and is given by

of the neuronal response function to show how it is mod-

ulated by the spatial input distributions along the dendritic

tree. We review the experimental results that show how di®(H 73 T)

tal dendritic input can modulate in a non-linear fashion the

somatic stationary response function (Larkum et al 2004yhere the “hat” operation applied thandV; is defined by

This modulation is due to an interaction between somafic= (z— ut)/0+/7. In the presence of firing rate adapta-

action potentials and dendritic calcium spikes, that under ttien, the adapted firing raté can be obtained as the self-

right conditions can lead to a further burst of somatic actiaonsistent solution of

potentials (Larkum et al 1999). Despite the complexity of o(m —af,s) )

these mechanisms, a simple somatic IF mechanism coupled ! S,

with a dendritic compartment can capture the experimentahere the parameter quantifies the strength of adaptation.

phenomenology and explain the gain modulation induced e derivation of Eqg. 5 from a minimal model of firing rate

dentritic inputs. The extent to which simple spiking modadaptation, and the conditions for it to hold valid, are pre-

els can capture these complex phenomena and, thus, progieieted in detail in La Camera et al (2008).
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Fig. 1 Network activity emerging in dissociated cultures of neurons, detected by substrate arrays of extracellular microelectrodes (MEAS). The
raster plot (upper panels) indicates the occurrence of spikes detected by 7 substrate electrodes and, below, the resulting population firing rate
(scale bars: 60 sec, 10 Hz). Results from 4 MEAs experiments were compared to computer simulations of small recurrent networks of IF neurons,
whose excitatory synaptic coupling was increased in the direction of the arrows. Numbers associated with each markers help identifying the same

experiment in both plots, reporting the coefficient of variation versus the mean, for the distribution of the interburst intervals (IBI) as well as for
the population bursts (PBd). Used and modified with permission from Giugliano et al (2004). Coggrigpd4 by the American Physiological
Society.

2 Rhythmic activity and population bursts the spontaneous rhythmic activity of Fig. 1 (Giugliano et al
2004). To mimic the experimental conditions, where the ac-
Cultures of neurons from rat neocortex exhibit spontaneodi®n of inhibitory neurons is blocked by appropriate selective
temporally patterned, network activity (Fig. 1). Neurons efghemical antagonists (Giugliano et al 2006), no inhibitory
zymatically dissociated from embryonic (rat) neocortex cdfput was considered in the model network. The simulated
be culturedn vitro and maintained under healthy condition§€twork displayed spontaneously alternating intervals of asyn-
for up to several months in an incubator (Potter and Dghronous activity at low firing rate, and bursts of action po-
Marse 2001). Neurons remain electrically active (Kamiokgntials synchronized across the entire population (Fig. 2).
et al 1996; Van den Pol et al 1996), mature and contind@ obtain this behavior, a modest background synaptic activ-
deve|0pinmx ViVO, and Spontaneous|y reorganize into fundty, meant to parallel the Spontaneous release of neurotrans-
tional synaptic networks (Nakanishi and Kukita 1998) ovépitter observed in mature and immature cultures, was suffi-
the 2D surface of a Petri dish, or of an array of substragéent. Note that individual model neurons were not intrinsi-
micro-electrodes (Giugliano and Martinoia 2006). As osally bursting cells; instead, the synchronous emergence of
posed to brain slices, where spontaneous activity is larg@jef epochs of intense firing rate were caused their recur-
abolished by the deafferentation following acute tissue clight synaptic interactions. The spatial location, from which
neuronal cultures spontaneously display a variety of colle@network-wide synchronization event originates, varied ran-
tive spiking states (Wagenaar et al 2006; Marom and SKmly, consistent with the lack of a spatial structure in the
haf 2002). Thus, they offer a unique framework for identPetwork, and in keeping with the experimental findings (Fig. 1)
fying the response properties of individual neurons relevaftamioka et al 1996; Giugliano et al 2004). Varying the av-
to the collective dynamics of the whole network. In this se€rage synaptic coupling strength and the overall number of
tion, we review the application of the mean field approach fynaptic connections mimicked different stages of in vitro

the analysis of patterned rhythmic activity in those networiynaptogenesis and development (Kamioka et al 1996). For
(Giugliano et al 2004). very weak coupling, the model network generated no syn-

chronous burst of activity, in agreement to what observed

during the first 5-7 days after plating (Giugliano et al 2006).

2.1 Recurrent networks of IF neurons reproduce bursting For larger but still weak coupling, the network generated rare
activity and unpredictable population bursts which became more fre-
) guent and regular as soon as the excitatory synaptic cou-

Small recurrent networks of 1601000 IF excitatory neu- p||ng was increased (F|g 1) The duration of the Synchro_
rons, incorporating the model parameters identified in thg¢zed spiking epochs had comparable statistical properties

single-neuron response function experiments reviewed Lajg-8fulations and experiments (Giugliano et al 2004).
era et al (2008) (see their Table 1), were able to capture
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Fig. 2 A recurrent network, constituted by 100 excitatory identical IF model neurons, shows a spontaneous transition from a stable resting state

fres t0 anotherfy, ¢ due to the finite-size fluctuations. For the sake of illustration firing rate adaptation was not included=(Dén all neurons,
see Eq. 5), so thdfy,« is a stable stationary state of the network (scale bars; 200 ms and 25 Hz/50 mV). The second triapsitienf et

is induced by transiently reducingy (upper continuous trace). Used and modified with permission from Giugliano et al (2004). Cogright
2004 by the American Physiological Society.

2.2 Mean field analysis of slow rhythmic activity However, in the presence of firing rate adaptation, the
state pointfy,¢ may destabilize after the neurons undergo

In Fig. 2, the network flips between two states of activity eadaptation (Fig. 3B). To understand why this may occur, no-
ther because of a strong enough finite-size fluctuation, or biee that in the presence of adaptation the fixed points of the
cause of the application of a transient stimulus. However, iietwork are given by the solution of the self-consistent equa-
the presence of firing rate adaptation it is possible to obtdion

an alternative sequence of flips between the two stable states

without the application of transient stimuli. We show heré = ® (m(f) —af,s(f)), (8)

how it is possible to predict this phenomenon by using ttLe . Lo
single-neuron response function in the mean field approa ee Eq. 5). When_‘ is very small, like in Stateff.“ﬂ’ the .
apting term-a f is also small, and the properties of this

In the mean field approximation, the total synaptic cuf: . : ; .
rent received by a generic model neuron is Gauss—distribut%t(‘j‘,te do not change appreciably. Things are different in the

with its steady-state mean and variance given by burge State, however, as shqwn in Fig. 38. Ir_1tuitive|y, _while
freg remains a stable solution of Eq. &« iS a solution
m(f)=cNJIft+my,  §2(f)=cNJI?*fr/2+s5. (6) only transiently, until adaptation has fully built up. This ex-
. - ) plains in simple terms the mechanisms behind the suppres-
Here, f is the mean firing rate of the networK,is the num-  gio of 4 single synchronized network event, or “population

ber of neurons of the networkis its “connectivity” (i.e., the st and paraliels the transient depression of firing seen
average fraction of connections per neuron), aigthe am- e.g. in Fig. 1.

plitude of the synaptic weights (Amit and Brunel 199,

ands3 reflect the mean and variance of the current generated

by spontaneous neurotransmitter release and other sources

of randomness, assumed to be independerit dhe equi- 3 Population response to time-varying inputs
libria of the population dynamics can be identified as the

self-consistent solution of the mean field equation (La Canm this section, we show how the single-neuron response

era etal 2008): function can be used to predict the dynamic behavior of
_ networks of spiking neurons. This application goes beyond
F=aem(f).s(f). (7) the stationary framework in which the mean field approach

The fixed points at which the slope of the response functi@derived, and provides us with an approximated solution
is less than 1 are stable. of a complex Fokker-Plank equation in a two or higher di-

For appropriate values af, two stable equilibria can mensional space (Brunel and Sergi 1998; Brunel and Hakim
be found that we name hergey and fy g, With freg < 1999; Moreno et al 2002; Nykamp and Tranchina 2001; Four-
fourg (See Fig. 3A, the curve with = 12 pA). In the model caud and Brunel 2002; Moreno-Bote and Parga 2004; Gi-
network, spontaneous transitions from one of these stabbmnte et al 2007a,b). We present a case study where the use
states to the other can only occur due to fluctuations inducafthe stationary response function provides a good approxi-
by finite-size effects (Brunel and Hakim 1999; Mattia anthation to the full approach (Renart et al 2003). This approx-
Del Giudice 2002), or triggered by an external stimulus (amation can be extended to include firing rate adaptation,
in Fig. 2). generalizing Eq. 5 (La Camera et al 2004).
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Fig. 3 Prediction of slow rhythmic activity from the properties of the single-neuron response function. Each curve is the firing rate of the
population of LIF neuronsdy ) as a function of the firing rate of the population itsefj.(When®yg = f, the networks has reached a self-
consistent state, which may be stable (closed circles) or unstable (star), depending on the slope of the response fufidt®slape of the
response can be controlled by changing the value of the synaptic couplibgth in the absence (a) and in presence (b) of adaptatidiar

J=28o0r 10 pA, only the stable state at low firing rate is stable, namedfagre~orJ = 12 pA, a state with higher firing rate is also stable, taken
here to represent a population burst (see the text). In these examples there is no firing rate adaptafipege Eqg. 5)b. Same as (a) in the
presence of firing rate adaptation (Eq. 5 with= @ |¢). The stability properties of the network change in the presence of adaptation: whereas
freg IS Stable also in the presence of adaptatifgpg destabilizes after the neurons undergo adaptation. Adaptation decreases the slope of the
response function, which morphs into the lower curve, taking the network statgdgtdn this state the neurons are negligibly adapted because

of their low firing rate, and the response function becomes the upper curve again, fghgrie stable. Given the small basin of attraction of
statefreq (this can be inferred from its distance, along the curve, from the unstable fixed point marked with *’), an upward fluctuation of the
spontaneous activity is sufficient to bring the network back intofthe state. This state destabilizes after the neurons adapt, and the sequence
of transitions repeats itself, with the network activity flipping between these two states in an activity-dependent way, as confirmed by simulations
(not shown). Used and modified with permission from Giugliano et al (2004). Copydg2004 by the American Physiological Society.

3.1 Simplified mean field theory with time-varying inputs many neurons are close to the threshold for spike emission,
making the response of the network much faster than the

Consider an input spike train of time-varying frequemgft), response of any individual neuron (e.g., van Rossum et al

targeting each cell of a population of neurons throxgh 2002). This justifies the assumption that the firing rate of the

receptor mediated channels. Each spike contributes a pgstpulation is always at the steady state, despite an input with

synaptic current of the formg,& /™, wheregy is the peak time-varying statistican(t), s(t).

conductance of the channels. In the diffusion approxima-

tion this produces an input curremyt, which is an Ornstein-

Uhlenbeck process, 3.2 Extension to networks of adapting neurons

dixy=— e rmdt +5:&i4/ Z—dt, (9) The approach of the previous subsection can be extended to

x Ix include firing rate adaptation. Consider the stationary, mean
with M, = gvx(t) 1 and sf(t) — (1/2)Q§Vx(t)Tx (La Cam- field model of the population adapted firing rate, Eq. 5, and
era et al 2008). Renart et al (2003) have suggested that \ttiée it as follows:

Eopulatlon activity of the network could be well predlctedf — o(my— |a,§) (13)
y

lg =af, (14)
f(t) = @(m(t), S(1)), (10)

) ) ) wherely, called the hyperpolarization (AHP) current, is a
where® is thestationary response function (e.g., Eq. 4), andeedback current driven by the neuron’s instantaneous output
my, % are the time-varying average and variancgoThese ratef. I, can be derived to be of forma f from a minimal

evolve according to the first order dynamigs= dy/dt): cellular model of AHP current,
Ty = — (M — my) (11)  diq o —

—a__94 S(t—ty), 15
s G =7 TGyt (15)
5§ = (£-2), (12) where the sum is over all spikes emitted by the neuron up
2 to timet andg, is the peak conductance. In the absence of

(e.g., see Gardiner 1985). In this approximation, it is aaetions potentiald, decays to zero with time constant,
sumed that the network activity follows its time-varying inand a is linked to these cellular parameters by= g4 Tq.

put instantaneously. The reason for which this approximahis model works best in the presence of spontaneous activ-
tion works is that, in a network with spontaneous activityty (La Camera et al 2008).
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From Eq. 15 one can show that, in the case of slow vari-
ation of firing rate due to adaptatioh, follows the neu- 100¢

ron’s own instantaneous firing rate with time constant N
(La Camera et al 2004): y
= o(m—10.$) a € 9
Tala :7|a+af, (17)
Note that for a stationary stimulus, i.e, constant, after a 0 =

transient of the order of mdxy, 74}, one recovers thesta- — 1.87

tionary model Egs. 13-14, withh=my, s=§;. S 12 M
In the case of several independent components, they fol — -
low their own synaptic dynamics and sum up in the argument — o_g ‘ ‘ ‘
of the response function to give the time-varying firing rate, 00 300 400 500
time [ms]

r—o(yme1n.yg). 18)

) X X ) ) Fig. 4 Time-varying activity of a population of independent, adapting
which replaces Eq. 16. In Fig. 4 is shown the response lOF neurons in response to a noisy, broadband stimulus. (Top) predic-
a population of uncoupled LIF neurons to a complex iriion of the adapting rate model, Egs. 16-17 (gray), compared to the

. ; R ; imulations of 20,000 neurons (black). Shown is the activity after a
put, comprising an impulsive increase of 1 ms duration ?ggsient of 200 ms. The short horizontal bar indicates a pulse-like in-

t =250 ms and a step increasetat 400 ms (horizontal crease of 1ms duration in the input current. The long horizontal bar
bars in Fig. 4) on top of the synaptic current. The synapfiticates a step-like increase of both the excitatory and inhibitory in-
current was macde up of two fast componertis£ 8 ms), - C o O g 416 not shown). See the text and La Camera ot al
i i inhibi aroun .

I?I?ee) e&ﬂ;aéot%r?&?ﬁgﬁ?ﬁ:ﬁﬁi?ﬁ;éngllg\:\tlo(%\%ﬁﬁe) (2004) for details.gUsed with permission from La Camera et al (2004).

' ) Copyright(© 2004 by The MIT Press.
current (withTpmga = 100 ms). The model makes a good pre-
diction of the population activity, even during the fast tran-
sients. The small discrepancies are due to finite-size effedtes. When condition Eq. 19 is not fulfilled, the approxi-
(Brunel and Hakim 1999; Mattia and Del Giudice 2002), angiated response function given by Moreno-Bote and Parga
to the approximation used for the stationary response furf2005) should be used (see La Camera et al 2004, 2008 for
tion (EQ. 4 corrected for fast correlated inputs (Brunel ardétails).
Sergi 1998; Fourcaud and Brunel 2002)). To be able to use
this approximation, the synaptic current must be much faster

than the membrane time constant, i.e., 4 Adaption over multiple time-scales
maxy{Tx} < T. (19)

A

The simplified dynamic mean field theory of the previous
Synaptic current with longer correlation times (e.g., NMDAsection could be extended to work in the presence of a sin-
like or GABAg-like) can be approximated by a slowly changyle adaptation current of the AHP typlg,. This model of
ing current, i.e., their variance can be neglected in Eq. 38aptation is general enough to describe most situations of
(Brunel and Wang 2001). interest (Benda and Herz 2003; La Camera et al 2004). How-
ever, firing rate adaptation is a complex phenomenon oc-

. curring on several time-scales and affected by different ion
3.3 Further extensions currents (Thorson and Biederman-Thorson 1974; Millhauser

) ) et al 1988; Lowen, S.B. and Teich, M.C. 1992; Xu et al
The approach of this section can be extended to any moglgbe; Sah 1996; Schwindt et al 1997; Powers et al 1999;
neuron whose response functiah, is known, and not just yjanovsky et al 2004; Gilboa et al 2005; Descalzo et al 2005;
to the LIF neuron Eq. 2. In particular, it can be extendggreyw and Abbott 2006; La Camera et al 2006; Wark et al
to the conductance-based LIF neuron, with the caveat tb%?) As a consequence, a Single adapting Component may
condition Eq. 19 may not be fulfilled for currents with shorfot be enough to describe the time course of cortical neu-
time constants (e.g., AMPA-like and GABAike). This is rons, even in response to stationary input current (La Cam-
because the effeCtlve time constant Of the Conductance'baégjet al 2006) Despite a |arge number Of adapting processes

neuron, acting on different time-scales, an IF reduction of adapting
1 -1 spike trains could be obtained with no more than 4 indepen-
"= <? + QeVe + i vi> , (20) dent adapting components in the case of pyramidal and fast-

spiking (FS) neurons of the rat somatosensory cortex. These
wherege;, Vei are the excitatory (e) and inhibitory (i) inputadapting processes acted on time-scales ranging from a few
conductances and firing rates respectively, can reach valoesto tens of seconds (Sec. 4.3). In pyramidal neurons, one
as small as a few ms, depending on the instantaneous firdighese components was found to facilitate the firing rate
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(i.e., to increase it) with a time constant of the order of 1s.

In this section, we review the model used to capture the tem _ [
poral aspect of the instantaneous firing rate in response tE ZOLMMAA
fluctuating inputs with stationary statistics. > o ‘ : : : : ‘

3.06 3.08 3.1 3.12 3.14 3.16 3.18

) ] ) ) g —32.5%\/\/\/\
4.1 The generalized IF model with multiple adapting =l L e B B P
— 11

processes 388 3.‘06 3, ‘08 3‘.1 3.‘12 3, ‘14 3.‘16 3.‘18
Recall that the model neuron having the quasi-stationary fir- < seor

ing rate given by Egs. 16-17 is described by a single variable = of

the membrane potenti®l, which below the spike threshold T a1 sz am ik s

6 obeys Eq. 2 witlu = (my — 14)/C, andl4 given by Eq. 15. soor

A straightforward generalization of this model can be & ** _/-\/\_/\
= 100

obtained by adding two or more independent components £ lossoscsao ‘ ‘ ‘ ‘ ‘ ‘
la = Sklae in Eq. 16 (La Camera et al 2006). Each of the aos 308 o i a4 316 38
component processes obeys an equation like Eq. 15, with

correspondingry, gk such thatgkx = ax, and Yok = o
b Tk: G Gk Tk K 2k Ok ig. 5 Generalized adaptive LIF model and its best fit of the tempo-

(negativeays correspond to facilitating processes, i.e., pr$él response of a layer 5 FS interneuron of rat somatosensory cortex.

cess increasing the firing rate over time). This constraint @shown (from top to bottom in each panel) are the membrane potential,
sures that the quasi-stationary firing rate of each spike trate adaptation current (Eq. 15 with time constapt= 2.2 s), the total

(reached whem > max 1¢) agrees with that given by theinput current, and the instantaneous firing rate (see the text). The input

i inn i ; ; - i rrent was the same as injected into the neuron. In top and bottom
stationary solution in mean field, i.e., by the self CO”S'Steginms, the model is in gray and the data in black. Used and modified

solution of Egs. 13-14. with permission from La Camera et al (2006). Copyright2006 by
the American Physiological Society.

4.2 Reproducing the temporal response of cortical neurons
LIF neuron of Fig. 5 with only two components. The faster
The generalized adaptive model has been used to fit the tiatapting process was of the order~0200ms; the slower
course of the firing rate of cortical neurons, defined as thad a broader distribution of time constants ranging from
inverse of the inter-spike interval (ISI) as a function of timey 1 to ~ 10 seconds (La Camera et al 2006). Given that
f(t) =1/19(t), using a Montecarlo procedure (La Camerthe maximal interval duration of stimulation was 10s, it is
et al 2006). The goodness-of-fit was then tested yftkest, not excluded that even slower adapting processes could be
using as the objective function the squared difference of theesent in these neurons.
ISls, i.e.xfy = 319" ~19")2.19™"(t) was obtained by Contrary to FS neurons, which typically had a consis-
simulating the full IF model described in the previous setent response to the same stimulus, pyramidal neurons of
tion. Note that it is necessary to consider the correct numat somatosensory cortex display a broader range of time
ber of processes in order to estimate the time constantsdonstants and magnitude of the adapting processes involved.
volved: sincey}_, OkTk = a, this constraint will be satisfied Four processes were identified according to the order of mag-
with different values ofry depending om, the total num- nitude of their time constants, which were, from faster to
ber of processes. The peak conductargesere given by slowest: a few milliseconds (affecting the first few ISIs only),
the ratioay /1« (negative ifay < 0, representing facilitation 50-200ms, (b-1s (a facilitatory process), and order of sec-
instead of adaptation). An example showing the model witinds.
one component of adaptation and its best fit to a FS neuron pespite the possibility to capture the temporal response
of rat somatosensory cortex is shown in Fig. 5. of cortical neurons with only a handful of adapting processes,
This procedure was not used to reproduce spike timgg distributions of time constants were broad, both within
with a millisecond precision (e.g., Jolivet et al (2004, 2006)gells (pyramidal neurons) and across cells (pyramidal and
but only to capture the time course of the instantaneous firipg neurons; see Table 3 of La Camera et al 2006 for de-
rate. tails). This variability in response to stimuli and across neu-
rons suggests the possibility of a continuum of time-scales,
which may be the basis for scale-free adaptation (Fairhall
4.3 Time-scales of temporal adaptation in cortical neurongt al 2001b; Drew and Abbott 2006), a phenomenon with
many potential computational consequences (Brenner et al
In response to a stimulation of several seconds with fluctu2800; Fairhall et al 2001a; Drew and Abbott 2006; Wark
ing current with stationary statistics, the temporal responseal 2007). Most of these computational consequences find
of FS interneurons of layers 2/3 and layer 5 of rat somatosepplication in response to stimuli with time-varying statis-
sory cortex could be captured with the generalized adaptives; however, it is important to bear in mind that multiple
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Fig. 6 Noisy sinusoidal input currents were injected in cortical neurons firing at 10-20 spikes/sec to probe their dynamic response properties
(a-b) and the impact of input fluctuations. The mean inpyitvas modulated asy = mg + mysin(2rw t), with my < my, while the amplitude

of the background noises) was kept constant. The neuron’s output firing rate was also sinusoidally modulated at the same freguency

f(t) = fo+ fi(w)sin(2mwt + @(w)), over a wide range of input frequencies;-@00 Hz (c: single cell; d: population)y is the stationary
response function (e.g., Eq. 4 for the case of the LIF neurfanis the response amplitude of the modulated responsepasdts phase shift.

Used and modified with permission from Kdndgen et al (2008). Copy(@#008, Oxford University Press.

adaptation processes are also observed in response to input$he idea behind this approach is to analyze the response
with stationary statistics, as reviewed in this section. of the network to a weak oscillatory input (i.e., sinusoidal
with frequencyw),

m = mp+ msin(2nwt), (22)

with my < my, in the presence of input fluctuations with
- —— - constant amplitudg (see e.g. Fig. 6a-b). The response of
5 Response to sinusoidal inputs in the presence of the network to this input can be found by solving perturba-
fluctuations tively a Fokker-Planck equation in series ofcd, assuming

that the neuron’s output firing rate is also sinusoidally mod-
The dynamic mean field theory of the previous sections iated at the same frequency,
a simplified approach which, in those cases where it can _ :
applied, offers practical advantages to the study of the tera&) = fo+ fi(w)sn(2mwt + ¢(w)). (22)
poral evolution of the network activity in the presence dh networks of LIF neurons with instantaneous synapses, the
time-varying inputs. In the general case, the full populatiaamplitude of the response modulatiof (w)) in the high-
density approach should be used, but the equations are céneguency regime is proportional tg'J/c, with a phase lag
plex and are usually solved with perturbative techniques fof 45 degrees (Brunel et al 2001). In the presence of synap-
the case of weak (but arbitrarily fast) input modulation. Itic filtering, both the cut-off frequency and the phase lag are
this section, we reviewed some of the results obtained wigliminated (Brunel et al 2001). However, another important
this approach, which dates back to Knight (1972); Treveleterminant to the response to oscillatory inputs, the mech-
(1993) (in the absence of noise), was generalized by Gewstism for spike generation, is absent in the LIF neuron. For
ner (2000), and has more recently been undertaken by Bruthéd reason, generalized models of IF neurons, where a fast
and collaborators (Brunel et al 2001; Fourcaud and Brurtehnsient response of the membrane potential above a given
2002; Fourcaud-Trocmé et al 2003; Fourcaud-Trocmé attiteshold can mimic an intrinsic mechanism of spike gen-
Brunel 2005; see also Mattia and Del Giudice 2002). eration, were introduced and studied by Fourcaud-Trocmé
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et al (2003) (called nonlinear IF models). These models are A B C  top-down (modulators)
obtained by adding to the right hand side of Eq. 2 a term - - Vrest, D
Y(V)/C, which contains the non-linear mechanism under- g_VD B
lying the generation of an action potential, and a param- GﬁCa
eter At defining its sharpness. The firing rate modulation
at high frequencies depends gn being e.g. of the form —_— R; inhibition ) H?ﬁncg
1/w for an exponential function, ang &? for the quadratic (disruptors)
case (Fourcaud-Trocmé et al 2003). These results are als v
valid in the presence of conductance-based synaptic input: S =» F
and suggest that in general the high-frequency modulatior V{ I lAHP bottorm-up

rest, S

of the response follows a power lawv Y, where the expo-
nenty depends on the nonlinearity of the spike generating

currentt,U(V) (Fourcaud-Trocmé et al 2003). The (uandLEi . 7 2-compartmental model of a cortical L5 pyramidal neuron. A)

lated) background synaptic noise also plays a role in the ¢gxjge the basal integration zone around the soma (lower circle) L5
termination of the linear response (Brunel et al 2001; FOLﬂ’_yramidaI neurons show an additional apical integration zone (upper
caud and Brunel 2002), and so does the presence of firiiiigle) from where the signaling to the soma is mediated via den-

rate adaptation (Fuhrmann et al 2002) dritic calcium spike. (B) To capture the spatial input structure we con-
Th h ical | id ) b f .sider a 2-compartment neuron model with a voltage-dependent cal-
ese theoretical results provide a number of preciggm current [ca) in the dendritic compartment and a spike-triggered

predictions which were tested experimentally by Kondgeifter-hyperpolarization currentcl) in the somatic compartment. (C)
etal (2008) in rat cortical pyramidal neurons of the somatogendritic (‘top-down’) input increases the gain of the somatically
sory cortex (Fig. 6). These authors found that the ampﬂbottom-up’) induced current-to-rate response function via backprop-

: - agating action potential induced calcium (BAC) firing. This top-down
tude of the linear modulationf{(w)) was generally con- input represents a multiplicative modulation of the somatic firing rate

stant and independent af up to rather high input frequen- (with a factor> 1) which can be throttled by inhibitory dendritic input.
cies, below a sharp cut-off of the order of 26@00 Hz. In Hence, the dendritic tree determines whether synaptic input either acts
this range, no phase-shift was observed other than a phasedriver’, ‘modulator’, or ‘disruptor’ (Sherman and Guillery 1998),
advance, caused by spike-frequency adaptation at freq %%Fendlng on whether it projects to the somatic region or the apical
cies lower than 10 Hz (Fuhrmann et al 2002) (Fig. 6c-d).
This confirmed the role of the background synaptic noise in

removing the resonances at multiples of the average firiE‘g

(drivers)

and whether it acts through excitation or inhibition.

t be discussed here. Instead, we will focus on some of the
henomena that depend critically on such extended geom-
ry and cannot be captured with point-neuron approxima-

rate responsdg (Brunel et al 2001; Fourcaud and Brune
2002), allowing fast time-varying inputs to be encoded und

torted (i.e., without a phase lag). Beyond the cut-off fr'Ef'ons, like the dendritically-induced gain modulation of the

?ugncy ransg?e, the hig[lyfrethrJ]ency Enez?jr rt?sport\sezwazfo%%aﬂc response and its control by inhibition (Larkum et al
0 decay ash (w) ~ w7, With y > 1 and Close 10 2, Inde- 540y, Murayama et al 2008). This will allow us to character-
pendently of the noise correlation time constant (Fig. 6¢-d).., e response of layer 5 pyramidal neurons to noisy input

This behavior iS. consistent Wit.h a r!onlin(_aar .IF.modeI W.it urrents which are simultaneously injected in the soma and
a very sharp spike, and a nonlinearity which is |ntermed|q éhe apical dendrite

between exponential and quadratic (Fourcaud-Trocmé an
Brunel 2005).

6.1 Dendrites can differentiate between drivers, modulators

6 Response to dendritic inputs and soma-dendritic and disruptors
interactions

To structure the possible functional interactions among neu-
So far, we have been concerned with those propertiesrens, it has been suggested to classify neurons into drivers,
single neurons and network activity that could be analyzépdulators, and disruptors (Sherman and Guillery 1998).
assuming a point-neuron model. Point-neuron approximéhile drivers act additively on the output frequency, mod-
tions may be a good description for small neurons with shatiators act multiplicatively and disruptors block either of
and isotropic dendritic trees. However, the apical dendritisem. The multiplicative scaling of the neuronal response
tree of layer 5 pyramidal neurons extends across all coiftinction is an efficient mechanism for modulating the neu-
cal layers with a length of roughly.2mm, and integrate in- ronal responses in one cortical area by the activity in another
puts from different cortical and subcortical sources (Budiea, which may be an important mechanism for cognitive
1998; Binzegger et al 2004; Oda et al 2004). Whether thgocessing (Salinas and Thier 2000).
extended geometry of pyramidal neurons offers real compu- It has been noted that a point neuron is able to inte-
tational advantages, or whether it only solves the ‘packiggate both drivers and modulators with the same type of
problem’ of collecting a large amount of synapses for a sifenotropic synapses (Chance et al 2002; Abbott and Chance
gle integration process, remains an open issue and it vid005). Here we show that an extended dendritic tree allows
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to incorporate all three operations by varying the location térms of activation and inactivation variables,andh, re-
the synaptic inputs (Fig. 7). spectively, see Larkum et al (2004)).

Experimental data and modeling studies confirm that ex- Because in the experiment the calcium-induced somatic
citatory synaptic input projecting to the proximal dendriti&P bursts often cease even when the dendritic membrane is
tree can act efficiently as a driver (i.e., it shifts the responstill depolarized, a potassium AHP currehi{p, see Eq. 15)
function to the left), while synaptic input to the distal denwas included in the somatic compartment (Figs 7B and 8B,C).
dritic tree can also act as a modulator (i.e., it also increasBys transiently activated leak current represents a sort of
the gain of the response function), see Fig. 8A and (Larkusacurity valve, as it prevents the model neuron from being
et al 2004). The basic mechanism allowing the distal detiapped in a calcium-induced depolarization plateau where
dritic input to modulate the gain relies on the generatighwould continuously burst.
of dendritic calcium spikes. These calcium spikes may be The two-compartmental IF model reproduces the firing
triggered by synaptic inputs on the distal dendritic tree imates of L5 pyramidal neurons in response to somatic and
pinging on a back-propagating action potential (AP). Thdendritic current injections (Fig. 8A). It also reproduces the
calcium-induced dendritic depolarization propagates forwandreased gain of the somatic current-to-frequency curve in
to the soma where it triggers one or several additional ARbe presence of a dendritic background input (Fig. 8A and
Because this mechanism generates two or more APs out-afkum et al (2004)). When injecting a noisy somatic input
one single AP, it represents a multiplicative operation on tiegrrent only, the individual spikes can be well predicted (Fig.
response function. Since it is triggered by the joint emissi@®B). However, when injecting a dendritic input currents, it is
of a back-propagating AP and a dendritic calcium spike, thigst the strong dendritic voltage deflection (‘calcium spike’)
mechanism is referred to as backpropagation-induced catd the induced AP burst which can be predicted, but not
cium (BAC) firing (see also Larkum et al 1999). the individual spike times within the burst (Fig. 8C). A de-

In the experimental data, the multiplicative modulatiotfiled description of the 2-compartmental model is provided
is also accompanied by a left-shift of the response functidn,Larkum et al (2004).
which otherwise characterizes the action of drivers (Fig. 7).

While in the experiment the left-shift arises from a rather ) . o .

proximal positioning of the dendritic electrode, distal synaff-3 Somatic response function for joint somatic and

tic input further away from the soma will undergo a strongélendritic inputs

attenuation and will barely contribute to the direct somatic ) ] ]

depolarization. However, it will still contribute to the gen!n this section we provide an approximated formula for the
eration of a calcium spike in the apical dendrite and th§9matic response function of the 2-compartmental IF model
to a gain modulation of the somatic current-to-frequency r&f the previous sub-section. We start from an approximation
sponse function. to the response function Eq. 4 for a single compartment IF

Beside the action of somatic and dendritic excitation &Uron (Abbott and Chance 2005),
drivers and modulators, respectively, inhibitory synaptic in- V-9)
puts efficiently operates as disrupters of both drivers and (6 —Vieet) (1_e—a(V—9)/Uv)

; (23)

modulators. Inhibition may shunt the somatic voltage when
the excitatory synaptic input projects proximally to the somay, : : o

; o . . erer = RC is the membrane time constant. HeVas the
(I_Dowon etal 2001; M'FChe” and Silver 2003), or it may tran; verage of the membrane potential when the spiking gener-
siently block the calcium conductance and thus disrupt tﬁﬁon mechanisms are inactivated, ardis its standard de-
gain modulation due to calcium spikes when the excitato\r/T !

synaptic input projects to the distal dendrite (Larkum et gation. These parameters are proportional to the mean and
1999; Pérez-Garci et al 2006). andard deviation of the input currem, ands;, by a factor

R. When currents of the Ornstein-Uhlenbeck type (Eg. 9) are
injected both into the soma and the distal dendrites, the cor-
responding somatic and dendritic voltages are characterized
6.2 Two-compartmental IF model with dendritic calcium by Vs, gy, andVp, a6y, respectively.
spikes Recall that the induction of a dendritic calcium spike re-
quires a fast dendritic voltage sweep crossing a certain volt-
The phenomena described in the previous subsection carage threshold. It is possible to trigger a calcium spike by
explained by an extension of the LIF point-neuron model ttendritic input currents only, but in the presence of a back-
include two compartments, representing the somatic and firepagating AP far less dendritic input is needed. We there-
distal dendritic regions, respectively (Fig. 7A,B). A succes$re concentrate on those calcium spikes which are triggered
ful model of the calcium-induced dendritic depolarizatioby the joint action of a back-propagating AP and a simul-
requires the integration of some active dendritic curriat ( taneous dendritic voltage sweep. This will lead directly to
Fig. 8C). To capture the fact that a dendritic calcium spike &gain modulation of the somatic current-to-frequency re-
only triggered by a fast voltage up-sweep across some vaponse function (see Eq. 26 below).
age interval, a dynamic activation and inactivation of the cal- The specific requirement on the voltage transient arises
cium conductance must be considered (this can be dondrom the narrow window formed by the voltage-dependent
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A , with a dendritic steady state depolarizatidfp] which is

N strong compared to the AP thresho#) (Hence, a criterium

! for the generation of a dendritic calcium spike given a so-
matically induced AP may have the form

Oy, (1+Vp/6) >0, (24)

where for the sake of simplicity we have chosen the same
threshold® for the generation of a calcium spike as for the
generation of an AP. The probabilifg;,, of a dendritic cal-
cium spike, conditioned on the earlier occurrence of a so-
matic AP within a short time interval, is a saturating, increas-

N
o
PAd

w

spikes/s

N

. J.\ ‘ Vo ing function of thevp /6 term in Eq. 24; it can be expressed
£ 2000 o200, Vs as
ICa < I i) — Vi —
élw 5'10——C/|W-VW—~ Pea = (17 e (7 (0/0) Wb) p (25)
— AHP ms AHP

10 ms

whereb is a positive constant in units of voltage apds a

Fig. 8 Somatic and dendritic response functions and voltage traces %%aling factor between 0 and 1.
the'2-compartmental model. A) Firing rates of the model neuron in Next we consider the impact of the dendritic calcium

response to noisy input currents & 300pA) of varying meanry) SPikes on the neuronal response function. The firing rate
injected individually in the soma (line starting aroungl = 250pA; (2 of the 2-compartment model is due to the APs gener-

ai.rc'es .;‘h?preset”ting e):,f]erimleonégl dA"’;ta\avar‘]”d the Ol'e.”d”ttﬁlc compartmgib by the somatic current injection and the additional APs
ine with onset arounan, = pA). When applying the same so- g : T
matic currents in the presence of a noisy dendritic input (fixed @ENerated by BAC-firing. Each AP induces an iterative, al-

m = 750pA ands = 300pA) the gain of the neuronal response fundd€it short-lived, process: a dendritic calcium spike occurring
tion with respect to the somatic input is increased (dashed curva)ith probability P-4 causes, on average, a subsequent AP at

Blocking the calcium current in the dendrite would lead to a rathg¢rhe soma. which in turn has a probabilRy, to generate an-
shallow response function for the dendritic current injection (dottedth AP ’d Ici ik d E) hen b
curve). B) The somaticv) and dendritic o) model voltage trace in OtNEr ue to a calcium spike, and so oIt/ can then be

the case of pure somatic current injection closely predicts the expéPtained as the sum across all iteratively induced APs, start-

mental spike times. The thin smooth and noisy curves show the cofjigg with basic firing rated D of the single compartment,
sponding experimental traces. The lower panel confirms that no den-

dritic calcium currentlgy) is elicited in the model, whereas a strong 2 1 © . £
after-hyperpolarization currentaip) is triggered after each spike. C) £ = (@ ZO(PCa)' = , (26)
In the presence of a dendritic input, the dendritic calcium curideg} ( = 1-PRea

is responsible for the strong dendritic depolarizatigg)(generating . Ly . .
the ‘BAC-burst’ V). The parameters used in these simulations wedhere the right-hand-side is obtained by summing the geo-
(see Sec. 1.1 for a definition of the symbols, with 'S’ standing fanetric series. Alternatively, one may obtdif?) from solv-

somatic compartment, and ‘D’ standing for dendritic compartment): i ivh(2) — (1) (2 i

Rs— Ro — 45mV, Ry = 70mV, Vi s — —~70mV, Viest 5 = —60mV, li)ng the rgcursmn(;)elanoh =Y+ R, Plugglng_the
Cs = Ts/Rs = 13/45nF, Cp = 5/45nF. The AHP current was as in€xpressions foif'“) and Pea (Eqgs 23 and 25, respectively)
Eqg. 15, with the inclusion of a reversal potential 0 mV and into the right-hand side of Eq. 26, one obtains the firing rate

0o = 5nS, 14 = 60ms. The calcium curreni, see Larkum etal 2004 of the 2-compartment IF model (see Fig. 9)
for details) is specified byca = 70nS, Eca = 120mV, m"l"/2 =0mV, ’

h, = —10mV, slopém’) =1/3(mV)*, slopgh”) = 1/5(mV) *, £2 9(Vb,0p) (Vs—0) with 27)
Tm = 15ms andt, = 80ms. A somatic AP is elicited whaf crosses T(9 —V ) (1 . e_a(vs_g)/gvs) ’
the threshold® = —47mV and this activates an additiorialjp com- reset

ponent. Subsequentlys is clamped for 1ms at 20mV and then reset

for another 1 ms at52mV, right 5mV below the threshold. To mimic — 1

the back-propagating AP, the dendritic voltage is instantaneously 9(Vp,0p) = 0w, (1+Vp/6)—6]/b
raised by 20mV with a delay of 4ms aftég crossed the threshold. (1-p)+pe

(28)

Expression (27) generalizes the 1-compartmental response

function (23) to the case of two compartments, where the
activation and inactivation functionsn{ and h”, respec- 2nd dendritic compartment acts as a gain modulator. The so-
tively) which are typical for calcium currents (Koch 1999matic and dendritic voltage variabl®s, g, andVp, Gy,
Larkum et al 2004). Since only a weak steady state windaespectively, are related to the somatically and dendritically
current is possible with these gating functions, a slowly imjected Ornstein-Uhlenbeck currents.
creasing dendritic voltage would merely inactivate the cal- The 2-compartment response function (27) neglects the
cium conductance without being able to trigger a calciupassive propagation of the dendritic voltage towards the soma,
spike. Dendritic voltage traces produced by an Ornstein-Udnd of the somatic voltage towards the dendrites. A passive
lenbeck process will therefore only lead to calcium spikatendro-somatic attenuation could be included into the model
if the membrane potential deflections (characterizedgy by substituting/s — Vs+ apVp andos — 0s+ apop, with
are large, and especially if these deflections arise togetlgy representing a dendritic attenuation factor. The passive
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ever, it is possible to simplify further the study of the time-
dependent network dynamics in at least two situations: 1)
when the relaxation dynamics of the Fokker-Planck equation
are significantly faster than the time scale over which the in-
put varies (as in the case of slow synaptic currents), and 2)
when the amplitude of the modulations of the input statis-
tics are small (perturbation theory). In both cases, we have
shown here that it is possible to reduce the study of neural
_ 20 40 0 10 20 30 populations to the analysis of the response of single neurons
Vg [mV] Vp [mV] to noisy inputs. This approach is possible also in the case
of real neurons, for which the responses can be measured in
Fig. 9 Somatic response function for different dendritic inputs in th@€Xperiments.
approximation of Sec. 6.3. A) Firing raté? for the 2-compartment  What could these experiments reveal that was not known
model (Eq. 27) as a function of the average somatic depolarizatigh} the neyronal model used to develop the theory? The ex-
Vs, plotted for different values of the average dendritic depolarizayy imants provided us with an estimate of the parameters
tions {/p = 0,10,20,30mV from bottom to top, with fixeds,, = L . o
20mV anday, = 15mV). The star represents the voltage threshofdf the neuron model, which is crucial for quantitative mod-
6 — 20mV. The lowest curve, representing the cilge= 0 (but with  €ling studies. However, there are at least two other impor-
oy, = 15mV), almost coincides with curve for pure somatic injectiodiant, unexpected results that emerged from the analysis of
(Eg. 23). B) The gairy of the response functions in A as a functiorthe experimental measurements and that turned out to be in-
of average dendritic depolarizatidp in the presence of aﬁxedEOisedependent of the specific neuronal model that was used to
amplitudeoy, = 15mV (Eq. 28). The dots specify the values ¥ jagign the experiment itself. The first result is that popu-
and g used to obtain the 4 curves in A. Other parameter valaes5, lations of real neurons res df ond |
b=5mV,p=0.5,a =02, =30ms. ation: pond fast (Kondgen et al 2008),
significantly faster not only than any single neuron (which
was expected), but also faster than predicted by simple IF
component would cause a left-shift in the response functiognodels. The linear response to sinusoidal currents is not at-
whose strength is quantified my. In the experiments, this tenuated up to frequencies of a few hundreds Hz. The second
factor appeared to be relatively large .4). However, since unexpected result is related to adaptation on multiple time-
in the experiments the dendritic electrode did not reach theales. A quantitative analysis of the response of rat pyra-
calcium triggering zone at the apical bifurcation (Larkurmidal and fast-spiking neurons to long lasting, noisy stimuli
et al 2004), this factor may be much smaller in reality. Thuwjith stationary statistics revealed that the activity of corti-
the left-shift of the response function induced by the passi¢8l neurons is modulated over multiple time-scales ranging
dendritic input may be negligible compared to the inducdtPm hundreds of milliseconds to seconds. The response of
gain increase (cf. Fig. 9A). the neurons could be modeled with IF neurons with multi-
ple mechanisms of adaptation and facilitation. Every neuron
had up to 4 mechanisms operating on different time-scales.
Moreover, the time-scales varied widely from neuron to neu-
ron, allowing a population to show responses on almost a

Large populations of neurons have a large humber of g@ntinuum of tlme—scales.. ) .

grees of freedom' g|V|ng rise to very rich and Comp|ex COI'_ In the second part of thlS review, we have. CO.nS|dered the
lective dynamics. In the network models reviewed in th&ngle-neuron response to inputs that are distributed on the
article, the study of such a rich behavior can be simplifielendritic tree. The simplicity of the IF model contrasts with
because it can be reduced to the study of the time devel8p complexity of the dendritic arborization of some pyra-
ment of the distribution of the variables that characterize tRéidal neurons, with their regenerative membrane currents
single-neuron dynamics (e.g., the depolarization in the cad clustered synaptic inputs (Spruston 2008). The extended
of IF models). However, even with such a simplification, thgeometry of cortical neurons and their non-linear dentritic
equations governing the network dynamics are still difficufoperties may offer additional computational power by ex-
to solve. For example, in the case of weak enough syndjoiting nonlinear dendritic properties (Poirazi et al 2003;
tic interactions, the equation governing the distribution &tolsky et al 2004), like the multiplicative gain modulation
the depolarizations of IF neurons is a Fokker-Planck equf-the somatic response function reviewed here.

tion. Although the dimensionality of the equation is low (the A nonlinear modulation of the response function may
only dynamical variable is the depolarization), the boundariginate from many mechanisms, e.g., could be controlled
ary conditions, corresponding to the threshold for emittingy neuromodulators (Zhang and Arsenault 2005; Thurley
a spike and to the lower bound of the depolarization, makeal 2008), or by the strength of after-hyperpolarization cur-
it extremely difficult to find a general analytical solutionrents (Higgs et al 2006), or through a balanced change of
The only exact solutions known can be obtained under theisy excitation and inhibition (Doiron et al 2001; Chance
assumption that the statistics of the synaptic input are st-al 2002; Longtin et al 2002; Mitchell and Silver 2003).
tionary (La Camera et al 2008). For simple IF models, howhese forms of gain modulation are implementable in point
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neurons, and were not considered here. Other forms requireit D, Brunel N (1997) Model of global spontaneous activity and lo-
instead multi-compartmentalization, like those arising from cal structured (learned) delay activity during delay. Cerebral Cor-

; P ; ; . tex 7:237-252
passive dendritic integration (Prescott and De Koninck 200'&3',Siero M, Liischer HR, Lundstrom B, Giugliano M (2007) The Im-

Mehaffey et al 2(_)05; Capad‘_"‘y and van V.re_ESWijk 2_006)- pact of Input Fluctuations on the Frequency-Current Relationships
The form reviewed here in some detail is an active form of Layer 5 Pyramidal Neurons in the Rat Medial Prefrontal Cortex.

of dendritically-controlled gain modulation, i.e., mediated ijS‘ULOSC' i7(1§gg§)—2284 | model for soike.f g

Hr ey H H H adJd, Rherz universal model 1or spike-frequency adap-
by.BAC firing and de_ndntlc cal_qum sp_lkes. This phenome tation. Neural Computation 15:2523—2564
relies on regenerative d_endrltlc calcium conductances aé]qzegger T, Douglas R, Martin K (2004) A quantitative map of the
can be tuned by acting directly on those conductances (Larkusircuit of cat primary visual cortex. J Neurosci 24:8441-8453
et al 2004), e.g. by selectively blocking them through actrenner N, Bialek W, de Ruyter van Steveninck R (2000) Adap-
Vation Of dendl’itic GABA and GABAB receptors (P’erez_ tive rescahng maximizes information transmission. Neuron

. : : 26(3):695-702
Garci et al 2006). These tuning options extend the fungfunel N, Hakim V (1999) Fast global oscillations in networks of

tionality of pyramidal neurons by allowing them to distin- integrate-and-fire neurons with low firing rates. Neural Compu-
guish between synaptic drivers, modulators and disruptors tation 11:1621-1671 _ _
(see Sherman and Guillery 1998 and Fig. 7C), and recEfgnel N, Sergi S (1998) Firing frequency of leaky integrate-and-fire

. . eurons with synaptic currents dynamic. J Theor Biol 195:87-95
experimental evidence from awake rats suggests that thgﬁ.ﬁ?el N, Wang XJ (2001) Effects of neuromodulation in a cortical

different types of inputs may also play a functional rote network model of object working memory dominated by recurrent
vivo (Murayama et al 2008). inhibition. Journal of Computational Neuroscience 11:63-85

The mechanism of BAC-firing and BAC-firing inducedBrunel N, Chance FS, Fourcaud N, Abbott LF (2001) Effects of synap-

: PR _ tic noise and filtering on the frequency response of spiking neu-
gain modulation is related to a type of neural code, burst- = = Phys Rev Lett 86(10):2186-2189

timing code, which is different from both firing rate codegudd J (1998) Extrastriate feedback to primary visual cortex in pri-
(e.g., of Fig. 4 and 8A) and spike-timing codes. A calcium mates: a quantitative analysis of connectivity. Proc R Soc Lond B

spike, triggered by the joint occurrence of a back-propagating Biol Sci 265(1):1037-1044

e PR ~Capaday C, van Vreeswijk C (2006) Direct control of firing rate gain
AP and the dendritic input, elicits in turn several consecutiVve! by dendritic shunting inhibition. J Integr Neurosci 5(2):199-222

sodium spikes at the soma within roughly 30ms (Larku@hance F, Abbott L, Reyes A (2002) Gain Modulation from Back-
etal 1999). This mechanism allows signalling to downstream ground Synaptic Input. Neuron 35:773-782

neurons that some events have occurred in coincidence. Siissgalzo V, Nowak L, Brumberg J, McCormick D, Sanchez-Vives M

inputs to the soma and the apical tree may originate from dif- (2005) Slow adaptation in fast spiking neurons in visual cortex. J
ferent cortical sources (Budd 1998; Oda et al 2004), bursgjs; Neurophysiol 93:1111-1118 ; -
o ; ! : g %lron B, Longtin A, Berman N, Maler L (2001) Subtractive and di-
timing could provide a way to detect and signal the coinci- visive inhibition: effect of voltage-dependent inhibitory conduc-

dent occurrence of bottom-up and top-down signals. tances and noise. Neural Computation 13(1):227-48

i ; i rew P, Abbott L (2006) Models and properties of power-law adapta-
For us, the ability of simplified models to capture much tion in neural systems. J Neurophysiol 96:826-833

of the rich and varied experimental phenomenology of CQfzjrha)l A, Lewen G, Bialek W, de Ruyter van Steveninck R (2001a)
tical neurons embedded in an vivo-like environment, is Efficiency and ambiguity in an adaptive neural code. Nature

an indication of the success of the reductionist approach 412:787-792 _ _

in Neurophysiology. We also hope that recent observatioﬁé‘,‘r%hﬁvé?}‘{}’}f&%@fé?i(ﬁ ?aetigrlme; yan Eatle&’gg'gﬁ‘; $ }(<2|E)gelr?)
like gain modulation by d'St"?" dend”t'c inputs or the diver- TG Dpietterich, andVTrespF()eds), Advances in Neural Information
gence of the response functions in prefrontal cortex neurons processing Systems 13:124-130

(Arsiero et al 2007), can open the door for new quantitatiV@urcaud N, Brunel N (2002) Dynamics of the firing probability of
models and their application to analysis of network behavior. noisy integrate-and-fire neurons. Neural Computation 14:2057—

While such an interaction between theory and eXpe”menH?urcaud-Trocmé N, Brunel N (2005) Dynamics of the instantaneous

a widely consolidated tradition in Physics, it is becoming " firing rate in response to changes in input statistics. J Comp Neu-
only slowly established in Neuroscience. rosci 18(3):311-321
Fourcaud-Trocmé N, Hansel H, van Vreeswijk C, Brunel N (2003)
How spike generation mechanisms determine the neuronal re-
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