

February, 2008

Efficient temporal summation of dendritic Calcium signals in young hippocampal granule cells

Gabriella Stocca, PhD

Physiologisches Institute University of Freiburg Hermann-Herder str. 779104 Freiburg

ABSTRACT OF THE TALK

Neuronal activity is critically important for development and maturation of dendrites, axons and synaptic connections. Although Ca^{2+} is an important signal molecule for these processes, not much is known about the regulation of the dendritic Ca^{2+} concentration in immature neurons. Here we used confocal Ca^{2+} imaging to investigate dendritic Ca²⁺ signaling in young and mature dentate gyrus granule cells, identified by the expression of the immature neuronal markers polysialated neural cell adhesion molecule (PSA-NCAM) and doublecortin (DCX). Using the Ca²⁺-sensitive fluorescent dye OGB-1, we found that both young and mature granule cells showed large action potential evoked dendritic Ca^{2+} transients with similar amplitudes, indicating active backpropagation. However, the decay of the dendritic Ca^{2+} concentration back to baseline values was substantially slower in the immature neurons. Similarly, using the low-affinity Ca²⁺ dye OGB-5N the decay time course was about 4 times slower in young ($\tau_w = 1060$ ms) versus mature cells ($\tau_w = 240$ ms), leading to a more efficient temporal summation and large Ca²⁺ signals during thetafrequency stimulation in the young neurons. Pharmacological blockade of the sodiumcalcium exchanger (NCX), the smooth endoplasmatic reticulum Ca^{2+} ATPase (SERCA), and the plasma membrane Ca^{2+} ATPase (PMCA) showed that these pathways contribute to the decay of dendritic Ca²⁺ signals at both mature and immature stages. However, immunohistochemical analysis revealed markedly lower expression levels of Ca²⁺-ATPases including PMCA1-3 and SERCA2 in young neurons. The large and prolonged dendritic Ca^{2+} signals in young granule cells might be important for the regulation of activity-dependent growth and remodeling of the developing dendritic tree by excitatory synaptic inputs