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Wearable, Redundant Fabric-Based Sensor Arrays for
Reconstruction of Body Segment Posture

Federico Lorussi, Walter Rocchia, Enzo Pasquale Scilingo, Alessandro Tognetti, and Danilo De Rossi

Abstract—Posture and gesture analysis, together with the moni-
toring of body kinematics, is a field of increasing interest in bioengi-
neering and several connected disciplines. In this paper, some typ-
ical features of distributed sensing systems are described, as well
as a methodology to read signals from such systems. Theory, sim-
ulation, results, and some specific applications are shown. Strain
gauges have been used as sensors and have been deposited directly
onto textile fibers, demonstrating one way to realize a wearable
sensor system.

Index Terms—Electroactive polymers, posture reconstruction,
redundancy in sensing systems, resistive network reading algo-
rithms, smart textiles.

I. INTRODUCTION

THE FABRICATION of electronic systems onto substrates
which are not only flexible, but also conformable to the

human body, represents a breakthrough in many areas of ap-
plication, such as virtual reality, teleoperation, telepresence, er-
gonomics, and rehabilitation engineering [1]. The possibility
of realizing sensing textiles by coating traditional fabrics with
smart materials (piezoresistive, piezoelectric, and piezocapac-
itive polymers) is quite recent and has opened up a means of
implementing a new type of man-machine interface technology
[2]. Peculiar features that require the application of new pro-
cessing approaches have then emerged. Having a set of sensors
distributed on a garment poses a certain number of new prob-
lems, amongst which is the need for minimizing the wiring re-
quired to extract the signals from every single sensor. Second,
given the variability between individuals, the sensors on a gar-
ment cannot, in general, always be positioned exactly at the
same location; therefore, the repeatability of measurements is
not guaranteed on the same subject, and it becomes entirely
different going from one subject to another. An even more de-
manding requirement resides in the need for a high immunity
to motion artifacts and for provisions to deal with the sensors
crosstalk. A basic point made here is based on the observa-
tion that a redundant number of sensors distributed on a surface
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Fig. 1. Prototypes of sensing wearable devices. (a) Sensing sleeve. (b) Sensing
knee pad. (c) Sensing glove during the recognition of a power grasp. (d) Detail
of sensing and conducting tracks on a sensing fabric.

can provide enough positional information to infer the essen-
tial features concerning the posture of a subject, also loosening
the constraint of precise sensor location. This approach borrows
from the biological paradigm. For instance, as far as mechanore-
ception is concerned, high-quality biological sensors are not
used everywhere, particularly if they are sufficiently numerous
[5]. On the other hand, reading singularly a very numerous set
of sensors can be time consuming and it requires a noticeable
amount of wiring, unless suitable strategies are adopted. In this
paper, we illustrate the techniques which enable the realiza-
tion and utilization of wearable sensing garments capable of
recording proprioceptive maps with no discomfort for the sub-
ject and negligible motion artifacts caused by sensor-body me-
chanical mismatch. In Sections II–V, some issues concerning
the realization of sensing textiles, the topology, and the reading
strategy are faced and a possible way of approaching them is
presented. In Sections VI–VIII, it is described why it can be con-
venient to directly map the space of resistances into the space
of postures rather than passing through the single-sensor defor-
mation space.
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Fig. 2. Quasi-static response in terms of percent change in electrical resistance versus uniaxial strain (both stretching and shortening) for a PPy-based sensor.

II. SENSING FABRIC REALIZATION

Elastic fabrics covered with an epitaxial layer of conducting
polymer or with carbon-filled rubber show piezoresistive prop-
erties, and they can be used to realize sensorized garments, such
as gloves, leotards, seat covers, and related artifacts capable of
reconstructing and monitoring body shape, posture, and ges-
ture [6]. Sensors have been realized starting from conventional
fabrics coated with a thin layer of polypyrrole (PPy, a -elec-
tron conjugated conducting polymer) or by a mixture of rubber
and carbon. PPy is a conducting polymer that combines good
environmental stability with mechanical and thermal transduc-
tion capabilities. PPy-coated lycra fabrics were prepared using
the method reported in reference [7]. Sensors based on carbon-
filled rubber (CFR) were realized either by directly printing the
carbon/rubber mixture onto fabrics or by weaving CFR coated
fibers. Threads of this type have been obtained as an experi-
mental product by Smartex s.r.l. (Prato, Italy); fabrics have been
coated in our laboratories. The first three prototypes we realized,
shown in Fig. 1, were meant to be able to detect arm, knee, and
hand posture. The more advanced state of analysis is currently
concerning the “sensing sleeve” and, therefore, in this paper, we
will show mainly results arising from arm posture detection.

A. Sensors Characterization

The sensors were characterized in terms of quasi-static and
dynamic electromechanical transduction properties. Thermal
and aging properties of the sensing fabrics have also been as-
sessed. The characterization of PPy coated fabrics has shown a
gauge factor (GF , where is the variation of the
sensor resistance, its rest value and is the applied strain)
of about 13 (negative and similar to nickel) and a temperature
coefficient of resistance (TCR) of about 0.018C . In Fig. 2,
a quasi-static response in terms of percent change in electrical
resistance versus uniaxial strain, both in stretching and short-
ening configuration, for a PPy-based sensor is reported. It can
be noted that a hysteresis loop is present, i.e., the fabric sensor
response when it is stretched lies on a different path against
shortening solicitation. The sensor response is also affected by

noise artifacts. The noise disturbance has been estimated as an
uncertainty band on the signal coming from the fabric sensors.
This implies, obviously, that the intrinsic noise of the sensor
is not decoupled from interferences due to electronic devices
used for the acquisition. In the light of these considerations, the
estimated error signal is about 3%.

Despite the fact that a high GF value is a positive factor for
strain gauge realization, two serious problems affect PPy-coated
fabric sensors. The first problem resides in the strong variation
with time of the sensor resistance. The second problem is the
long sensor response time; in fact, after a sudden application
of a mechanical stimulus, the resistance reaches a steady state
in several minutes; this makes these fabrics unusable in most
applications. Nevertheless, these limitations have been partially
overcome by an “ad hoc” coding procedure. Analyzing the re-
sistance response in the range of 1 s after the application of a
stepwise deformation, it is possible to derive the applied strain
in an aging invariant way. We experimentally observed that the
area between the characteristic response to a strain step function
and the line representing its asymptotic behavior remains con-
stant throughout the aging process. A specific proof has been re-
ported in [8], leading to the conclusion that the mentioned area
codifies for the strain regardless of sensor aging process.

Analogously to PPy sensors, in Fig. 3, the quasi-static re-
sponse in terms of percent change in electrical resistance versus
strain (both stretching and shortening) for a CFR-based sensor
is reported. Similarly, a hysteresis cycle is present. Even in this
case, we evaluated the noise, as overall disturbance coming from
the system fabric sensor plus electronics, and we observed an
error signal of 2.5%.

The characterization of CFR-coated fabrics has shown a GF
of about 2.5 and a TCR of roughly 0.08C . These values are
quite similar to those of metals and are suitable for the use of
such sensors in wearable applications.

CFR fabrics age very slowly and they behave like low-pass
filters with a bandwidth from dc to 8 Hz. A thorough dynamic
sensor characterization has also been performed, but it goes be-
yond the scope of this paper and can be found in [9].
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Fig. 3. Quasi-static response in terms of percent change in electrical resistance
versus strain (both stretching and shortening) for a CFR-based sensor.

III. SENSOR ARRAYS

As said in Section II, in the last few years, textile technology
progressed toward a design philosophy of integrating embedded
computation and sensing into usual garments. Nowadays, it is
possible, indeed, to realize sensorized gloves, leotards, and seat
covers. Since the aim of these devices is to monitor body shape,
posture, and gesture, a helpful approach is to rely on a redun-
dant set of sensors suitably distributed. Several manufacturing
textile processes could be implemented for use in sensorized
garments. By using commercial embroidery processes, it is pos-
sible to stitch sensing surfaces and conductive threads defining a
matrix pattern [10]. Alternative methods consist of using screen-
printing technologies, in which strain sensors, e.g., CFR-based
sensors, are applied according to predetermined masks. Sen-
sors of the fabric matrix are interconnected by means of con-
ductive threads. Cross points are avoided by means of insu-
lating layers. In the case of a fabric matrix, a crucial problem
is to read the sensors in a robust, reliable, and convenient way.
Having a large number of sensors provides the necessary in-
formation, even if every single reading is not extremely accu-
rate. In fact, this leads to a great versatility in device realiza-
tion. Single-sensor reading increases the complexity of the elec-
tronic acquisition system dramatically. In order to address this
problem, we have studied several topologies of sensor intercon-
nections to reduce the number of sampling channels and tracks.
Several types of interconnection have been studied. They use a
bipolar model for each sensor. The first two strategies consist
of interconnecting arrays of sensors in series (Fig. 4) or par-
allel (Fig. 5) networks. The two configurations are topologically
dual.

Pairs of sensors (whose distance is negligible with respect to
the geometric dimension of the net) on the fabrics are connected
rows by columns. The inevitable crossing of wires makes it nec-
essary to electrically insulate them to realize series and parallel
connections.

By reading a variation of a column and of a row, it is pos-
sible to identify a precise point in the net. To do this, we have
to assume that sensor variation occurs at any one time. In these

Fig. 4. Series network. The small distance between the two sensors ensures
that their deformation is the same and differs from the other couples.

Fig. 5. Parallel network. A deformation of a pair of sensors implies a resistance
variation of the entire row and column identifying the couple.

two configurations, we consider a square array of sensors and
an -channel acquisition system can read a network of
pairs of sensors. With respect to a single-sensor reading, these
two topologies are advantageous (reduced the number of chan-
nels) if , even if they lead, as will be discussed later
on, to a loss in the accuracy of signal reconstruction. Assuming
we read sensor resistance variations by voltage ( ) variations
with an assigned constant current, we define sensor sensitivity
as and accuracy in signal reconstruction as
(where is the voltage read for unloaded sensors and is
the applied strain). Assuming each channel includes a certain
number ( ) of identical sensors and assuming that only a single
pair of sensors undergoes deformation, the expression of the
voltage ( ) read from the channel with an imposed constant
current ( ) is

GF
(1)

for the series network. is the sensor resistance, is its vari-
ation, GF is the single-sensor gauge factor, and is the rms value
of the resultant of intrinsic noise and interference on each sensor.
For the parallel network, we have

GF
GF

(2)

Table I shows the expressions of sensitivity and accuracy for
the single-sensor reading strategy and the two bipolar ones.

Even though the series network exhibits the better sensitivity
and accuracy, both topologies have several limitations due to the
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TABLE I
SENSITIVITY AND ACCURACY FOR DIFFERENT SENSOR READING STRATEGIES

strong condition that sensors variations occur at any one time, in
order to univocally determine the point in the network in which
sensor response changes. An alternative strategy, usually used
in an acquisition system based on matrix configuration, is to in-
troduce some logical circuitry in order to sequentially scan each
channel [11]. By using suitable digital switches, indeed, it would
be possible to read the signals at boundaries of the network,
but directly addressing the single sensors. However, this con-
figuration involves a careful scanning timing, as well as a sup-
plementary hardware to place onto garments and an increasing
of the number of connections. These shortcomings make this
approach unsuited for our purposes. Summarizing, none of the
strategies described in this section are appropriate to detect com-
plex patterns of superficial deformation, with the exception of a
single-sensor reading scheme.

IV. SENSING SURFACE STRAIN FIELDS

Hereafter, the problem of inferring the space varying resis-
tance value on a conductive surface is solved making only mea-
surements at the surface borders. A very similar problem arises
in the field of electrical impedance tomography, where the resis-
tive properties of a body are investigated by applying electrodes
on its surface. In the works of Cheney et al., the issue is first
described in its continuum formulation, based on Maxwell and
constitutive laws; then, the discretized version, more physically
sound due to the nature of the measuring electrodes, is formally
derived [3], [4]. Here, we deal with a two-dimensional (2-D)
problem and consider both situations, the discretization process
of an actual 2-D conductivity distribution, such as a conductive
membrane with electrodes on its border and the intrinsically dis-
crete configuration where many sensors are positioned on an in-
sulating 2-D scaffold and are connected through a wiring that re-
spects the topology of the mesh described below. We will follow
this latter case, where the issue of nonlinearity induced by dis-
cretized contacts as described in [4] is overcome. The final result
is a lumped parameter bipolar mesh that, for static analysis, can
be thought of as being purely resistive. If the associated graph
is planar, then the mesh can be recast and converted in a square
mesh, as the one shown in Fig. 6.

The practical realization of this network is simplified from
the fact that connections are realized between adjacent sensors
and no insulated cable is needed. This configuration is the less
burdensome in terms of wiring. If there are nodes on a side,

channels are needed to record the signals from the
border. It is actually possible to infer the strain field from border
readings, and a proof for this is provided in the Appendix. In
the next section, we present an algorithm that derives the con-
ductance values from border readings through linear combina-
tions of the read potentials. One or more currents are injected
externally to the network and the potential values at the border

Fig. 6. Schematic of a discretized model for a distributed conductivity
function.

nodes are read, one of them being kept as a reference. This
algorithm results from an attempt to improve the accuracy in
the reconstruction of the conductance value from possibly in-
accurate border measurements. Beyond the different geometry,
the present one being based on a square rather than circular
geometry, this algorithm is different from the NOSER algo-
rithm described in [3] in the sense that it has been devised in
a way to admit a symbolic solution. The foreseeable advan-
tages are diverse, the main one being that the solution obtained
this way is expected to be particularly robust as far as accuracy
is concerned; this is of particular importance, considering the
degradation of accuracy occurring when one considers resis-
tance values far from the mesh border. Along with it, conver-
gence issues typical of numerical nonlinear programming algo-
rithms are avoided. In order to design the algorithm, the simula-
tion has been performed with a specific tool for symbolic calcu-
lation (MAPLE ) and both injected current and measured
potential values have been converted from floating point to ra-
tional numbers. To solve the problem of identifying the conduc-
tances of each resistor, the so-called incidence matrix approach
has been adopted, which is frequently used in software for simu-
lating electrical circuits. Let be the number of nodes on each
side of the square mesh and the overall number of nodes.
The total number of internal branches is aug-
mented by external inputs, required
to inject external currents. As a first assignment, the latter cor-
respond to all the possible combinations of external branches;
this is instrumental in studying the best inputs and the effects of
redundancy in input assignment on the accuracy in conductance
determination. The topology of the mesh is represented by the

incidence matrix A whose elements are 1 if the
corresponding side is entering the current node, and 1 if it is
exiting that node, and 0 otherwise. Operations with this matrix
are always symbolic and do not introduce numerical inaccuracy
on the involved data, even when floating-point data are used.
Now, the fundamental equations for the circuit are

(3)

(4)

(5)
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representing Kirchoff’s and constitutive laws, where is the
-dimensional vector containing all the currents of the

circuits, contains only the injected currents, is the
-dimensional vector of the voltage drops along the sides,

is the -dimensional vector of the absolute potentials at each
node, is a square diagonal matrix con-
taining, on its diagonal, the conductances for the sides internal
to the mesh, and 0 otherwise. Matrices and vectors involved in
the calculations are in general highly dimensional and sparse.
Solving the circuit leads to either a quadratical equation or to
finding the minimum of a fourth-order polynomial, since both
the potential values at the internal nodes and the conductance
values of all the resistors are unknowns and they appear under
the form of product in the equations. In this paper, we present
a method that we call symbolic linear reduction (SLR), where
the peculiarities of the system are exploited in order to identify
the internal conductances according to a linear algorithm under
the working hypothesis that they are different from zero. In this
algorithm, the same steps that are used to find the the external
conductance values, that we name the external “corona,” are also
applied to the internal mesh of reduced dimension. The topology
of the circuit induces the structure of the matrices involved in
the calculations. Thanks to the symbolic solver used, we obtain
an explicit expression for the results, simplifying the process
of implementing the algorithm in a lower level language. The
equations of the external corona are decoupled from the “core,”
then the same basic laws are applied iteratively until the central
conductances are calculated; in this sense, this algorithm can
be considered as belonging to the family of the layer-stripping
algorithms [4]. This approach has the advantage that all the rel-
evant quantities and processes, such as error propagation, can
be calculated for one step only and then derived for the entire
network by composition.

V. SYMBOLIC LINEAR REDUCTION ALGORITHM

In the incidence matrix formalism, rows span over the nodes,
whereas columns span over the branches. In order to simplify
the decoupling process, the nodes have been numbered in a
spiral order from the exterior to the interior of the mesh. For
the sake of simplicity again, the branches have been numbered
so that the former are relative to the mesh resistors and the latter
correspond to the external branches added to inject the currents.
The structure of the system then becomes

(6)

It is interesting to note that, due to the ordering chosen, the left
columns of the matrix concern the internal branches, whereas
the right columns refer to the external ones. One can act the same
way on the matrix

(7)

where the matrix is diagonal. Solving the system and using
this notation leads from (3)–(5) to the much more compact ver-
sion

(8)

It is worth pointing out that is still a very sparse matrix
whose nonzero entries can only be 1 or 1 and depend only
on circuit topology. The diagonal of contains all the unknown
conductances, is assigned and thus known. In turn, contains
the best estimate one can have of the potential nodes given a set
of border measurements, obtained by solving the linear system

(9)

In an exact arithmetic context, the rank of matrix enables
the explicit calculation of the potentials at the border nodes.
In a real case, however, measurements lead to finite precision
arithmetic. However, a redundant measurement policy can be
adopted, i.e., more measurements are done than the minimal
set, and the minimum mean-square error solution can be de-
rived. It is remarkable that the steps derived from the symbolic
execution of this algorithm reveal the topology-induced matrix
structure and can also be applied when the floating point inputs
are used. Equation (9) also tells us that the rank of , which is

, is equal to the maximum number of independent mea-
surements compatible with this type of formalism, which can be
performed. Thanks to the ordering of the nodes, the decoupling
of the equations of the external corona can be done by simply
taking the first rows from the matricial expression represented
by (8). Note that it is linear with respect to the conductances
present in the matrix . Therefore, (8) can be recast in the fol-
lowing form:

(10)

where spans over the nodes of the corona. This expression is
equivalent to

(11)

One equation of the type (11) is available for each measure-
ment. is a vector containing the nonnull entries that were pre-
viously on the diagonal of and is a matrix containing the
potential values at the nodes on the external shell. Some of them
are known through (9), whereas the innermost need to be deter-
mined. All the equations of the form (11) can be collected in one
matrix relationship by simple vertical juxtaposition, giving

(12)

As already mentioned, this equation is quadratic in its un-
knowns, that is, some potential values and the conductances;
however, given its very peculiar structure, it has been possible
to solve it through a succession of linear operations, under
the unique and realistic assumptions that only nonzero con-
ductances are present. The compact representation of
the system in (12) is composed of many bands, one for each
measurement. Matrix (13) is a typical band corresponding to
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a single measurement for the case , represented only
partially for typographical reasons. are the unknown
potential values at the inner border of the corona, which is the
border of the core, whereas are values derived by measured
border potentials

(13)
As one can see, there are two kinds of rows: those having

three nonzero elements, all of them being a number, and those
having four nonzero elements, one of them being a number.
The former type corresponds to the nodes located on the cor-
ners of the network, whereas the latter corresponds to the corona
nodes. Each nonnumeric term contains only one unknown po-
tential value. This structure is induced by the topology of the
circuit and is exploited in developing this ad hoc procedure.
First, the matrix is ordered in such a way as to gather together
all the rows corresponding to the same node. Second, all the
full numeric rows are collected into a single submatrix and the
derived system is solved yielding the conductances at each net-
work corner. Third, the remaining blocks undergo a transforma-
tion that is very similar to the Gauss reduction concerning only
the numeric columns; this is done in an order that reduces the
trailing terms column at the end of the procedure. These steps
transform the matrix in a set of submatrices having the form
shown in (14)

(14)

Only the nontrivial columns of the submatrix relative to a
single node after processing (case ) are shown, the
entries are numeric values, some of them deriving by measured
border potentials and some induced by circuit topology. As one
can see, most of the rows have only one entry different from
zero, which depends on the unknown potential values for the
various measurements. Under the assumption that the conduc-
tances are nonnull, those entries have to be nullified leading to
a set of linear algebraic homogenous systems whose solution
provides the potential values at the border of the core. Now, the
original linear system, no longer parametric, can be solved and

the last unknown conductances of the corona can be derived.
Then, the same kind of approach can be applied to the second
corona, which is the external corona of the core, and the proce-
dure can go on until the center of the network is reached. A thor-
ough sensitivity analysis for this approach will be an argument
of future development; however, the decomposition of a po-
tentially huge system in a succession of smaller and extremely
simple linear algebraic systems appears to be of extreme utility.

VI. FROM SENSOR READING TO POSTURE IDENTIFICATION

As already mentioned, a very precise knowledge of sensor po-
sition and deformation is needed when using a minimal sensor
set. Conversely, a redundant sensor set can compensate for in-
accuracy due to error propagation intrinsic to the peripheral
reading and imperfect knowledge of exact sensor position. Re-
dundancy is, however, at the expense of a more complex way
to interpret the readings. This issue has been faced by using a
suitable “inversion” technique that allows mapping the reading
space to the posture space. Let us suppose that sensors have a
monotonic stress versus resistance characteristics and that their
location is appropriate, which means that at least one of them
is actually affected by any relevant movement of the subject.
First, let us make some considerations on what the determina-
tion of human posture means and how sensor networks can be
employed. To define a posture formally, it is necessary to de-
velop a physical model for the particular subject holding it. We
attribute a certain number of cartesian frames, one for each con-
sidered degree of freedom. In this sense, a posture is simply
the set of the mutual positions with respect to the fixed frames.
Obviously, the entire set of the mutual positions is not neces-
sary to reconstruct a posture exactly, and a minimal set can be
chosen in many different ways. The Denavit–Hartemberg algo-
rithm [12], for example, fixes exactly the number of relations
between frames and gives a standard method to write these posi-
tions in terms of rotation and translation affinities, for rotational
and translational joints. In the case that the topological structure
of the kinematic chain under study cannot be linearly approxi-
mated, it is still possible to define a model by using more sophis-
ticated nonlinear approaches to describe the kinematics more
accurately [13]. The problem can be formalized as follows. Let
us assume a fixed-state space (described by a set of frames as-
signed and by their mutual coordinate transformations) which
we will designate as the posture space and which admits a
well-defined topological model. To survey posture, it is neces-
sary to construct a metric on this space and then to relate the
elements of to the electrical sensor configurations that span
the space of sensor readings. The sensors are positioned with
a certain topology. It is assumed that they are able to detect a
variation in the subject’s posture and that there exists an invert-
ible function that maps the space of the postures into . As a
consequence, the image of through is a subset of which
has the same dimension of itself. Therefore, the inverse of
can be used to infer the posture from the electrical readings. The
construction of , otherwise named “system identification,” is
the crucial point of the method, and it is important from several
points of view. It is worth pointing out that this phase is not a
single-sensor calibration, but a real identification of the entire
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system. In fact, for several reasons (the most important being
the variability of body structure of the subject), the sensor lo-
cation is not precisely known. However, adopting the described
approach, this requirement is no longer ineludible, neither is the
map relating the size of a particular sensor to its electrical re-
sistance. To better explain this point, one should consider that
adherence of a sensorized fabric to the subject gives rise to in-
trinsic crosstalk phenomena, due to the nature of the textile on
which sensor are positioned. This fact, instead of being an in-
convenience, is instrumental to the method we have developed
and ensures the possibility of reconstructing posture without the
knowledge of the exact location of every single sensor. The iden-
tification concerns not only the set of sensors, but also the body
structure of the subject. The same garment shown in Fig. 1(a)
can then, in principle, be used to detect the posture of many dif-
ferent subjects with the prescribed accuracy, shifting all the vari-
ability on a different function . Metric introduction in the space
of postures is realized simultaneously with the construction of

. The basic idea is to relate the information originating from
a conventional measurement system (set of electrogoniometers,
optical tracking system) to the electrical state of a set of sen-
sors. The former is obtained for a set of postures suitably chosen
according to the topological structure of . This care is neces-
sary because the space , related to anatomical variables such
as bones and joint positions, is not directly accessible to the ob-
server

Then, a third space (called “space of the markers”) is in-
troduced with its own coordinate frame, endowed with the same
topology of and of the property of effectivity, meaning that
it is always possible to determine whether two points in co-
incide or not. Let us call the continuous bijective function
mapping into . Due to the effectiveness property, has
the advantage, with respect to , of being directly accessible.
Let us now fix a system of coordinates and a metric in , if
is differentiable, a metric is automatically induced also on . If
now a lattice , that is a finite discrete set of points, is chosen
in , then another lattice in is uniquely identified via the
map , and a metric is induced accordingly. Determining the
law of correspondence between the lattice and its image in
the space (which is known by acquiring the values presented
by the set of sensors when a position of is held fixed) means
knowing the restriction of on . The next step is to expand
the knowledge of from this restriction to all , obtaining .
This is a problem of multivariate interpolation that will be dis-
cussed in the next section.

VII. INTERPOLATION TECHNIQUE

In order to reconstruct positions and movements not included
in , a multivariate interpolation of component by compo-
nent has been employed. To approach this problem a piecewise
linear (PL) interpolation can be performed, either directly on

or on its inverse. We choose the direct approach because of
complexity issues that will be clarified in the following. In the
direct case, we want to determine a class of linear applications
from , each one holding on a certain subset of . The
union of these subsets must contain and the functions corre-
sponding to adjacent subsets must coincide on their intersection.
Due to the analyticity of linear applications, it is clear that two
of these subsets can intersect only at their borders. The more
time-consuming part of the algorithm is the partitioning of an

hypercube whose vertices belong to . In order to solve the
linear problem of interpolating a function defined on a given lat-
tice (assumed to be, i.e., homeomorphic to (where is the
dimension of the space of the posture), a partitioning in
hyper-tetrahedra is necessary (a proof that this partitioning ex-
ists and is minimal can be given by induction on the dimen-
sion of ). Using this partitioning, the interpolation is given
by finding hyperplanes passing each one through
points, representing the vertices of a hyper-tetrahedron. The al-
gorithm has an exponential complexity in the dimension of ,
and this is the reason for the direct approach option. The last
step consists of mapping the measured sensor values into a pos-
ture by means of the interpolated function. Two ways of doing
this have been considered on line and off line. In the on-line
method, the function is, at first, interpolated on a finer lattice;
then, during the signal acquisition, each component of is set
to be equal to the corresponding sensor measurement. Solving
this system onto the lattice gives the posture; thus, this must
be done for each reading and requires noticeable computational
resources to be performed in real time. This method is exact,
but for higher dimensional phase spaces, it must be replaced by
some iterative algorithm minimizing the discrepancy between
the predicted and the actual postures. The off-line method es-
timates a pseudoinverse of the function , which is done only
once, and then applies it to every measurement. This method
is time consuming when it calculates the pseudoinverses
of the pieces approximating . When the number of the vari-
ables involved becomes high, a more suitable tool to perform
this task is an artificial neural network (ANN). It can be trained
to fit the presented postures using the sensor readings as input.
The cost function, which is the square difference between the
postures, which belong to , and the output of the ANN, can
be minimized via a nonlinear programming algorithm, such as
conjugate gradient. As is typical with ANNs, the training phase
can take some time, but the forward phase is very fast.

VIII. EXAMPLE OF METHODOLOGY IMPLEMENTATION:
THE UPPER LIMB POSTURE DETECTION

The methodology developed in Sections VI and VII has been
employed to implement several prototypes of sensing garments
able to detect the posture of diverse segments of human kine-
matic chains. Here, we present an example of an upper-limb
kinesthetic interface. We monitor two joints of the upper limb:
the gleno-humeral joint and the elbow joint.

A. Definition of the Physical Model

In the shoulder, the gleno-humeral joint is a ball-and-socket
joint formed by the humeral head mating with the opposing
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glenoid cavity of the scapula. Both the joint surfaces can be
represented as spherical segments, but the different curvatures
induce an intrinsic nonlinearity in the geometry of the configu-
rational space [14]. Locally, the gleno-humeral joint is a three
DOFs system that we designate as usual in kinesiology: adduc-
tion–abduction, flexion–extension (angulation in a frontal and
in a sagittal plane respectively), and rotation. Globally, a combi-
nation of flexion, adduction, extension, and abduction produces
rotations that explain the global entanglement of the DOFs [14].
The elbow is a composite joint where two convex articular sur-
faces at the distal extremity of the humerus mate with two con-
cave surfaces at the proximal extremities of the radius and the
ulna (humero-radial and humero-ulnar joints). Furthermore, the
convex circumference of the radial head mates with the con-
cave radial notch of the ulna forming a third articulating ter-
ritory (proximal radio-ulnar joint). Displacement is allowed for
two DOFs, namely elbow flexion–extension and forearm prona-
tion–supination. Intrinsically, nonlinear minor phenomena of
the configurational space are neglected. Let us consider four dif-
ferent systems of coordinates:

1) (said absolute frame) centered in at the bottom of a
subject in standing position, with the axis along the ver-
tical axis of the subject, the axis along the transversal
axis, and the axis along the sagittal axis (for the defini-
tions of position and anatomical planes and axes see [15]);

2) , fixed and parallel with respect to , but centered in
the center of rotation of the humerus head ;

3) , fixed on the distal extremities of the humerus,
with the axis parallel to the geometric axis [14] of the
humerus and the axis parallel to the axis of the rotation
of radio and ulna, which constitutes the main part of the
movement of flexo-extension;

4) , fixed on the wrist , and oriented as when
the anatomical position is held by the subject. A com-
plete representation of the defined frames and of the De-
navit–Hartemberg parameters is provided in Fig. 7(a).

By writing the affinities that transform the coordinates be-
tween the given frames, it is possible to express the positions
of the points , , and in the frame in terms of the
Denavit–Hartemberg parameters , , , , and , which
physically represent, respectively, the adduction–abduction
angle, the flexion–extension angle, and the rotation angle
for the shoulder and the flexion–extension angle and prona-
tion–supination angle for the elbow. The set of fixed frames
and the affinities constitute the model for the kinematic chain.

B. Definition of Space

We now have to define the space of the markers and the
application . Let us consider a subject wearing
the garment and standing up in the center of a certain bounded
environment (that we suppose cubic, with no loss of generality).
Let be the internal surface coinciding with the walls of the
cube and let , where can be embedded, as will be
clarified by the construction of . In order to define , let us
consider the straight line
passing through and (parallel to the axis of the forearm),

Fig. 7. (a) Axes of rotation of the movements. (b) Construction of (M ,Fj ).
The set of the markers is defined by the intersections of the straight lines r ,
r , r , and r with the walls of the environment, while Fj is the change of
coordinates from L to M .

the line parallel to the
first one and lying in a plane containing the palm of the hand, a
straight line passing for

and a straight line
parallel to fixed on the humerus and passing through [see
Fig. 7(b)]. Clearly, these four lines intersect the planes repre-
senting the walls of the cube in eight points (except in some
trivial singularities) and it is easy to prove that the map that
relates the position of the subject to four of these intersections
(chosen on different lines) is invertible. Fixing a subset
by the computation of the intersections explained above, is
completely determined. In Fig. 8, a subset of is drawn on the
wall of the environment. The subject under measurement points
to each element of . By reading the sensor resistances, it is
possible to build the discrete application that maps to . By
combining this application with , the restriction of , to ,
namely , is completely determined. The next task is to expand
this discrete map to an interpolation of .

C. Signal Acquisition and Interpolation

In order to reconstruct positions not included in , the PL
multivariate interpolation of the discrete map obtained in the
previous paragraph was employed, as described in the theory,
Section VII. In this particular example, the on-line version is
implemented. To obtain the data necessary for the construction
of , the sensor values corresponding to points in have been
acquired. The device used consists of a general purpose National
Instruments data and a subsequent ad hoc buffer and filter (0
8-Hz low pass). After their conversion to a 8-bit format, data
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Fig. 8. Construction of L and F . In order to calibrate the system, the subject points at different dots inM while the corresponding sensor resistance values are
read.

Fig. 9. Sensor signals deriving from garment (versus time) after their A/D
conversion.

became available in a buffer to be directly read by the acquisition
and interpolation software. An on-purpose visualization form
has been developed and dedicated to check the quality of the
signals after their digital conversion, as reported in Fig. 9.

In order to avoid the cumbersome wiring coming from a more
dense readout, data can be sent to a central unit via a telemetric
device. We are presently moving in this direction. The proto-
types we have realized consist in a an electronic unit based on
a microprocessor able to acquire and convert in digital format
the signals coming from fabric sensors, and send them via radio
frequency to a remote monitoring station.

IX. RESULTS

The application of our methodology provided quite an ac-
curate reconstruction of the posture of the arm in a subject
wearing the adherent sensorized garment in which information
on sensor location was inaccurate. Moreover, this technique
has shown good capabilities in balancing the irregularities of
operation of individual sensors. In order to evaluate the preci-
sion of the method used, we have chosen a subspace
(named subspace of the targets) contained in and we have
acquired the sensor values corresponding to the points of ,
without using them in the construction of . In this way, it has
been possible to reconstruct the (known) positions of points in

by using the inverse of and to evaluate the error introduced
by the method.

Despite the intrinsic difficulty in representing high-dimen-
sional quantities in a synthetic manner, we tried to express the
performance of the method by showing a simple posture recon-
struction on bidimensional charts where the angles
are represented. After reading the sensors, the surfaces corre-
sponding to the solution of for each com-
ponent of are generated, being is the sensor reading. In
Figs. 10 and 11, the intersections of these manifolds with three
meaningful planes are shown for the sake of representation sim-
plicity. These planes are obtained keeping fixed three out of the
five studied angles. In the on-line interpolation method (see Sec-
tion VII), these manifolds are subspaces of a lattice; therefore,
they are discrete and it is very likely that they do not intersect at
any point. Because of that, we devised a criterion that minimizes
the distance between points belonging to different manifolds in
order to estimate the target location. According to the number
of sensors in this example, there are eight of these manifolds;
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Fig. 10. Posture detection for the shoulder: A position is determined by the
intersection of the manifold on which sensors hold the values read by the
garments. “I” represents the real target we used to test the system and HDa
represents the high-density area of the solution of all the F (� ; . . . ; � ) = s .
Only � , � , and � are shown here.

the distance between the calculated position and the real one
is roughly 10 cm, which is a relative error of 4%. The recon-
struction presented here shows the methodology used. Table II
summarizes the other experiments we did to test the approach.

The estimation error obtained considering all the experiments
done never exceeded 8%.

X. SUMMARY AND CONCLUSIONS

Fabrics coated with conducting polymers as PPy or a mixture
of carbon and rubber have piezoresistive properties and they can
be used to realize strain sensors, with useful applications in the
field of man-machine interfaces. In particular, we have shown
that these fabrics can be easily integrated into truly wearable,
instrumented garments, capable of recording kinaesthetic maps
of human motor function with no discomfort for the subject.
Besides, a method was presented allowing to operate with large

Fig. 11. Posture detection for the elbow.

TABLE II
SAMPLE MEASUREMENTS OF SHOULDER AND ELBOW POSTURE

sets of sensors positioned on garments without dramatically in-
creasing the number of reading channels. Various connection
topologies have been analyzed and a novel algorithm for ac-
quisition has been described in detail. From an abstract point
of view, these sets of sensing fabric patches linked in different
topological networks can be regarded as a spatially distributed
sensing field. By simultaneously comparing the sensing field
with the value of the joint variables in the identification phase, it
is possible to reconstruct postures in the data acquisition phase.
The analysis exposed in this paper guarantees that all the infor-
mation needed for the reconstruction can be effectively gath-
ered. It also provides a key understanding of the single-sensor
influence, as well as strategies for density and location of the
sensors. Additionally, we have studied a reconstruction (inver-
sion) technique based on an identification phase of the entire
system. In fact, it is worth noting that, in the scope of a synthetic
and real-time data processing, one can avoid passing through
the sensor space and consider all the sensors as a unique en-
tity to be read and interpreted. This has the further advantage of
making the hardware applicable, regardless of the specific body
structure. In order to assess the fundamental limitations of the
method, we are testing it over large sensor networks to assay its
real-time behavior. Besides, a delicate point is represented by
the sensitivity of the approach and how it depends on the preci-
sion of the measurements. The emerging theme of this paper is
that, while for many applications, the actual local information
is desirable, in many others, a holistic view is more suitable.
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APPENDIX

Let us consider a square mesh network, as reported in Sec-
tion IV. The aim of this appendix is to prove that it is possible
to distinguish two resistance networks with the same topology,
but different resistance values only by reading the current values
flowing into the network, by imposing fixed voltages at the bor-
ders.

With reference to the network in Fig. 6, let be the set of
the external nodes of the network

and let to be a total ordering on . Let us consider the subset
of (external couple) defined by

We prove in the following that, by supplying the network
through each element of and by reading the currents that
enter the circuit, it is possible to distinguish two networks with
the same topology but different resistance values. With no loss
of generality, it is possible to suppose that a unitary voltage is
applied to the circuit (due to the linearity of the network) and
that two networks differ only for resistances inside in (other-
wise, we can always add a new set of known fixed resistance to
form a new border and consider a new network with nodes
on its side). Let us suppose to supply the network through a
certain element . By writing the equation of the circuit
(by the current mesh method), we obtain

(15)

where is the number of the passive mesh,
is an element of the canonical bases of , the matrix of
the resistance, and the vector of the currents. Equation (15)
can be written as

(16)

Let us observe that changes only in its last row and its
last column, because of the network changes in the different
measurement only for it supplied mesh, while the set of passive
mesh remains the same.

It is easy to show that is a block-tridiagonal matrix of the
form

(17)

where the blocks are diagonal

(18)

and the blocks are in the form

(19)

Briefly, the matrix (17) has dimension
and is built as follows. Each element on its diagonal

represents a certain mesh of the network and contains the sum
of the resistances of the same mesh. Each nondiagonal element,
individuated by a couple of index ( ) is equal to the resistance
common to the th and the th mesh with negative sign. Each
resistance in the net occurs almost once or in a matrix or in a
matrix as an isolated element. It is easy to prove, by using
the Gershgorin theorem [16], that the matrix is nonsingular.
Equation (16) can be split into

(20)

(21)

by replacing (20) into (21) and solving with respect to , we
obtain

(22)

If we consider all the measurements for , an expres-
sion of (22) would be computable, we could prove that the set

, as set of functions of the internal resistances of
the network, is independent. Unfortunately, symbolic inversion
of the matrix has high computational costs, and to compute
its inverse is very hard for already. What we can do is
prove that for two different networks, represented by the matrix

and , respectively, it is possible to to find out if they are
the same or not.

Let us consider the (20) and (21) for two different networks

(23)

(24)

where . Let us observe that ;
otherwise, the networks would be distinguishable. We can write

(25)

(26)

and by combining

(27)
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By subtracting (27) evaluated for from (27) evaluated for
, we obtain

(28)

Due to the univocity of the inverse, it is clear that if it were
, then . But this condition, for the

structure of the blocks and , implies that all the resistances
of the networks were the same. Let us consider (28) again. is
the vector that represents the resistance involved in the supplied
mesh that changes when spans . It is easy to prove that

spans a set of generators for , and
for the bilinearity of with respect to and

, it implies that from (28) results

that what we wanted to prove.
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