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Abstract The response of a population of neurons to time-
varying synaptic inputs can show a rich phenomenology,
hardly predictable from the dynamical properties of the mem-
brane’s inherent time constants. For example, a network of
neurons in a state of spontaneous activity can respond sig-
nificantly more rapidly than each single neuron taken in-
dividually. Under the assumption that the statistics of the
synaptic input is the same for a population of similarly be-
having neurons (mean field approximation), it is possible
to greatly simplify the study of neural circuits, both in the
case in which the statistics of the input are stationary (re-
viewed in La Camera et al 2008) and in the case in which
they are time-varying and unevenly distributed over the den-
dritic tree. Here we review theoretical and experimental re-
sults on the single-neuron properties that are relevant for
the dynamical collective behavior of a population of neu-
rons. We focus on the response of integrate-and-fire neurons
and real cortical neurons to long-lasting, noisy,in vivo-like
stationary inputs and show how the theory can predict the
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observed rhythmic activity of cultures of neurons. We then
show how cortical neurons adapt on multiple time-scales in
response to input with stationary statisticsin vitro. Next,
we review how it is possible to study the general response
properties of a neural circuit to time-varying inputs by es-
timating the response of single neurons to noisy sinusoidal
currents. Finally, we address the dendrite-soma interactions
in cortical neurons leading to gain modulation and spike
bursts, and show how these effects can be captured by a two-
compartment integrate-and-fire neuron. Most of the experi-
mental results reviewed in this article have been successfully
reproduced by simple integrate-and-fire model neurons.

1 Introduction

Neurons in the intact brain of the mammalian cortex are
driven by the synaptic current generated by thousands of
other neurons. As their activity is determined by the spikes
of large populations of neurons, it is important to study and
characterize the collective properties of groups of cells. When
similarly behaving neurons share approximately the same
statistics of the synaptic current, these neurons can be grouped
together, and they can be replaced by a single representative
cell. This approach, known as the “mean field approxima-
tion”, is reviewed in La Camera et al (2008) for the case in
which i) the statistics of the input current is stationary and ii)
the response of the neuron is quasi-static, i.e. it can be con-
sidered constant on a time interval of a few seconds. This
approach can be extended to the more general case of time-
varying statistics of the synaptic currents, and to the case
where the output spike train is non-static. The extended ap-
proach is particularly important to describe transient, oscil-
latory and rhythmic neuronal activity of large populations of
neurons, and it can predict dynamical behaviors that some-
times cannot be foreseen by looking at the passive properties
of the neuronal membrane. Population response times can be
very different from those predicted by the inherent time con-
stants of every individual neuron and in general they depend
on the full distribution of all dynamical variables character-
izing the neuronal dynamics. A population of neurons with
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2

spontaneous activity will exhibit reaction times that are sig-
nificantly shorter than the membrane time constant (see, e.g.,
van Rossum et al (2002)), because the depolarizations are
distributed in the whole interval between the resting poten-
tial and the threshold for spike emission. As a consequence,
some of the neurons are ready to generate an action potential
quickly (order of one millisecond) in response to a stimu-
lus. Other single-neuron properties, like adaptation on time-
scales of hundreds of milliseconds to seconds, are also read-
ily reflected by the population response. The extension of
mean field approach to include non-stationary properties are
the focus of this review.

We start by presenting an example where the quasi-stationary
response properties of single neurons allow one to make
quantitative predictions on the rhythmic activity exhibited
by networks of dissociated neurons (Giugliano et al 2004).
We then show how single neurons and populations of neu-
rons exhibit firing rate adaptation on multiple time-scales
(La Camera et al 2006), even in response to inputs with
stationary statistics. Studies of the population response to
fast-varying inputs are reviewed next. In such a case, the
full mathematical machinery of the so-called “population
density approach”, based on the solution of a Fokker-Plank
equation, would in general be needed (Knight 1972; Ab-
bott and van Vreeswijk 1993; Treves 1993; Fusi and Mat-
tia 1999; Brunel and Hakim 1999; Nykamp and Tranchina
2000). However, recent studies on simple integrate-and-fire
(IF) model neurons revealed that it is possible to predict
the population response to an arbitrary time-varying input
by knowing the response of single neurons to the sinusoidal
components that make the input signal (Brunel et al 2001;
Fourcaud and Brunel 2002). The single-neuron response can
be estimated in the case of IF model neurons, or it can be
measured directly for real cortical cells (Köndgen et al 2008).
Because of the features of sodium-mediated action poten-
tials, cortical neurons are surprisingly good at relaying fast
temporal information, while dynamical response attenuation
and distortions affect the input-output transfer properties only
for very fast (

<∼ 5ms) input transients. In all these studies,
IF neurons with firing rate adaptation and other small mod-
ifications could predict quantitatively many aspects of the
behavior of real cortical neurons.

In the last section we turn back to the static properties
of the neuronal response function to show how it is mod-
ulated by the spatial input distributions along the dendritic
tree. We review the experimental results that show how dis-
tal dendritic input can modulate in a non-linear fashion the
somatic stationary response function (Larkum et al 2004).
This modulation is due to an interaction between somatic
action potentials and dendritic calcium spikes, that under the
right conditions can lead to a further burst of somatic action
potentials (Larkum et al 1999). Despite the complexity of
these mechanisms, a simple somatic IF mechanism coupled
with a dendritic compartment can capture the experimental
phenomenology and explain the gain modulation induced by
dentritic inputs. The extent to which simple spiking mod-
els can capture these complex phenomena and, thus, provide

the field of Neuroscience with a successful reductionist ap-
proach is further examined in the Discussion.

1.1 Response function of the leaky IF neuron

Most of the material reviewed in this article is based on, or
is related to, the response function of the adaptive leaky IF
(LIF) neuron, reviewed in detail in the companion article
(La Camera et al 2008), to which the reviewer is referred
for a more detailed exposition. We report here the main for-
mulae for convenience. The LIF neuron is completely char-
acterized by its membrane potential,V , which evolves ac-
cording to

dV
dt

= −V −Vrest

τ
+

I
C

, (1)

until a thresholdθ is reached. At this time, a spike is said
to be emitted andV is clamped to a reset potentialVr for a
refractory periodτr, after which motion resumes according
to Eq. 1.Vrest is the membrane’s resting potential,C is the
membrane capacitance,τ = RC, whereR is the membrane
resistance, andI is an input current. To emulate the noisy
input current targeting neuronsin vivo, the currentI is mod-
eled as a stochastic process. In the diffusion approximation
(Lánský and Sato 1999; Richardson and Gerstner 2005), the
subthreshold dynamics of the membrane potential obeys the
stochastic differential equation of the Ornstein-Uhlenbeck
process (Tuckwell 1988),

dV = −V −Vrest

τ
dt + µdt +σξt

√
dt, (2)

where

µ = mI/C, σ =
√

2τ ′sI/C (3)

are the average and standard deviation in unit time of the
membrane voltage, andξt is a Gaussian process with flat
spectrum and unitary variance.mI and s2

I are the average
and the variance of the synaptic input current, and

√
2τ ′ is a

factor to preserve units.
The stationary response function of the model neuron de-

fined by Eq. 2, with spike and reset mechanisms as specified
above, is by definition the output firing rate as a function of
(constant)mI andsI , and is given by

Φ(µ ,σ ;τ) ≡
[

τr + τ
∫ θ̂

V̂r

√
πeu2

(1+erf(u))du

]−1

, (4)

where the “hat” operation applied toθ andVr is defined by
ẑ ≡ (z − µτ)/σ

√
τ. In the presence of firing rate adapta-

tion, the adapted firing ratef can be obtained as the self-
consistent solution of

f = Φ(mI −α f ,sI), (5)

where the parameterα quantifies the strength of adaptation.
The derivation of Eq. 5 from a minimal model of firing rate
adaptation, and the conditions for it to hold valid, are pre-
sented in detail in La Camera et al (2008).
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Fig. 1 Network activity emerging in dissociated cultures of neurons, detected by substrate arrays of extracellular microelectrodes (MEAs). The
raster plot (upper panels) indicates the occurrence of spikes detected by 7 substrate electrodes and, below, the resulting population firing rate
(scale bars: 60 sec, 10 Hz). Results from 4 MEAs experiments were compared to computer simulations of small recurrent networks of IF neurons,
whose excitatory synaptic coupling was increased in the direction of the arrows. Numbers associated with each markers help identifying the same
experiment in both plots, reporting the coefficient of variation versus the mean, for the distribution of the interburst intervals (IBI) as well as for
the population bursts (PBd). Used and modified with permission from Giugliano et al (2004). Copyrightc© 2004 by the American Physiological
Society.

2 Rhythmic activity and population bursts

Cultures of neurons from rat neocortex exhibit spontaneous,
temporally patterned, network activity (Fig. 1). Neurons en-
zymatically dissociated from embryonic (rat) neocortex can
be culturedin vitro and maintained under healthy conditions
for up to several months in an incubator (Potter and De-
Marse 2001). Neurons remain electrically active (Kamioka
et al 1996; Van den Pol et al 1996), mature and continue
developingex vivo, and spontaneously reorganize into func-
tional synaptic networks (Nakanishi and Kukita 1998) over
the 2D surface of a Petri dish, or of an array of substrate
micro-electrodes (Giugliano and Martinoia 2006). As op-
posed to brain slices, where spontaneous activity is largely
abolished by the deafferentation following acute tissue cut,
neuronal cultures spontaneously display a variety of collec-
tive spiking states (Wagenaar et al 2006; Marom and Sha-
haf 2002). Thus, they offer a unique framework for identi-
fying the response properties of individual neurons relevant
to the collective dynamics of the whole network. In this sec-
tion, we review the application of the mean field approach to
the analysis of patterned rhythmic activity in those networks
(Giugliano et al 2004).

2.1 Recurrent networks of IF neurons reproduce bursting
activity

Small recurrent networks of 100−1000 IF excitatory neu-
rons, incorporating the model parameters identified in the
single-neuron response function experiments reviewed La Cam-
era et al (2008) (see their Table 1), were able to capture

the spontaneous rhythmic activity of Fig. 1 (Giugliano et al
2004). To mimic the experimental conditions, where the ac-
tion of inhibitory neurons is blocked by appropriate selective
chemical antagonists (Giugliano et al 2006), no inhibitory
input was considered in the model network. The simulated
network displayed spontaneously alternating intervals of asyn-
chronous activity at low firing rate, and bursts of action po-
tentials synchronized across the entire population (Fig. 2).
To obtain this behavior, a modest background synaptic activ-
ity, meant to parallel the spontaneous release of neurotrans-
mitter observed in mature and immature cultures, was suffi-
cient. Note that individual model neurons were not intrinsi-
cally bursting cells; instead, the synchronous emergence of
brief epochs of intense firing rate were caused their recur-
rent synaptic interactions. The spatial location, from which
a network-wide synchronization event originates, varied ran-
domly, consistent with the lack of a spatial structure in the
network, and in keeping with the experimental findings (Fig. 1)
(Kamioka et al 1996; Giugliano et al 2004). Varying the av-
erage synaptic coupling strength and the overall number of
synaptic connections mimicked different stages of in vitro
synaptogenesis and development (Kamioka et al 1996). For
very weak coupling, the model network generated no syn-
chronous burst of activity, in agreement to what observed
during the first 5-7 days after plating (Giugliano et al 2006).
For larger but still weak coupling, the network generated rare
and unpredictable population bursts which became more fre-
quent and regular as soon as the excitatory synaptic cou-
pling was increased (Fig. 1). The duration of the synchro-
nized spiking epochs had comparable statistical properties
in simulations and experiments (Giugliano et al 2004).
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Fig. 2 A recurrent network, constituted by 100 excitatory identical IF model neurons, shows a spontaneous transition from a stable resting state
frest to anotherfburst due to the finite-size fluctuations. For the sake of illustration firing rate adaptation was not included (i.e.α = 0 in all neurons,
see Eq. 5), so thatfburst is a stable stationary state of the network (scale bars; 200 ms and 25 Hz/50 mV). The second transitionfburst → frest
is induced by transiently reducingm0 (upper continuous trace). Used and modified with permission from Giugliano et al (2004). Copyrightc©
2004 by the American Physiological Society.

2.2 Mean field analysis of slow rhythmic activity

In Fig. 2, the network flips between two states of activity ei-
ther because of a strong enough finite-size fluctuation, or be-
cause of the application of a transient stimulus. However, in
the presence of firing rate adaptation it is possible to obtain
an alternative sequence of flips between the two stable states
without the application of transient stimuli. We show here
how it is possible to predict this phenomenon by using the
single-neuron response function in the mean field approach.

In the mean field approximation, the total synaptic cur-
rent received by a generic model neuron is Gauss-distributed,
with its steady-state mean and variance given by

mI( f ) = cNJ f τ +m0, sI
2( f ) = cNJ2 f τ/2+ s2

0. (6)

Here, f is the mean firing rate of the network,N is the num-
ber of neurons of the network,c is its “connectivity” (i.e., the
average fraction of connections per neuron), andJ is the am-
plitude of the synaptic weights (Amit and Brunel 1997).m0
ands2

0 reflect the mean and variance of the current generated
by spontaneous neurotransmitter release and other sources
of randomness, assumed to be independent off . The equi-
libria of the population dynamics can be identified as the
self-consistent solution of the mean field equation (La Cam-
era et al 2008):

f = Φ (mI( f ),sI( f )) . (7)

The fixed points at which the slope of the response function
is less than 1 are stable.

For appropriate values ofJ, two stable equilibria can
be found that we name herefrest and fburst , with frest <
fburst (see Fig. 3A, the curve withJ = 12 pA). In the model
network, spontaneous transitions from one of these stable
states to the other can only occur due to fluctuations induced
by finite-size effects (Brunel and Hakim 1999; Mattia and
Del Giudice 2002), or triggered by an external stimulus (as
in Fig. 2).

However, in the presence of firing rate adaptation, the
state pointfburst may destabilize after the neurons undergo
adaptation (Fig. 3B). To understand why this may occur, no-
tice that in the presence of adaptation the fixed points of the
network are given by the solution of the self-consistent equa-
tion

f = Φ (mI( f )−α f ,sI( f )) , (8)

(see Eq. 5). Whenf is very small, like in statefrest , the
adapting term−α f is also small, and the properties of this
state do not change appreciably. Things are different in the
fburst state, however, as shown in Fig. 3B. Intuitively, while
frest remains a stable solution of Eq. 8,fburst is a solution
only transiently, until adaptation has fully built up. This ex-
plains in simple terms the mechanisms behind the suppres-
sion of a single synchronized network event, or “population
burst”, and parallels the transient depression of firing seen
e.g. in Fig. 1.

3 Population response to time-varying inputs

In this section, we show how the single-neuron response
function can be used to predict the dynamic behavior of
networks of spiking neurons. This application goes beyond
the stationary framework in which the mean field approach
is derived, and provides us with an approximated solution
of a complex Fokker-Plank equation in a two or higher di-
mensional space (Brunel and Sergi 1998; Brunel and Hakim
1999; Moreno et al 2002; Nykamp and Tranchina 2001; Four-
caud and Brunel 2002; Moreno-Bote and Parga 2004; Gi-
gante et al 2007a,b). We present a case study where the use
of the stationary response function provides a good approxi-
mation to the full approach (Renart et al 2003). This approx-
imation can be extended to include firing rate adaptation,
generalizing Eq. 5 (La Camera et al 2004).
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Fig. 3 Prediction of slow rhythmic activity from the properties of the single-neuron response function. Each curve is the firing rate of the
population of LIF neurons (ΦLIF ) as a function of the firing rate of the population itself (f ). WhenΦLIF = f , the networks has reached a self-
consistent state, which may be stable (closed circles) or unstable (star), depending on the slope of the response function atf . The slope of the
response can be controlled by changing the value of the synaptic couplingsJ, both in the absence (a) and in presence (b) of adaptation.a. For
J = 8 or 10 pA, only the stable state at low firing rate is stable, named herefrest . ForJ = 12 pA, a state with higher firing rate is also stable, taken
here to represent a population burst (see the text). In these examples there is no firing rate adaptation (α = 0, see Eq. 5).b. Same as (a) in the
presence of firing rate adaptation (Eq. 5 withΦ = ΦLIF ). The stability properties of the network change in the presence of adaptation: whereas
frest is stable also in the presence of adaptation,fburst destabilizes after the neurons undergo adaptation. Adaptation decreases the slope of the
response function, which morphs into the lower curve, taking the network state intofrest . In this state the neurons are negligibly adapted because
of their low firing rate, and the response function becomes the upper curve again, wherefburst is stable. Given the small basin of attraction of
state frest (this can be inferred from its distance, along the curve, from the unstable fixed point marked with ‘*’), an upward fluctuation of the
spontaneous activity is sufficient to bring the network back into thefburst state. This state destabilizes after the neurons adapt, and the sequence
of transitions repeats itself, with the network activity flipping between these two states in an activity-dependent way, as confirmed by simulations
(not shown). Used and modified with permission from Giugliano et al (2004). Copyrightc© 2004 by the American Physiological Society.

3.1 Simplified mean field theory with time-varying inputs

Consider an input spike train of time-varying frequencyνx(t),
targeting each cell of a population of neurons throughx-
receptor mediated channels. Each spike contributes a post-
synaptic current of the form ¯gxe−t/τx , where ¯gx is the peak
conductance of the channels. In the diffusion approxima-
tion this produces an input current,Ix, which is an Ornstein-
Uhlenbeck process,

dIx = − Ix − m̄x

τx
dt + s̄xξt

√

2dt
τx

, (9)

with m̄x = ḡxνx(t)τx and ¯s2
x(t) = (1/2)ḡ2

xνx(t)τx (La Cam-
era et al 2008). Renart et al (2003) have suggested that the
population activity of the network could be well predicted
by

f (t) = Φ(mx(t),s
2
x(t)), (10)

whereΦ is thestationary response function (e.g., Eq. 4), and
mx, s2

x are the time-varying average and variance ofIx. These
evolve according to the first order dynamics ( ˙y ≡ dy/dt):

τxṁx = −(mx − m̄x) (11)

and
τx

2
ṡ2

x = −(s2
x − s̄2

x), (12)

(e.g., see Gardiner 1985). In this approximation, it is as-
sumed that the network activity follows its time-varying in-
put instantaneously. The reason for which this approxima-
tion works is that, in a network with spontaneous activity,

many neurons are close to the threshold for spike emission,
making the response of the network much faster than the
response of any individual neuron (e.g., van Rossum et al
2002). This justifies the assumption that the firing rate of the
population is always at the steady state, despite an input with
time-varying statisticsmx(t), sx(t).

3.2 Extension to networks of adapting neurons

The approach of the previous subsection can be extended to
include firing rate adaptation. Consider the stationary, mean
field model of the population adapted firing rate, Eq. 5, and
write it as follows:

f = Φ(mx − Iα ,s2
x) (13)

Iα = α f , (14)

whereIα , called the hyperpolarization (AHP) current, is a
feedback current driven by the neuron’s instantaneous output
rate f . Iα can be derived to be of form−α f from a minimal
cellular model of AHP current,

dIα
dt

= − Iα
τα

+ ḡα ∑
k

δ (t − tk), (15)

where the sum is over all spikes emitted by the neuron up
to time t andḡα is the peak conductance. In the absence of
actions potentials,Iα decays to zero with time constantτα ,
andα is linked to these cellular parameters byα = ḡα τα .
This model works best in the presence of spontaneous activ-
ity (La Camera et al 2008).
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From Eq. 15 one can show that, in the case of slow vari-
ation of firing rate due to adaptation,Iα follows the neu-
ron’s own instantaneous firing rate with time constantτα
(La Camera et al 2004):

f = Φ(mx − Iα ,s2
x) (16)

τα İα = −Iα +α f , (17)

Note that for a stationary stimulus, i.e.νx constant, after a
transient of the order of max{τx,τα}, one recovers the sta-
tionary model Eqs. 13-14, withm = m̄x, s = s̄x.

In the case of several independent components, they fol-
low their own synaptic dynamics and sum up in the argument
of the response function to give the time-varying firing rate,

f = Φ
(

∑
x

mx − Iα ,∑
x

s2
x

)

, (18)

which replaces Eq. 16. In Fig. 4 is shown the response of
a population of uncoupled LIF neurons to a complex in-
put, comprising an impulsive increase of 1 ms duration at
t = 250 ms and a step increase att = 400 ms (horizontal
bars in Fig. 4) on top of the synaptic current. The synaptic
current was made up of two fast components (τx = 5 ms),
one excitatory (AMPA-like), the other inhibitory (GABAA-
like), plus a third component mimicking slow (NMDA-like)
current (withτnmda = 100 ms). The model makes a good pre-
diction of the population activity, even during the fast tran-
sients. The small discrepancies are due to finite-size effects
(Brunel and Hakim 1999; Mattia and Del Giudice 2002), and
to the approximation used for the stationary response func-
tion (Eq. 4 corrected for fast correlated inputs (Brunel and
Sergi 1998; Fourcaud and Brunel 2002)). To be able to use
this approximation, the synaptic current must be much faster
than the membrane time constant, i.e.,

maxx{τx}≪ τ. (19)

Synaptic current with longer correlation times (e.g., NMDA-
like or GABAB-like) can be approximated by a slowly chang-
ing current, i.e., their variance can be neglected in Eq. 18
(Brunel and Wang 2001).

3.3 Further extensions

The approach of this section can be extended to any model
neuron whose response function,Φ , is known, and not just
to the LIF neuron Eq. 2. In particular, it can be extended
to the conductance-based LIF neuron, with the caveat that
condition Eq. 19 may not be fulfilled for currents with short
time constants (e.g., AMPA-like and GABAA-like). This is
because the effective time constant of the conductance-based
neuron,

τ∗ =

(

1
τ

+geνe +giνi

)−1

, (20)

wherege,i, νe,i are the excitatory (e) and inhibitory (i) input
conductances and firing rates respectively, can reach values
as small as a few ms, depending on the instantaneous firing

0

50

100

f(
t)

 [H
z]

200 300 400 500
0.6

1.2

1.8

time [ms]

I
 [n

A
]

Fig. 4 Time-varying activity of a population of independent, adapting
LIF neurons in response to a noisy, broadband stimulus. (Top) predic-
tion of the adapting rate model, Eqs. 16-17 (gray), compared to the
simulations of 20,000 neurons (black). Shown is the activity after a
transient of 200 ms. The short horizontal bar indicates a pulse-like in-
crease of 1ms duration in the input current. The long horizontal bar
indicates a step-like increase of both the excitatory and inhibitory in-
put current. (Bottom) Average time course of the stimulus (fluctuations
around this average are not shown). See the text and La Camera et al
(2004) for details. Used with permission from La Camera et al (2004).
Copyright c© 2004 by The MIT Press.

rates. When condition Eq. 19 is not fulfilled, the approxi-
mated response function given by Moreno-Bote and Parga
(2005) should be used (see La Camera et al 2004, 2008 for
details).

4 Adaption over multiple time-scales

The simplified dynamic mean field theory of the previous
section could be extended to work in the presence of a sin-
gle adaptation current of the AHP type,Iα . This model of
adaptation is general enough to describe most situations of
interest (Benda and Herz 2003; La Camera et al 2004). How-
ever, firing rate adaptation is a complex phenomenon oc-
curring on several time-scales and affected by different ion
currents (Thorson and Biederman-Thorson 1974; Millhauser
et al 1988; Lowen, S.B. and Teich, M.C. 1992; Xu et al
1996; Sah 1996; Schwindt et al 1997; Powers et al 1999;
Ulanovsky et al 2004; Gilboa et al 2005; Descalzo et al 2005;
Drew and Abbott 2006; La Camera et al 2006; Wark et al
2007). As a consequence, a single adapting component may
not be enough to describe the time course of cortical neu-
rons, even in response to stationary input current (La Cam-
era et al 2006). Despite a large number of adapting processes
acting on different time-scales, an IF reduction of adapting
spike trains could be obtained with no more than 4 indepen-
dent adapting components in the case of pyramidal and fast-
spiking (FS) neurons of the rat somatosensory cortex. These
adapting processes acted on time-scales ranging from a few
ms to tens of seconds (Sec. 4.3). In pyramidal neurons, one
of these components was found to facilitate the firing rate
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(i.e., to increase it) with a time constant of the order of 1s.
In this section, we review the model used to capture the tem-
poral aspect of the instantaneous firing rate in response to
fluctuating inputs with stationary statistics.

4.1 The generalized IF model with multiple adapting
processes

Recall that the model neuron having the quasi-stationary fir-
ing rate given by Eqs. 16-17 is described by a single variable,
the membrane potentialV , which below the spike threshold
θ obeys Eq. 2 withµ = (mI − Iα)/C, andIα given by Eq. 15.

A straightforward generalization of this model can be
obtained by adding two or more independent components,
Iα = ∑k Iαk , in Eq. 16 (La Camera et al 2006). Each of the
component processes obeys an equation like Eq. 15, with
correspondingτk, ḡk such that ¯gkτk ≡ αk, and ∑k αk = α
(negativeαks correspond to facilitating processes, i.e., pro-
cess increasing the firing rate over time). This constraint en-
sures that the quasi-stationary firing rate of each spike train
(reached whent ≫ maxk τk) agrees with that given by the
stationary solution in mean field, i.e., by the self-consistent
solution of Eqs. 13-14.

4.2 Reproducing the temporal response of cortical neurons

The generalized adaptive model has been used to fit the time
course of the firing rate of cortical neurons, defined as the
inverse of the inter-spike interval (ISI) as a function of time,
f (t) = 1/ISI(t), using a Montecarlo procedure (La Camera
et al 2006). The goodness-of-fit was then tested withχ2 test,
using as the objective function the squared difference of the
ISIs, i.e.χ2

ISI = ∑ j(ISIexp
j − ISIth

j )2. ISIth(t) was obtained by
simulating the full IF model described in the previous sec-
tion. Note that it is necessary to consider the correct num-
ber of processes in order to estimate the time constants in-
volved: since∑n

k=1 ḡkτk = α, this constraint will be satisfied
with different values ofτk depending onn, the total num-
ber of processes. The peak conductances ¯gk were given by
the ratioαk/τk (negative ifαk < 0, representing facilitation
instead of adaptation). An example showing the model with
one component of adaptation and its best fit to a FS neuron
of rat somatosensory cortex is shown in Fig. 5.

This procedure was not used to reproduce spike times
with a millisecond precision (e.g., Jolivet et al (2004, 2006)),
but only to capture the time course of the instantaneous firing
rate.

4.3 Time-scales of temporal adaptation in cortical neurons

In response to a stimulation of several seconds with fluctuat-
ing current with stationary statistics, the temporal response
of FS interneurons of layers 2/3 and layer 5 of rat somatosen-
sory cortex could be captured with the generalized adaptive
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Fig. 5 Generalized adaptive LIF model and its best fit of the tempo-
ral response of a layer 5 FS interneuron of rat somatosensory cortex.
Shown (from top to bottom in each panel) are the membrane potential,
the adaptation current (Eq. 15 with time constantτα = 2.2 s), the total
input current, and the instantaneous firing rate (see the text). The input
current was the same as injected into the neuron. In top and bottom
panels, the model is in gray and the data in black. Used and modified
with permission from La Camera et al (2006). Copyrightc© 2006 by
the American Physiological Society.

LIF neuron of Fig. 5 with only two components. The faster
adapting process was of the order of∼200ms; the slower
had a broader distribution of time constants ranging from
∼ 1 to ∼ 10 seconds (La Camera et al 2006). Given that
the maximal interval duration of stimulation was 10s, it is
not excluded that even slower adapting processes could be
present in these neurons.

Contrary to FS neurons, which typically had a consis-
tent response to the same stimulus, pyramidal neurons of
rat somatosensory cortex display a broader range of time
constants and magnitude of the adapting processes involved.
Four processes were identified according to the order of mag-
nitude of their time constants, which were, from faster to
slowest: a few milliseconds (affecting the first few ISIs only),
50-200ms, 0.5-1s (a facilitatory process), and order of sec-
onds.

Despite the possibility to capture the temporal response
of cortical neurons with only a handful of adapting processes,
the distributions of time constants were broad, both within
cells (pyramidal neurons) and across cells (pyramidal and
FS neurons; see Table 3 of La Camera et al 2006 for de-
tails). This variability in response to stimuli and across neu-
rons suggests the possibility of a continuum of time-scales,
which may be the basis for scale-free adaptation (Fairhall
et al 2001b; Drew and Abbott 2006), a phenomenon with
many potential computational consequences (Brenner et al
2000; Fairhall et al 2001a; Drew and Abbott 2006; Wark
et al 2007). Most of these computational consequences find
application in response to stimuli with time-varying statis-
tics; however, it is important to bear in mind that multiple
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Fig. 6 Noisy sinusoidal input currents were injected in cortical neurons firing at 10-20 spikes/sec to probe their dynamic response properties
(a-b) and the impact of input fluctuations. The mean inputm0 was modulated asmI = m0 + m1sin(2πω t), with m1 ≪ m0, while the amplitude
of the background noise (sI) was kept constant. The neuron’s output firing rate was also sinusoidally modulated at the same frequencyω ,
f (t) = f0 + f1(ω)sin(2πω t +φ(ω)), over a wide range of input frequencies, 0−200 Hz (c: single cell; d: population).f0 is the stationary
response function (e.g., Eq. 4 for the case of the LIF neuron),f1 is the response amplitude of the modulated response andφ is its phase shift.
Used and modified with permission from Köndgen et al (2008). Copyrightc© 2008, Oxford University Press.

adaptation processes are also observed in response to inputs
with stationary statistics, as reviewed in this section.

5 Response to sinusoidal inputs in the presence of
fluctuations

The dynamic mean field theory of the previous sections is
a simplified approach which, in those cases where it can be
applied, offers practical advantages to the study of the tem-
poral evolution of the network activity in the presence of
time-varying inputs. In the general case, the full population
density approach should be used, but the equations are com-
plex and are usually solved with perturbative techniques for
the case of weak (but arbitrarily fast) input modulation. In
this section, we reviewed some of the results obtained with
this approach, which dates back to Knight (1972); Treves
(1993) (in the absence of noise), was generalized by Gerst-
ner (2000), and has more recently been undertaken by Brunel
and collaborators (Brunel et al 2001; Fourcaud and Brunel
2002; Fourcaud-Trocmé et al 2003; Fourcaud-Trocmé and
Brunel 2005; see also Mattia and Del Giudice 2002).

The idea behind this approach is to analyze the response
of the network to a weak oscillatory input (i.e., sinusoidal
with frequencyω),

mI = m0 +m1sin(2πω t) , (21)

with m1 ≪ m0, in the presence of input fluctuations with
constant amplitudesI (see e.g. Fig. 6a-b). The response of
the network to this input can be found by solving perturba-
tively a Fokker-Planck equation in series of 1/ω, assuming
that the neuron’s output firing rate is also sinusoidally mod-
ulated at the same frequency,

f (t) = f0+ f1(ω)sin(2πω t +φ(ω)) . (22)

In networks of LIF neurons with instantaneous synapses, the
amplitude of the response modulation (f1(ω)) in the high-
frequency regime is proportional to 1/

√
ω, with a phase lag

of 45 degrees (Brunel et al 2001). In the presence of synap-
tic filtering, both the cut-off frequency and the phase lag are
eliminated (Brunel et al 2001). However, another important
determinant to the response to oscillatory inputs, the mech-
anism for spike generation, is absent in the LIF neuron. For
this reason, generalized models of IF neurons, where a fast
transient response of the membrane potential above a given
threshold can mimic an intrinsic mechanism of spike gen-
eration, were introduced and studied by Fourcaud-Trocmé
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et al (2003) (called nonlinear IF models). These models are
obtained by adding to the right hand side of Eq. 2 a term
ψ(V )/C, which contains the non-linear mechanism under-
lying the generation of an action potential, and a param-
eter ∆T defining its sharpness. The firing rate modulation
at high frequencies depends onψ, being e.g. of the form
1/ω for an exponential function, and 1/ω2 for the quadratic
case (Fourcaud-Trocmé et al 2003). These results are also
valid in the presence of conductance-based synaptic inputs,
and suggest that in general the high-frequency modulation
of the response follows a power lawω−γ , where the expo-
nentγ depends on the nonlinearity of the spike generating
currentψ(V ) (Fourcaud-Trocmé et al 2003). The (unmodu-
lated) background synaptic noise also plays a role in the de-
termination of the linear response (Brunel et al 2001; Four-
caud and Brunel 2002), and so does the presence of firing
rate adaptation (Fuhrmann et al 2002).

These theoretical results provide a number of precise
predictions which were tested experimentally by Köndgen
et al (2008) in rat cortical pyramidal neurons of the somatosen-
sory cortex (Fig. 6). These authors found that the ampli-
tude of the linear modulation (f1(ω)) was generally con-
stant and independent ofω up to rather high input frequen-
cies, below a sharp cut-off of the order of 100−200 Hz. In
this range, no phase-shift was observed other than a phase-
advance, caused by spike-frequency adaptation at frequen-
cies lower than 10 Hz (Fuhrmann et al 2002) (Fig. 6c-d).
This confirmed the role of the background synaptic noise in
removing the resonances at multiples of the average firing
rate responsef0 (Brunel et al 2001; Fourcaud and Brunel
2002), allowing fast time-varying inputs to be encoded undis-
torted (i.e., without a phase lag). Beyond the cut-off fre-
quency range, the high frequency linear response was found
to decay asf1(ω) ∼ ω−γ , with γ > 1 and close to 2, inde-
pendently of the noise correlation time constant (Fig. 6c-d).
This behavior is consistent with a nonlinear IF model with
a very sharp spike, and a nonlinearity which is intermediate
between exponential and quadratic (Fourcaud-Trocmé and
Brunel 2005).

6 Response to dendritic inputs and soma-dendritic
interactions

So far, we have been concerned with those properties of
single neurons and network activity that could be analyzed
assuming a point-neuron model. Point-neuron approxima-
tions may be a good description for small neurons with short
and isotropic dendritic trees. However, the apical dendritic
tree of layer 5 pyramidal neurons extends across all corti-
cal layers with a length of roughly 1.5mm, and integrate in-
puts from different cortical and subcortical sources (Budd
1998; Binzegger et al 2004; Oda et al 2004). Whether the
extended geometry of pyramidal neurons offers real compu-
tational advantages, or whether it only solves the ‘packing
problem’ of collecting a large amount of synapses for a sin-
gle integration process, remains an open issue and it will
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Fig. 7 2-compartmental model of a cortical L5 pyramidal neuron. A)
Beside the basal integration zone around the soma (lower circle) L5
pyramidal neurons show an additional apical integration zone (upper
circle) from where the signaling to the soma is mediated via den-
dritic calcium spike. (B) To capture the spatial input structure we con-
sider a 2-compartment neuron model with a voltage-dependent cal-
cium current (ICa) in the dendritic compartment and a spike-triggered
after-hyperpolarization current (ICa) in the somatic compartment. (C)
Dendritic (‘top-down’) input increases the gain of the somatically
(‘bottom-up’) induced current-to-rate response function via backprop-
agating action potential induced calcium (BAC) firing. This top-down
input represents a multiplicative modulation of the somatic firing rate
(with a factor≥ 1) which can be throttled by inhibitory dendritic input.
Hence, the dendritic tree determines whether synaptic input either acts
as ‘driver’, ‘modulator’, or ‘disruptor’ (Sherman and Guillery 1998),
depending on whether it projects to the somatic region or the apical
tuft, and whether it acts through excitation or inhibition.

not be discussed here. Instead, we will focus on some of the
phenomena that depend critically on such extended geom-
etry and cannot be captured with point-neuron approxima-
tions, like the dendritically-induced gain modulation of the
somatic response and its control by inhibition (Larkum et al
2004; Murayama et al 2008). This will allow us to character-
ize the response of layer 5 pyramidal neurons to noisy input
currents which are simultaneously injected in the soma and
in the apical dendrite.

6.1 Dendrites can differentiate between drivers, modulators
and disruptors

To structure the possible functional interactions among neu-
rons, it has been suggested to classify neurons into drivers,
modulators, and disruptors (Sherman and Guillery 1998).
While drivers act additively on the output frequency, mod-
ulators act multiplicatively and disruptors block either of
them. The multiplicative scaling of the neuronal response
function is an efficient mechanism for modulating the neu-
ronal responses in one cortical area by the activity in another
area, which may be an important mechanism for cognitive
processing (Salinas and Thier 2000).

It has been noted that a point neuron is able to inte-
grate both drivers and modulators with the same type of
ionotropic synapses (Chance et al 2002; Abbott and Chance
2005). Here we show that an extended dendritic tree allows
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to incorporate all three operations by varying the location of
the synaptic inputs (Fig. 7).

Experimental data and modeling studies confirm that ex-
citatory synaptic input projecting to the proximal dendritic
tree can act efficiently as a driver (i.e., it shifts the response
function to the left), while synaptic input to the distal den-
dritic tree can also act as a modulator (i.e., it also increases
the gain of the response function), see Fig. 8A and (Larkum
et al 2004). The basic mechanism allowing the distal den-
dritic input to modulate the gain relies on the generation
of dendritic calcium spikes. These calcium spikes may be
triggered by synaptic inputs on the distal dendritic tree im-
pinging on a back-propagating action potential (AP). The
calcium-induced dendritic depolarization propagates forward
to the soma where it triggers one or several additional APs.
Because this mechanism generates two or more APs out of
one single AP, it represents a multiplicative operation on the
response function. Since it is triggered by the joint emission
of a back-propagating AP and a dendritic calcium spike, this
mechanism is referred to as backpropagation-induced cal-
cium (BAC) firing (see also Larkum et al 1999).

In the experimental data, the multiplicative modulation
is also accompanied by a left-shift of the response function,
which otherwise characterizes the action of drivers (Fig. 7).
While in the experiment the left-shift arises from a rather
proximal positioning of the dendritic electrode, distal synap-
tic input further away from the soma will undergo a stronger
attenuation and will barely contribute to the direct somatic
depolarization. However, it will still contribute to the gen-
eration of a calcium spike in the apical dendrite and thus
to a gain modulation of the somatic current-to-frequency re-
sponse function.

Beside the action of somatic and dendritic excitation as
drivers and modulators, respectively, inhibitory synaptic in-
puts efficiently operates as disrupters of both drivers and
modulators. Inhibition may shunt the somatic voltage when
the excitatory synaptic input projects proximally to the soma
(Doiron et al 2001; Mitchell and Silver 2003), or it may tran-
siently block the calcium conductance and thus disrupt the
gain modulation due to calcium spikes when the excitatory
synaptic input projects to the distal dendrite (Larkum et al
1999; Pérez-Garci et al 2006).

6.2 Two-compartmental IF model with dendritic calcium
spikes

The phenomena described in the previous subsection can be
explained by an extension of the LIF point-neuron model to
include two compartments, representing the somatic and the
distal dendritic regions, respectively (Fig. 7A,B). A success-
ful model of the calcium-induced dendritic depolarization
requires the integration of some active dendritic current (ICa,
Fig. 8C). To capture the fact that a dendritic calcium spike is
only triggered by a fast voltage up-sweep across some volt-
age interval, a dynamic activation and inactivation of the cal-
cium conductance must be considered (this can be done in

terms of activation and inactivation variables,m andh, re-
spectively, see Larkum et al (2004)).

Because in the experiment the calcium-induced somatic
AP bursts often cease even when the dendritic membrane is
still depolarized, a potassium AHP current (IAHP, see Eq. 15)
was included in the somatic compartment (Figs 7B and 8B,C).
This transiently activated leak current represents a sort of
security valve, as it prevents the model neuron from being
trapped in a calcium-induced depolarization plateau where
it would continuously burst.

The two-compartmental IF model reproduces the firing
rates of L5 pyramidal neurons in response to somatic and
dendritic current injections (Fig. 8A). It also reproduces the
increased gain of the somatic current-to-frequency curve in
the presence of a dendritic background input (Fig. 8A and
Larkum et al (2004)). When injecting a noisy somatic input
current only, the individual spikes can be well predicted (Fig.
8B). However, when injecting a dendritic input currents, it is
just the strong dendritic voltage deflection (‘calcium spike’)
and the induced AP burst which can be predicted, but not
the individual spike times within the burst (Fig. 8C). A de-
tailed description of the 2-compartmental model is provided
in Larkum et al (2004).

6.3 Somatic response function for joint somatic and
dendritic inputs

In this section we provide an approximated formula for the
somatic response function of the 2-compartmental IF model
of the previous sub-section. We start from an approximation
to the response function Eq. 4 for a single compartment IF
neuron (Abbott and Chance 2005),

f (1) =
(V −θ)

τ(θ −Vreset)
(

1− e−a(V−θ )/σV

) , (23)

whereτ = RC is the membrane time constant. Here,V is the
average of the membrane potential when the spiking gener-
ation mechanisms are inactivated, andσV is its standard de-
viation. These parameters are proportional to the mean and
standard deviation of the input current,mI andsI , by a factor
R. When currents of the Ornstein-Uhlenbeck type (Eq. 9) are
injected both into the soma and the distal dendrites, the cor-
responding somatic and dendritic voltages are characterized
by VS, σVS andVD, σVD , respectively.

Recall that the induction of a dendritic calcium spike re-
quires a fast dendritic voltage sweep crossing a certain volt-
age threshold. It is possible to trigger a calcium spike by
dendritic input currents only, but in the presence of a back-
propagating AP far less dendritic input is needed. We there-
fore concentrate on those calcium spikes which are triggered
by the joint action of a back-propagating AP and a simul-
taneous dendritic voltage sweep. This will lead directly to
a gain modulation of the somatic current-to-frequency re-
sponse function (see Eq. 26 below).

The specific requirement on the voltage transient arises
from the narrow window formed by the voltage-dependent
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Fig. 8 Somatic and dendritic response functions and voltage traces for
the 2-compartmental model. A) Firing rates of the model neuron in
response to noisy input currents (sI = 300pA) of varying mean (mI)
injected individually in the soma (line starting aroundmI = 250pA;
circles representing experimental data) and the dendritic compartment
(line with onset aroundmI = 1000pA). When applying the same so-
matic currents in the presence of a noisy dendritic input (fixed to
mI = 750pA andsI = 300pA) the gain of the neuronal response func-
tion with respect to the somatic input is increased (dashed curve).
Blocking the calcium current in the dendrite would lead to a rather
shallow response function for the dendritic current injection (dotted
curve). B) The somatic (VS) and dendritic (VD) model voltage trace in
the case of pure somatic current injection closely predicts the experi-
mental spike times. The thin smooth and noisy curves show the corre-
sponding experimental traces. The lower panel confirms that no den-
dritic calcium current (ICa) is elicited in the model, whereas a strong
after-hyperpolarization current (IAHP) is triggered after each spike. C)
In the presence of a dendritic input, the dendritic calcium current (ICa)
is responsible for the strong dendritic depolarization (VD) generating
the ‘BAC-burst’ (VS). The parameters used in these simulations were
(see Sec. 1.1 for a definition of the symbols, with ‘S’ standing for
somatic compartment, and ‘D’ standing for dendritic compartment):
RS = RD = 45mV, RT = 70mV, Vrest,S = −70mV, Vrest,D = −60mV,
CS = τS/RS = 13/45nF, CD = 5/45nF. The AHP current was as in
Eq. 15, with the inclusion of a reversal potential of−90 mV and
gα = 5nS,τα = 60ms. The calcium current (ICa, see Larkum et al 2004
for details) is specified bygCa = 70nS, ECa = 120mV, m∞

1/2 = 0mV,

h∞
1/2 = −10mV, slope(m∞) = 1/3(mV)−1, slope(h∞) = 1/5(mV)−1,

τm = 15ms andτh = 80ms. A somatic AP is elicited whenVS crosses
the thresholdθ = −47mV and this activates an additionalIAHP com-
ponent. Subsequently,VS is clamped for 1ms at 20mV and then reset
for another 1ms at−52mV, right 5mV below the threshold. To mimic
the back-propagating AP, the dendritic voltageVD is instantaneously
raised by 20mV with a delay of 4ms afterVS crossed the threshold.

activation and inactivation functions (m∞ and h∞, respec-
tively) which are typical for calcium currents (Koch 1999;
Larkum et al 2004). Since only a weak steady state window
current is possible with these gating functions, a slowly in-
creasing dendritic voltage would merely inactivate the cal-
cium conductance without being able to trigger a calcium
spike. Dendritic voltage traces produced by an Ornstein-Uh-
lenbeck process will therefore only lead to calcium spikes
if the membrane potential deflections (characterized byσVD)
are large, and especially if these deflections arise together

with a dendritic steady state depolarization (VD) which is
strong compared to the AP threshold (θ ). Hence, a criterium
for the generation of a dendritic calcium spike given a so-
matically induced AP may have the form

σVD(1+VD/θ) ≥ θ , (24)

where for the sake of simplicity we have chosen the same
thresholdθ for the generation of a calcium spike as for the
generation of an AP. The probability,PCa, of a dendritic cal-
cium spike, conditioned on the earlier occurrence of a so-
matic AP within a short time interval, is a saturating, increas-
ing function of theVD/θ term in Eq. 24; it can be expressed
as

PCa =
(

1− e−⌊σVD (1+VD/θ )−θ⌋/b
)

ρ (25)

whereb is a positive constant in units of voltage andρ is a
scaling factor between 0 and 1.

Next we consider the impact of the dendritic calcium
spikes on the neuronal response function. The firing rate
f (2) of the 2-compartment model is due to the APs gener-
ated by the somatic current injection and the additional APs
generated by BAC-firing. Each AP induces an iterative, al-
beit short-lived, process: a dendritic calcium spike occurring
with probabilityPCa causes, on average, a subsequent AP at
the soma, which in turn has a probabilityPCa to generate an-
other AP due to a calcium spike, and so on.f (2) can then be
obtained as the sum across all iteratively induced APs, start-
ing with basic firing ratef (1) of the single compartment,

f (2) = f (1)
∞

∑
i=0

(PCa)
i =

f (1)

1−PCa
, (26)

where the right-hand-side is obtained by summing the geo-
metric series. Alternatively, one may obtainf (2) from solv-
ing the recursion relationf (2) = f (1) + f (2)PCa. Plugging the
expressions forf (2) andPCa (Eqs 23 and 25, respectively)
into the right-hand side of Eq. 26, one obtains the firing rate
of the 2-compartment IF model (see Fig. 9),

f (2) =
g(VD,σD)(V S −θ)

τ(θ −Vreset)
(

1− e−a(VS−θ )/σVS

) , with (27)

g(VD,σD) =
1

(1−ρ)+ρe−⌊σVD (1+V D/θ )−θ⌋/b
. (28)

Expression (27) generalizes the 1-compartmental response
function (23) to the case of two compartments, where the
2nd dendritic compartment acts as a gain modulator. The so-
matic and dendritic voltage variablesVS, σVS andVD, σVD ,
respectively, are related to the somatically and dendritically
injected Ornstein-Uhlenbeck currents.

The 2-compartment response function (27) neglects the
passive propagation of the dendritic voltage towards the soma,
and of the somatic voltage towards the dendrites. A passive
dendro-somatic attenuation could be included into the model
by substitutingVS →VS +αDVD andσS → σS +αDσD, with
αD representing a dendritic attenuation factor. The passive
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Fig. 9 Somatic response function for different dendritic inputs in the
approximation of Sec. 6.3. A) Firing ratef (2) for the 2-compartment
model (Eq. 27) as a function of the average somatic depolarization
VS, plotted for different values of the average dendritic depolariza-
tions (VD = 0,10,20,30mV from bottom to top, with fixedσVS =
20mV andσVD = 15mV). The star represents the voltage threshold
θ = 20mV. The lowest curve, representing the caseVD = 0 (but with
σVD = 15mV), almost coincides with curve for pure somatic injection
(Eq. 23). B) The gaing of the response functions in A as a function
of average dendritic depolarizationVD in the presence of a fixed noise
amplitudeσVD = 15mV (Eq. 28). The dots specify the values forVD
and g used to obtain the 4 curves in A. Other parameter values:a = 5,
b = 5mV, ρ = 0.5, α = 0.2, τ = 30ms.

component would cause a left-shift in the response function,
whose strength is quantified byαD. In the experiments, this
factor appeared to be relatively large (∼ 0.4). However, since
in the experiments the dendritic electrode did not reach the
calcium triggering zone at the apical bifurcation (Larkum
et al 2004), this factor may be much smaller in reality. Thus,
the left-shift of the response function induced by the passive
dendritic input may be negligible compared to the induced
gain increase (cf. Fig. 9A).

7 Discussion

Large populations of neurons have a large number of de-
grees of freedom, giving rise to very rich and complex col-
lective dynamics. In the network models reviewed in this
article, the study of such a rich behavior can be simplified,
because it can be reduced to the study of the time develop-
ment of the distribution of the variables that characterize the
single-neuron dynamics (e.g., the depolarization in the case
of IF models). However, even with such a simplification, the
equations governing the network dynamics are still difficult
to solve. For example, in the case of weak enough synap-
tic interactions, the equation governing the distribution of
the depolarizations of IF neurons is a Fokker-Planck equa-
tion. Although the dimensionality of the equation is low (the
only dynamical variable is the depolarization), the bound-
ary conditions, corresponding to the threshold for emitting
a spike and to the lower bound of the depolarization, make
it extremely difficult to find a general analytical solution.
The only exact solutions known can be obtained under the
assumption that the statistics of the synaptic input are sta-
tionary (La Camera et al 2008). For simple IF models, how-

ever, it is possible to simplify further the study of the time-
dependent network dynamics in at least two situations: 1)
when the relaxation dynamics of the Fokker-Planck equation
are significantly faster than the time scale over which the in-
put varies (as in the case of slow synaptic currents), and 2)
when the amplitude of the modulations of the input statis-
tics are small (perturbation theory). In both cases, we have
shown here that it is possible to reduce the study of neural
populations to the analysis of the response of single neurons
to noisy inputs. This approach is possible also in the case
of real neurons, for which the responses can be measured in
experiments.

What could these experiments reveal that was not known
for the neuronal model used to develop the theory? The ex-
periments provided us with an estimate of the parameters
of the neuron model, which is crucial for quantitative mod-
eling studies. However, there are at least two other impor-
tant, unexpected results that emerged from the analysis of
the experimental measurements and that turned out to be in-
dependent of the specific neuronal model that was used to
design the experiment itself. The first result is that popu-
lations of real neurons respond fast (Köndgen et al 2008),
significantly faster not only than any single neuron (which
was expected), but also faster than predicted by simple IF
models. The linear response to sinusoidal currents is not at-
tenuated up to frequencies of a few hundreds Hz. The second
unexpected result is related to adaptation on multiple time-
scales. A quantitative analysis of the response of rat pyra-
midal and fast-spiking neurons to long lasting, noisy stimuli
with stationary statistics revealed that the activity of corti-
cal neurons is modulated over multiple time-scales ranging
from hundreds of milliseconds to seconds. The response of
the neurons could be modeled with IF neurons with multi-
ple mechanisms of adaptation and facilitation. Every neuron
had up to 4 mechanisms operating on different time-scales.
Moreover, the time-scales varied widely from neuron to neu-
ron, allowing a population to show responses on almost a
continuum of time-scales.

In the second part of this review, we have considered the
single-neuron response to inputs that are distributed on the
dendritic tree. The simplicity of the IF model contrasts with
the complexity of the dendritic arborization of some pyra-
midal neurons, with their regenerative membrane currents
and clustered synaptic inputs (Spruston 2008). The extended
geometry of cortical neurons and their non-linear dentritic
properties may offer additional computational power by ex-
ploiting nonlinear dendritic properties (Poirazi et al 2003;
Polsky et al 2004), like the multiplicative gain modulation
of the somatic response function reviewed here.

A nonlinear modulation of the response function may
originate from many mechanisms, e.g., could be controlled
by neuromodulators (Zhang and Arsenault 2005; Thurley
et al 2008), or by the strength of after-hyperpolarization cur-
rents (Higgs et al 2006), or through a balanced change of
noisy excitation and inhibition (Doiron et al 2001; Chance
et al 2002; Longtin et al 2002; Mitchell and Silver 2003).
These forms of gain modulation are implementable in point
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neurons, and were not considered here. Other forms require
instead multi-compartmentalization, like those arising from
passive dendritic integration (Prescott and De Koninck 2003;
Mehaffey et al 2005; Capaday and van Vreeswijk 2006).

The form reviewed here in some detail is an active form
of dendritically-controlled gain modulation, i.e., mediated
by BAC firing and dendritic calcium spikes. This phenomenon
relies on regenerative dendritic calcium conductances and
can be tuned by acting directly on those conductances (Larkum
et al 2004), e.g. by selectively blocking them through acti-
vation of dendritic GABAA and GABAB receptors (Pérez-
Garci et al 2006). These tuning options extend the func-
tionality of pyramidal neurons by allowing them to distin-
guish between synaptic drivers, modulators and disruptors
(see Sherman and Guillery 1998 and Fig. 7C), and recent
experimental evidence from awake rats suggests that these
different types of inputs may also play a functional rolein
vivo (Murayama et al 2008).

The mechanism of BAC-firing and BAC-firing induced
gain modulation is related to a type of neural code, burst-
timing code, which is different from both firing rate codes
(e.g., of Fig. 4 and 8A) and spike-timing codes. A calcium
spike, triggered by the joint occurrence of a back-propagating
AP and the dendritic input, elicits in turn several consecutive
sodium spikes at the soma within roughly 30ms (Larkum
et al 1999). This mechanism allows signalling to downstream
neurons that some events have occurred in coincidence. Since
inputs to the soma and the apical tree may originate from dif-
ferent cortical sources (Budd 1998; Oda et al 2004), burst-
timing could provide a way to detect and signal the coinci-
dent occurrence of bottom-up and top-down signals.

For us, the ability of simplified models to capture much
of the rich and varied experimental phenomenology of cor-
tical neurons embedded in anin vivo-like environment, is
an indication of the success of the reductionist approach
in Neurophysiology. We also hope that recent observations,
like gain modulation by distal dendritic inputs or the diver-
gence of the response functions in prefrontal cortex neurons
(Arsiero et al 2007), can open the door for new quantitative
models and their application to analysis of network behavior.
While such an interaction between theory and experiment is
a widely consolidated tradition in Physics, it is becoming
only slowly established in Neuroscience.
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