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Abstract: Deep brain stimulation (DBS) is an effective electric therapy to treat movement dis-
orders associated with chronical neural diseases like essential tremor, dystonia and Parkinson’s
disease. In spite of a long clinical experience, the cellular effects of the DBS are still partially
unknown because of the lack of information about the target sites. Recent studies, however, have
proposed the local field potentials (LFPs) in the targets as a useful tool to study the behavior
before and after stimulation [Priori et al., 2006].
Our work investigates the relationship between DBS settings and LFPs in a detailed simulator
of the electric activity in the Vim (one of the preferred surgical targets) under tremor conditions.
A least-square approach is adopted to identify a functional, input-output ARX model structure
for the Vim and evaluate the effects of the stimulation on its electric patterns. Based on it,
an adaptive minimum variance control scheme is then proposed to restore the spectral features
of the Vim’s LFPs to reference values, i.e., as in subjects not affected by movement disorders.
Results indicate good performances in tracking the reference spectral features through selective
changes in the low (2-7 Hz), α (7-13 Hz) and β (13-35 Hz) ranges.

Keywords: Identification; control of physiological variables; disease control; neurosystems;
chronic therapy.

1. INTRODUCTION

Deep brain stimulation (DBS) is an electric therapy intro-
duced about 15 years ago and currently used in Neurology
to treat the motor symptoms associated with chronic de-
generative diseases, like essential tremor (ET), dystonia,
and Parkinson’s disease (PD). It consists of a regular
high frequency stimulation of specific subcortical sites
involved in the movement-related neural patterns of the
extrapyramidal system [Halpern et al., 2007]. Constant-
width current pulses are generated at a frequency between
130 and 185 Hz by an implanted neural stimulator and
delivered through subcutaneous wires and microelectrodes
to one among the subthalamic nucleus (STN), the internal
part of the globus pallidus (GPi) or the nucleus ventralis
intermediate of thalamus (Vim) [Anderson et al., 2005,
Kumar et al., 2003]. The choice of the target depends on
the type of disease to be treated, with the Vim usually
preferred in the case of essential or parkinsonian tremor
and the motor part of STN or GPi in case of dystonia or
PD [Wichmann, and DeLong, 2006]. Associated with an
appropriate pharmacological therapy, DBS greatly reduces
most of the motor symptoms, limits drug-induced dyski-
nesia, and frequently improves patients’ ability to perform
activities of daily living with less encumbrance from motor
fluctuations.

Though several studies have investigated the electric prop-
erties of thalamic, subthalamic, and pallidal neurons and
the corresponding neural anatomical patterns, e.g., [Des-
texhe et al., 1998, Beurrier et al., 1999, Nambu, and
Lĺınas, 1994, Sato et al., 2000], how DBS works is still

partly unknown. Numerical simulations involving detailed
3D models of the neurons in the Vim ([McIntyre et al.,
2004a]) and the STN ([Miocinovic et al., 2006]) predict
that DBS would selectively activate large diameter fibers
by suppressing intrinsic firing in the somas and eliciting
an efferent output at the stimulus frequency in the axons.
The independence of firing in the cell bodies and axons
is then suggested as a possible explanation of apparently
contradictory experimental results about the effects of
DBS in primates (e.g., [Dostrovsky, and Lozano, 2002,
Hashimoto et al., 2003]). However, a true validation of
these results at the cellular level is difficult at the moment,
due to the size and location of the nuclei of interest, whose
exact identification and targeting is a challenging task.
Moreover, several functionally distinct neural pathways
run through them and produce a complicated arboriza-
tion and reciprocal electrical and chemical influences [Sato
et al., 2000]. As a consequence, it is hard to numerically
reproduce scenarios that exactly match settings from in
vivo experiments, and predict to what extent topology of
the cellular interactions and synapses may influence the
effects of the stimulation on single cells.

These considerations may account for the methodological
and technical constraints that affect all the approaches
currently adopted in literature to improve DBS efficacy,
safety and power consumption. In particular, state-of-the-
art knowledge prevents from a thorough comprehension of
the motor and neural effects induced by changes in the
parameters of stimulation (e.g., frequency, amplitude and
pulse-width). Studies on ET [Kuncel et al., 2006] and PD
patients [Moro et al., 2002] prove a nonlinear dependency
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Fig. 1. 100 TC relay neurons uniformly distributed within
3 mm from a stimulating point source electrode (C,
•). 3 distinct LFPs recording electrodes are placed
within 2 mm from C (Ri with i = 1, 2, 3, ♦).

of tremor intensity (ET case), bradykinesia and rigidity
(PD case) on frequency/amplitude of stimulation, and
show that safety and efficacy increase when short-width
pulses are used. However, since the main causes for that
are still partly unknown, no quantitative constraint can be
derived for the design of the stimulus waveform.

In such a context, the goal of our work is twofold: firstly,
it aims at proving that, independently of the physiologic
knowledge of the cellular mechanisms in neurons, an effec-
tive phenomenological description of the tremor conditions
and the DBS effects can be achieved by exploiting a marker
of the actual overall state of the subject. Then, starting
from such a model, it is shown that a feedback control
scheme can be useful to restore healthy conditions through
an automatic tuning of the DBS parameters. In details,
the extracellular local electric potentials (also called “local
field potentials”, LFPs [Kandel et al., 2000]), recordable at
the site of stimulation by DBS-like electrodes, are used as
a measure of the actual conditions in PD patients, and are
related to the delivered stimulus waveform (input) through
a linear autoregressive (ARX) input-output (I-O) model
[Ljung, 1999]. A generalized minimum variance control
law, then, compares the LFPs with a reference signal and,
based on that model, modulates the input current. A self-
tuning scheme [Bittanti, and Campi, 1994] is adopted to
recursively update the model and controller parameters in
order to improve the overall performances.

Our approach was proved in simulation on a detailed
reconstruction of the neural electric activity in the human
Vim around the DBS electrode under PD conditions. The
Vim was chosen due to the strong cause-effect relationship
between Vim’s electric activity and forearm tremor proved
in PD patients [Lenz et al., 1988], and the efficacy of the
DBS for tremor suppression. In fact, physiologic maps from
[Hua, and Lenz, 2005] proved that the thalamocortical
(TC) relay neurons in the Vim respond either to active
or passive movements, while single unit analysis in [Lenz
et al., 1988, Magnin et al., 2000] showed that the Vim
cells fire bursts of spikes with the same frequency as the
forearm tremor and phase-locked with it in PD patients.
The reference signal, instead, was numerically built from
experimental single-unit data recorded in the Vim of peo-
ple not affected by motor disorders and whose pathologies

Fig. 2. Cable model of the TC relay neuron [McIn-
tyre et al., 2004a]. MYSA=myelin attachment seg-
ment; FLUT=paranodal segment; STIN=internodal
segment; NODE=node of Ranvier.

presumedly do not affect the firing properties of the motor
part of the Vim [Molnar et al., 2005].

2. METHODS

The study assumed that a stimulating point source elec-
trode (C in Fig. 1) was inserted in an infinite homo-
geneous isotropic volume conductor (resistivity ρ = 500
Ω-cm) where several TC relay neurons were randomly
and uniformly placed within 3 mm from C (the distance
from the stimulating electrode to each neuron was defined
between C and the center element of the cell body). A
multi-compartment cable model of the TC relay neuron
(Fig. 2) with explicit 3D geometrical representation of
the dendritic arbor, cell body, and myelinated axon and
nonlinear membrane dynamics was used [McIntyre et al.,
2004a]. Geometry of the compartments was obtained from
the 3D reconstruction of a filled cell [Destexhe et al., 1998].
The extracellular potential (LFP) generated in the sur-
rounding space by the superposition of the electric activity
of the dendrites, paranodes, and nodes of Ranvier from
each neuron was computed in different points for several
stimulation settings. Stimulus profiles and induced LFPs
allowed to study the overall cellular activity as a function
of the applied stimulus.

In details, the effects of the point source stimuli applied
in C on the neurons were computed by assigning to each
compartment the potential induced at its position. Due to
the 3D geometry (i.e., each compartment had a different
position in the space), the responses of cells at the same
absolute distance from the electrode were heterogeneous.
Similarly, the LFPs induced in the extracellular volume by
the concurrent activity of the neurons were simulated by
representing each compartment as a point source of cur-
rent, whose amplitude was set to the net transmembrane
current value. At any point P, then, the LFP was:

φ(P, t) =

N
∑

k=1

l
∑

h=1

ρIk,h(t)

4πrk,h(P )
, (1)

where φ(P, t) is the LFP evaluated in P at time t, Ik,h(t) is
the net transmembrane current in the h-th compartment
of the k -th neuron at time t, rk,h(P ) is the absolute
distance of such compartment from P, N the total number
of neurons, and l is the number of compartments for
each neuron. No connections or interactions between the
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Fig. 3. Self-tuning control scheme. ↓= downsampling. ↑=
upsampling. RLS= identification procedure using the
RLS algorithm.

neurons were assumed. The LFPs were evaluated in 3
points uniformly chosen within 2 mm from C (Ri, i =
1, 2, 3 in Fig. 1) to test the dependence of the LFP spectral
properties on the LFP recording location.

The simulations were performed on 3 different populations
of N = 100 TC relay neurons for comparison purposes,
and run in NEURON environment [Carnevale, and Hines,
2006]. The TC relay neuron model was integrated with
CVODE (step 0.02 ms). The LFPs were computed at each
time step and recorded at 25 kHz to reduce memory re-
quirements. Analysis and signal processing were performed
in MATLAB R© (Mathworks, Natick, MA).

2.1 Simulation of PD Tremor Conditions

The intrinsic firing/bursting activity of the neurons meant
to mimic the behavior of real cells recorded in the Vim of
PD patients with tremor at rest [Magnin et al., 2000], and
was simulated by injecting ad hoc designed intracellular
pseudo-random currents in the somas. In particular, a
detailed experimental analysis of the thalamic firing pat-
terns under PD conditions [Magnin et al., 2000] classified
neurons from the Vim in 4 groups based on the frequency
and features of the spikes:

• sporadic neurons: they fire single spikes or duplets
irregularly, i.e., their inter-spike interval (ISI) distri-
bution is unimodal and the autocorrelation histogram
flat;

• random LTS bursting neurons: they have auto-
correlation histograms with only one peak and ISI
histograms with a weak bimodal distribution. Burst-
ing activity is due to low-threshold calcium currents;

• rhythmic LTS bursting neurons: as the previous
group, but the autocorrelation histograms exhibit at
least two successive peaks and the ISI histogram has
a marked bimodal distribution;

• tremor-locked bursting neurons: they burst rhyth-
mically locked with the forearm tremor at 4 Hz. Even
if the firing pattern leads to ISI and autocorrelation
histograms similar to those of the previous group,
intrinsic features and ionic origins of the bursts are
significantly different from the LTS case.

Intracellular currents were designed as random sequences
of cathodic monopolar rectangular pulses. The pulse-width
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Fig. 4. Parkinsonian LFPs in R1 when no DBS (a) or
feedback control (b) was applied. The reference signal
is in (c), Istim in (d).

and the distribution of the inter-pulse intervals were cho-
sen to reproduce the inter-burst features (i.e., firing rate,
number of spikes per burst, shape of the ISI histogram) of
original data in [Magnin et al., 2000]. For each population,
the percentages of neurons assigned to each group were
compliant with those reported in [Magnin et al., 2000]
for the ventro-lateral posterior nucleus ventral division
of the thalamus, roughly coincident with the Vim. The
intra-burst features, instead, were neglected since of lim-
ited interest for the construction of the extracellular field
potentials. Phase delays uniformly picked between 1 and
4 ms were applied to the intracellular currents to increase
the variability across the neurons, while a white noise real-
ization (mean µ = 0 nA, variance σ2 = 3) was injected into
the somas to reproduce membrane voltage fluctuations
(see [Kuncel et al., 2007] and references therein).

2.2 Minimum Prediction Error Identification

For each point Ri, i = 1, 2, 3 where the LFP was computed
according to (1), the relationship between local field po-
tential and extracellular stimulus was investigated. Input
(extracellular stimulus) and output (LFP) signals were
low-pass filtered (cutoff frequency: 100 Hz), downsampled
to fs = 1250 Hz and detrended. An ARX I-O model was
then identified by minimizing the prediction error through
the recursive least-squares (RLS) algorithm [Ljung, 1999].
The identification procedure used a 10000 ms-long quasi-
white-noise-like input signal w to persistently excite the
neural population. The time shape of w was designed as
a sequence of 100 µs-long monopolar cathodic rectangular
pulses whose instantaneous frequency (i.e., the inverse of
the ISI following the pulse) was uniformly chosen between
the values: 10, 35, 60, 90, 130, and 185 Hz, which were
experimentally proved to affect the tremor intensity in
ET patients [Kuncel et al., 2007]. The pulse amplitudes,
instead, were uniformly picked from the values required
to activate 10%, 30%, 50%, 70%, and 90% of the neurons
in each population with a train of 100 µs-long cathodic
rectangular pulses at 185 Hz. To improve the procedure,
the I-O signals were split in 2 segments, one for identifica-
tion (65% of the length) and the other for cross-validation
(35%) purposes. The final model structure was:

A(z)y(k) = B(z)u(k − 1) + ǫ(k), (2)
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Fig. 5. (a) 4 types of firing neurons in the Vim. (b) ISI
histograms (bin: 1 ms). (c) autocorrelation functions.
From top to bottom: sporadic, random LTS bursting,
rhythmic LTS bursting, and tremor-locked cells. Peak
at 0 ms is truncated in the autocorrelation.

where A(z) = 1 + a1z
−1 + . . . + anaz−na and B(z) =

b0 + b1z
−1 + . . . + bnb−1z

−nb are polynomials in the Z-
domain of order na and nb respectively, while y(k) and
u(k) are the filtered output and input signal at time kT
respectively, with T sampling time (T = 1/1250 = 0.8 ms).
ǫ(k), instead, accounts for identification residuals, due to
not modeled dynamics or exogenous inputs (e.g., synaptic
input to the neural population). For control purposes it
was assumed na = 6 and nb = 1 (see Section 2.3).

2.3 Control Scheme

Feedback control aimed at changing the overall electric
behavior of the neural population and tracking the power
spectrum of the reference signal. Moreover, it pursued
robustness in goal achievement against model errors and
measurement noise without affecting movement-related
signals. For that reason, a model-based minimum variance
control law was designed [Åström, and Wittenmark, 1995].
It reshaped the I-O relationship of the neural population
and rearranged the power spectral density of the output.
In details, the feedback loop in Fig. 3 was implemented,
where the transfer functions F (z), G(z), and H(z) were:

F (z) = z
(

MD(z) −
A(z)MN (z)

γ0

)

G(z) =
γ0

MN (z)B(z)

H(z) = MN (z)

(3)

with A(z), and B(z) given by (2) and MN (z), and MD(z)
being the numerator and denominator of the desired closed
loop I-O transfer function respectively. To reduce the
model order, it was fixed a priori na = 6 and nb = 1 in
(2) because, independently of the position of the recording
electrode and the neural population, such orders were
proved to keep the prediction error power on the validation
data lower than 1% of the true data power. Without loss
of generality, it was assumed that:

MN (z) = γ0 + γ1z
−1 + . . . + γnN

z−nN

MD(z) = 1 + δ1z
−1 + . . . + δnD

z−nD

(4)

with nN and nD, γi i = 0, . . . , nN and δj j = 1, . . . , nD

chosen so that the ratio MN (z)/MD(z) was a 2nd order
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Fig. 6. Bode diagrams of the TF identified on data
recorded by R1 in disease conditions. “control OFF”
curves refer to the TF identified by using signal w,
while “Model reference” ones refer to MN (z)/MD(z).
The vertical bar marks the Nyquist frequency.

filter with cutoff frequencies finf = 19 Hz and fsup = 45
Hz and gain 0.2. Such choice was due to the spectral
properties of the reference signal (see Section 2.4 and 3)
and the transfer function of the identified model.

In agreement with experiments in [Kuncel et al., 2006], the
applied stimulus was modulated by multiplying the control
signal by a train of pulses (Fig. 3). Pulse-width was 100
µs, while the train’s frequency was set to an aliasing-free
value (130 Hz). For safety purposes, the absolute value of
the final input was limited to 4.5 mA. The control signal,
instead, was prevented to become anodic due to the limits
of the TC relay neuron model used in simulation, the
properties of the input signal exploited in the identification
experiments, and experimental data that proved anodic
stimuli ineffective.

2.4 Reference Signal Generation

The reference signal for the control scheme was built in
simulation starting from experimental data reported in
[Molnar et al., 2005]. As done in Section 2.1 for PD tremor
conditions, the intrinsic firing properties of the neurons
were fit on single-unit data from literature and, then,
simulated with no extracellular stimulating source applied.
The LFPs correspondingly recorded by Ri, i = 1, 2, 3 ac-
cording to (1), were low-pass filtered (cutoff frequency: 100
Hz), split into sections (250 ms-long each), and averaged
over the sections. The resulting average signal was used
as the template of the periodic reference signal in the
fundamental period.

Data in [Molnar et al., 2005] come from TC relay neurons
recorded in the Vim of patients not affected by movement-
related diseases (chronic pain patients) and, to our knowl-
edge, such data are weakly affected by the pain disorders.
Neurons were divided into 2 groups: 74% of them were
“kinesthetic” (i.e., the firing rate was responsive to passive
joint movements imposed to the associated limb) and 26%
“voluntary” (i.e., the firing rate was responsive to volun-
tary joint movements). For each group, then, neurons were
further classified as “regular”, “random” or “irregular”.
The definition of “regular”, “random” and “irregular” was
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based on a simplified version of the burst analysis methods
reported in [Kaneoke, and Vitek, 1996] and required the
comparison of the spike density histograms experimentally
built with Poisson distributions [Molnar et al., 2005].

In simulation, the percentage of neurons in each group
was the same as in [Molnar et al., 2005], the groups were
uniformly distributed in the volume, while the intracellular
currents were defined as stochastic sequences of cathodic
rectangular pulses whose duration and ISIs were chosen
by fitting the average spiking/bursting rates and the spike
density histograms on the experimental data in [Molnar
et al., 2005]. ref(k) was then obtained by low-pass filtering
and downsampling the simulated signal as done before.

3. RESULTS

Neurons were uniformly distributed in the volume and
the association between position and electric features of
the cells was purely random. In this way, a homogeneous
neural tissue around the electrodes was simulated, in
agreement with single-unit analysis in [Magnin et al.,
2000, Molnar et al., 2005]. The application of the burst
analysis method by [Kaneoke, and Vitek, 1996] on the
neurons producing the reference signal revealed that they
had an average firing rate and ISI distribution similar
to experimental data from [Molnar et al., 2005] (data
not reported here). Independently of the position of the
recording electrode and the specific population of neurons,
the ultimate effect of this scenario was a LFP signal of low
amplitude (see Fig. 4c) with a marked periodicity in the
range [15, 20] Hz related to the average firing frequency of
voluntary and kinesthetic neurons. In tremor conditions,
instead, more complicated patterns were simulated. As
reported in Fig. 5, sporadic neurons fired single spikes or
duplets in a tonic way but the corresponding ISIs were
not constant (flat histogram and autocorrelogram in the
uppermost row of Fig. 5b, c). The other types, instead,
had a marked bursting mode and were different one from
another about the number of spikes per burst and the
duration of the inter-burst interval (averaged values and
variance as in [Magnin et al., 2000]). A comparison with
results in [Magnin et al., 2000] showed that simulations
are qualitatively consistent with experimental data.

3.1 Identification and Control

The I-O transfer function (TF) B(z)/A(z) identified
through the RLS algorithm with na = 6 and nb = 1
showed that in PD conditions the gain is low and flat on a
large frequency range (see Fig. 6), thus accounting for the
negative effects that DBS at frequencies less than 100 Hz
usually has on motor disorders [Kuncel et al., 2006]. The
peak of the magnitude diagram in the high frequency band
([100, 150] Hz), instead, denoted increased gain and might
explain the responsiveness of the therapy for stimulation
over 100 Hz. It is interesting to note that, even if the
identification residuals obtained with an ARX(6, 1) did not
pass whiteness and independence tests [Ljung, 1999], the
prediction error was very small (its power was less than 1%
of the total power of the cross-validation data set) while
the power spectrum of the applied input was almost flat on
the frequency range of useful biological signals (≤ 100 Hz).
This means that the family of models ARX(6, 1), even if
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(control ON) and actual (regular DBS) DBS input.

unable to exactly identify the I-O relationship on the Vim,
gives a useful approximation for the frequencies of interest.
In addiction, it is worth to note that the purpose of our
work was not the identification itself but the design of
a model-based feedback control law: the simplified model
structure, then, contributed to keep the controller order
low. Possible mismatches or errors due to the model lim-
its, however, were compensated by periodically updating
the model parameters in the self-tuning scheme of Fig. 3
(update frequency: 1250 Hz). Independently of the used
population, the control law modified the temporal pro-
file of the LFPs in order to suppress tremor and restore
disease-free conditions. Based on an average version of the
field potentials in tremor-free settings, it paced the neural
population and modulated the input amplitude to elicit
bursts on a regular basis. Feedback information was used
to synchronize the pattern of stimulation and update its
value based on the detection of tremor-locked bursts (see
Fig. 4d). The net effects of the control law were depicted in
Fig. 4, 7: the DBS was modulated (Fig. 4d) to elicit bursts
at the same frequency as in disease-free settings (Fig. 4b, c)
and restore the dominant components of the LFPs power
spectrum by cleaning up the content in the tremor band
([2, 7] Hz) but not in the α and β bands, where volun-
tary movement signals to the Vim usually have significant
spectral content (the second peak in Fig. 7 is of secondary
concern for the motor commands). A comparison with
the results obtained when the actual DBS was applied
(i.e., regular train of cathodic pulses of 4.5 mA at 130
Hz) indicates that feedback control contributes to better
recover tremor-free conditions instead of introducing an
information lesion from 8 to 30 Hz (see Fig. 7).

4. CONCLUSIONS

Our study proved that the local field potentials recorded
in the Vim can be used as a feedback variable for the
automatic calibration of the DBS to suppress tremor in
PD conditions. In particular, it showed that a black box
identification approach can describe the relationship be-
tween extracellular stimulating current and LFPs through
an ARX model and that, based on it, a minimum variance
feedback control law can be designed to update the stimu-
lus and restore reference spectral properties. The identified
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model was focused on that dominant dynamics in the Vim
electric activity which can be evaluated from the LFPs,
i.e., the proposed model neglected the cellular effects of
the DBS and the topological organization of the stimu-
lated nuclei, while described the overall changes induced
by the stimulation. For that reason, even if simulations
were performed with no synapsis added or network effects,
minor discrepancies in the LFPs behavior are expected.

The reference signal, instead, was averaged from single-
unit data and described the main rhythms that are usually
common in all the subjects not affected by movement
disorders. The latter aspect and the use of a point-wise
approximation for the electrodes may represent a limit for
our simulations and requires further analysis through a
more detailed description of the geometry and orientation
of the electrodes via finite elements analysis. After that,
an experimental validation will be mandatory to test the
actual effects of the control scheme on tremor and other
movement disorders.
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