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On the Stability of Manipulators Performing 
Contact Tasks 

NEVILLE HOGAN 

Abstract-By any reasonable definition, manipulation requires contact 
with the object being manipulated, and the full potential of robots can 
only be realized when they are applied to contact tasks. One of the 
difficulties engendered by contact tasks is that they require intimate 
dynamic interaction between the robot and its environment. That 
interaction changes the performance of the robot and can jeopardize the 
stability of its control system. 

This paper will discuss the problem of preserving the stability of a 
manipulator’s control system during contact tasks. It will be shown that 
contact stability may be guaranteed if the control system provides the 
manipulator with an appropriately structured dynamic response to 
environmental inputs. Two aspects of one implementation of such a 
controller will be considered. Robustness to large errors in the manipula- 
tor kinematic equations and to unmodeled interface dynamics will be 
shown. 

NOMENCLATURE 

Gradient operator. 
Kinetic energy. 
Kinetic co-energy . 
Potential energy. 
Transfer function. 
Hamiltonian. 
Lagrangian. 
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Force/velocity relation. 
Generalized nonconservative internal forces. 
Interaction port force. 
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Jacobian of a kinematic transformation. 
Force/displacement relation. 
Kinematic transformation equations. 
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Interaction port velocity. 
Interaction port coordinates. 

Subscripts: 
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INTRODUCTION 
HE WORK presented in this paper is part of an effort to T develop a unified approach to the design and 

implementation of controllers for systems that may interact 
dynamically with their environment. One of the perceived 
problems is robustness: preserving stability and acceptable 
performance in the face of changes. One of the most profound 
changes occurs when a manipulator contacts an object. Before 
contact, the controller interacts with the hardware of the 
manipulator; after contact, the controller also interacts dynam- 
ically with the environment. In this sense, the physical system 
interacting with the controller may change dramatically as a 
result of contact. Consequently, the performance of the 
controller must change, and that change may be drastic. Even 
if the controlled system is stable when not in contact, when it 
contacts the environment that stability may be jeopardized. 
This phenomenon was reported by Whitney in 1977 [20] and 
subsequently by numerous others. It was identified recently 
[16] as one of the major challenges of robotics. 

The problem of preserving controller stability in the face of 
changes has received considerable attention, especially in the 
last decade, but the changes are usually considered to be small 
in some sense-small changes in system parameters or the 
presence of unmodeled dynamics. Unmodeled dynamics are 
commonly assumed to be some subtle aspect of system 
behavior which only becomes important above the frequency 
range of normal operation. 

The problems generated by dynamic interaction between 
manipulator and environment are at least an order of magni- 
tude more severe, because the changes cannot be assumed to 
be small. Consider two people shaking hands: As soon as 
hands are clasped each person’s control system interacts 
dynamically with the musculo-skeletal systems of both people. 
Thus the number of degrees of freedom of the physical system 
coupled to each biological controller approximately doubles 
when hands are clasped; a dramatic change. The changes 
cannot be assumed to occur at high frequency; both of the 
interacting subsystems-both people-have approximately the 
same frequency range of operation. 

This paper will examine a simple control strategy which 
preserves controller stability in the face of such dramatic 
changes in the dynamics of the environment coupled to the 
manipulator. 
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IMPEDANCE CONTROL 

Most of the prior art in control system design has been 
dominated by the problem or regulation or tracking. It is 
typically assumed that the objective of the controller is to 
minimize the error between a reference command vector and a 
selected output vector, subject to the limitations of the physical 
hardware. The influence of the environment on the control 
system is usually added as an afterthought and treated as a 
disturbance which will tend to thwart this objective. These 
disturbances are usually assumed to be generated by an 
independent process and it is typically assumed that the 
response to disturbances should be minimized, again subject to 
the limitations of the physical hardware. 

When this approach is applied to dynamically interacting 
systems, it is quite misleading. First, because of the dynamic 
interaction, the “disturbances” due to the environment may 
no longer be described as independent of the state of the 
system, and this invalidates most of the usual analysis. 
Secondly, the response of the system to the environment 
becomes at least as important as its response to a reference 
input, if not more so. The typical regulator design procedures 
for linear systems focus on shaping the transfer function 
matrix relating an output vector to a command vector. If the 
system is to perform dynamically interactive tasks, it is 
equally important to shape the transfer function dictating the 
response of the system to its environmental inputs. Indeed, this 
may become the dominant concern in the design of the 
controller. 

The approach presented in this paper is based on the 
recognition that a controller does more than merely regulate a 
system’s output. The true action of a controller on a physical 
system is to modify its behavior. If we describe a physical 
system by a set of constitutive equations, the action of a 
controller is to change the apparent “constitutive behavior” of 
the system. In terms of the system’s response to its environ- 
ment, the controller acts to change the system’s dynamic 
impedance and the approach presented here has been termed 
impedance control [7] - [9] .  

PHYSICAL EQUIVALENCE 
One of the ideas underlying this approach to controlling 

impedance is the conjecture of physical equivalence [9]. Any 
controlled system will consist of “hardware” components 
(e.g., sensors, actuators, and structures) coupled to control- 
ling “software” (e.g., a brain or a computer). In general, the 
controller is a dynamic system, operating on a set of 
measurement inputs from the sensors and reference inputs or 
“high-level” instructions, to produce a set of output com- 
mands to the actuators. Aside from the limitations of comput- 
ability, the dynamic behavior of the controller appears to be 
subject to no fundamental restrictions. 

In general, the hardware components also comprise a 
dynamic system, but, unlike the controller, the dynamic 
behavior of the hardware is clearly subject to a number of 

I The term impedance is used here in the general sense of a dynamic 
relation between two variables whose inner product is power, e.g., as a 
generalization of the common electrical engineering term meaning a dynamic 
or frequency-dependent resistance. 

important restrictions arising from fundamental physical laws. 
However, the controller acts on the environment through the 
hardware. The conjecture of physical equivalence is that, as 
seen from the environment, the dynamic behavior of the 
combination of hardware and software is restricted in the same 
way as any physical system. 

One implication of this conjecture is that no controller need 
be considered unless it results in a behavior of the controlled 
system which can be described as equivalent to some physical 
system. In other words, the equations describing the controlled 
system should be subject to the same restrictions as the 
equations used to describe physical systems. Well-developed 
formalisms exist for describing physical systems (e.g., [3], 
[17], [ I S ] ) .  If true, the postulate of physical equivalence 
implies that the same techniques can be used to describe 
control systems. Furthermore, the concept of physical equiva- 
lence provides a powerful and intuitive way of thinking about 
control action in physical terms, and permits a unified 
approach to the design of both the controller and the physical 
hardware. 

What distinguishes the differential equations used to model 
a physical system from m y  other general system of differential 
equations? No complete answer is attempted here, but the 
following sections consider some of the features of physical 
system models and their implications for system stability. 

ENERGETIC STRUCTURE OF THE ENVIRONMENTAL DYNAMICS 
If a manipulator (biological or artificial) is to interact 

dynamically with its environment then it is important to 
understand the dynamic behavior of the environment. We first 
define the class of environments to be considered in this paper. 
In the vast majority of cases, the environment a manipulator 
grasps consists of an inertial object, possibly kinematically 
constrained. That inertial object may in turn interact with other 
dynamic entities. Arbitrarily complex environments of this 
class can be described in the following form using Lagrange’s 
equations: 

L(qe) 4e)=EF(qe, 4 e ) - E p ( q e )  (1) 

d [ a ~ / a ~ , ) l / d t -  aL/aqe= -D,(q,, Q ~ ) + P , ( ~ ) .  (2) 

We will further restrict out attention to environments which 
are 1) passive and 2) stable in isolation. To analyze stability, it 
is convenient to express the dynamic equations in generalized 
Hamiltonian form. It is a common misconception that the 
Hamiltonian form can be used only for conservative systems, 
but this is not the case. A Hamiltonian may be formed by 
defining generalized momentum as the velocity gradient of 
kinetic co-energy and applying a Legendre transformation. 

(3) 

(4) 

f f e  @e) q e  = Ek (Po  q e  ) .f E p  ( q e )  =P:de - L ( q e ,  q e  ) *  ( 5 )  

The momentum gradient of the Hamiltonian yields differential 
equations for the displacement 
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Substituting into the Lagrangian form and rearranging yields 
the Hamiltonian form of the momentum equations 

P e =  -aHe/aqe-De(pe, qe)+Pe(t)* (7) 

For notational convenience in subsequent analysis, denote the 
gradient of the Hamiltonian with respect to generalized 
displacements as Hq and with respect to generalized momenta 
as Hep. 

H,~  6 aH,/aq, H~~ 4 awelap, (8) 

4e=Hep(Pet q e )  (9) 

l i e =  -Heq(pe, qe)-De(pe, q e )  +Pe(t)* (10) 

An advantage of the Hamiltonian formulation is that for this 
class of systems the Hamiltonian is identical to the total system 
energy and may be used to establish passivity and stability. If 
the environment is passive, its total energy has a lower bound, 
but that alone is not sufficient to establish stability in 
isolation-a passive system may be unstable [22]. To establish 
stability we examine equilibrium conditions. 

If an equilibrium configuration exists the generalized 
velocity is zero, and from (5)  and (9), the system is at a 
minimum of the kinetic energy with respect to the generalized 
momentum. In general, the kinetic energy is a positive- 
definite, nondecreasing function of the momentum, thus at 
equilibriump, = 0. 

We define this class of systems to be isolated whenever 
P,(t) = 0. At equilibrium in the absence of external forces the 
nonconservative internal forces vanish, D,(O, qe) = 0, thus 
from (5) and (lo), the equilibrium configuration is at a 
minimum of the potential energy with respect to the general- 
ized displacement. We will consider only those environments 
for which potential energy is a positive-definite, nondecreas- 
ing function of the generalized displacements, thus there is an 
unique equilibrium configuration at qe = 0. 

For systems of this class, the Hamiltonian may be used as a 
Lyapunov function for the analysis of stability [6]. The rate of 
change of the Hamiltonian is 

dH,/dt = H&qe + H:,pe 

= H&Hep - H:,Hq - HapDe + HipP, (1  1) 

dH,/dt = - 4:De + 4:Pe. (12) 

If the system is isolated, 

dHe/dt= -4:De(pe, qe). (13) 

A sufficient condition for global asymptotic stability in 
isolation is 

q:D,>O for a l lp , fO (14) 

that is, the unique equilibrium configuration of the environ- 
ment is globally asymptotically stable if the net power 
absorbed by the internal nonconservative (generalized) forces 
are a positive-definite function of the generalized momenta. 

Note that the describing equations for the environment are 
highly structured because of the energetic nature of physical 

systems. We need only make a few mildly restrictive 
assumptions to arrive at sufficient conditions for isolated 
stability. Summarizing those assumptions: 1) the system 
dynamics are described by (9) and (lo), 2) the total system 
energy is a positive-definite, nondecreasing function of the 
generalized momenta and displacements, and 3) the net power 
absorbed by the nonconservative (generalized) forces internal 
to the environment is a positive-definite function of the 
generalized momenta. Of course, not all environments behave 
this way; however, the class of physical objects which is 
subsumed under this description is extremely large [4], [ 171. 

RESTRICTIONS ON PHYSICAL SYSTEM INTERACTIONS 
Another important feature of physical systems is that, unlike 

dynamic systems in general, the ways in which they may 
interact are restricted. Dynamic interactions between physical 
systems may be described (essentially be generalizing Kirch- 
hoff's current and voltage laws) as isenergic, that is, involving 
an instantaneous exchange of energy without loss, storage, or 
generation of energy. Instantaneous energetic interaction or 
power flow between a physical system and its environment 
may always be described as a product of two variables, an 
effort (generalized voltage or force) and a flow (generalized 
current or velocity) [3], [ 171. 

Note that in general, dynamic systems are not subject to this 
restriction. For example, two general linear systems may be 
coupled in cascade. The two systems may be represented by 
the following transfer functions: 

Their cascade combination is 

The cascade coupling equations are 

Y3=Y2 u2=Y1 uI=u3. (18) 

However, if (15) and (16) represent the dynamic responses 
of physical systems to their environments (i.e., impedances or 
admittances), then the products uIy1, ~ 2 ~ 2 ,  and u3y3 
represent the power into2 systems 1 ,  2, and 3, respectively. 
The isenergic nature of physical system interactions requires 
that the net power into the coupled system must be the sum of 
the power into the component systems 

U3Y3 = uIYl+u2Y2. (19) 

Clearly, the cascade combination does not guarantee that this 
requirement is satisfied. Interactions between physical systems 
are more restricted than interactions between dynamic systems 
in general. 

When a manipulator grasps an object, coupling between 
manipulator and environment takes place at a set of points on 
the object. These points define an interaction port. The 

* The convention that power is positive into a system has been assumed. 
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position of the interaction port is a function of the generalized 
coordinates. 

Xe = Le ( qe) * (20) 

The velocity of the interaction port Ve is related to the 
generalized velocity qe through the Jacobian of the kinematic 
transformation from generalized coordinates to interaction 
port coordinates. Because the transformation is isenergic, the 
generalized input force Pe is related to the interaction port 
force Fe through the transposed Jacobian 

Ve = Je (qe) Qe 

Pe = Je (qe) ‘Fe* 

(21) 

(22) 

The equations show that this class of environments accepts 
input forces and produces output motions in response. Note 
that the vector of generalized coordinates qe need not have the 
same number of components as the vector of interaction port 
coordinates and hence the Jacobian need not be square. 
Therefore, it is not always possible to reformulate the 
equations in the dual form with velocity as the input and force 
as the output: this system is best described as a generalized 
mechanical admittance3. Once again, not all environments 
behave this way, but the class of physical objects which fit this 
description is extremely large. 

DYNAMIC BEHAVIOR OF THE MANIPULATOR 
The idea of physical equivalence is that the dynamic 

behavior of the controlled manipulator is subject to the same 
restrictions as any physical system. Dynamic interaction 
between two physical systems imposes a constraint on the 
forms of their input/output relations. If one system is 
described as a (generalized) admittance, accepting effort (e.g., 
force) input and producing flow (e.g., motion) output, the 
other should be described as a (generalized) impedance, 
accepting flow (e.g., motion) input and producing effort (e.g., 
force) output. If we choose to model the environment as 
above, then to be physically compatible, the manipulator 
should behave as a generalized impedance, accepting motion 
inputs, and producing force outputs in response. 

Imposing appropriate dynamic behavior is the objective of 
impedance control. Some questions immediately arise: First, 
can it be done? The feasibility of imposing a desired 
impedance on a manipulator has been demonstrated and 
discussed in detail elsewhere [81, [9], [ l l l ,  [131-[151, [211. 
Secondly, is it worth doing? As detailed elsewhere [l], [9] 
impedance control provides a unified framework for coordi- 
nating free motions, obstacle avoidance, kinematically con- 
strained motions, and motions involving dynamic interaction. 

The paper will consider another aspect of impedance 
control: the preservation of stability in the face of large 
changes in the dynamic environment to which a manipulator is 

Note that although the terms impedance and admittance are commonly 
restricted to linear systems, they are applied here to nonlinear systems, hence 
the terms generalized impedance and generalized admittance. In general, 
they are causal dynamic operators which map an input time function u(t )  onto 
an output time function y ( t )  such that the present value of the output y ( t )  may 
depend on the entire past history of the input u(t - r )  for 0 < r < w [17]. 

coupled. Large changes occur when the manipulator makes the 
transition from unconstrained motion (infinite environmental 
admittance) to contact with an object of unspecified dynamic 
complexity (any member of the class of systems described by 

First we will consider the desired dynamic behavior. A class 
of simple impedances will be defined and it will be shown that 
if the manipulator had the behavior of this general class of 
impedances then a sufficient condition for the manipulator and 
the environment to be stable in isolation from one another 
would also be sufficient to guarantee that dynamic interaction 
between manipulator and environment would not cause insta- 
bility [lo]. Then we will consider one approach to achieving 
this behavior and examine the conditions under which it also 
has the coupled stability property. 

(9), (IO), (20)-(22)). 

SIMPLE IMPEDANCES 
One simple (but versatile) class of impedances has the 

(23) 

where Xo is a vector OC equilibrium positions of the port of 
interaction (e.g., the manipulator end-effector) when it is 
isolated from its environment. In the following it will be 
assumed to be a constant, corresponding to the maintenance of 
a fixed posture. 

To facilitate stability analysis we express this impedance in 
Hamiltonian form. The function relating force to displacement 
from the equilibrium posture may be nonlinear, but if it 
corresponds to a generalized elastic behavior, physical sys- 
tems theory requires that a potential function can be defined, 
which can be used as the Hamiltonian for this impedance. 

following behavior: 

F z = K ( X z  - Xo) + B( V,) 

where 

Rewriting (23) in Hamiltonian form 

qz fi Xz-X , .  

The rate of change of the Hamiltonian is 

dH,/dt  = Hiq V,. (29) 

In the absence of imposed motions, Vz is identically zero 
and this system is isolated. The rate of change of the 
Hamiltonian is then zero, but no statement can be made about 
the system’s asymptotic stability. However, the impedance 
described by (23) is to be the target behavior for a manipulator 
and one of the assumptions underlying impedance control [9] 
is that an impedance-controlled manipulator should be at least 
capable of stably positioning an arbitrarily small unconstrained 
mass (i.e., a rigid body). To determine the restrictions this 
places on the impedance, we will next consider the stability of 
this impedance coupled to an unconstrained rigid body. 
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The Hamiltonian for a rigid body may be equated with its 
kinetic energy 

He( Pe) = Ek (Pel = 1 / 2 P  LM- ‘ P e a  (30) 

Because the inertia tensor is positive-definite, the Hamiltonian 
is positive-definite and nondecreasing. The equations of 
motion may be written as follows: 

d e  = Hep(Pe) (31) 

Eje = Fe(t) (32) 

V, = 4,. (33) 

dH,/dt  = HfpFe. (34) 

The rate of change the Hamiltonian of this system is 

Thus an unconstrained rigid body also has the property that 
when the force Fe is zero and the system is isolated, its energy 
is nonincreasing but no statement can be made about its 
asymptotic stability. 

Assume the rigid body and the impedance are coupled so 
that their interaction ports share a common velocity. Isenergic 
coupling requires the net power generated to be zero. 

F: V, + F: V, = 0. (35) 

Thus the forces Fe and F, have opposite signs. The Hamilto- 
nian for the coupled system is its total energy which is the sum 
of the energies of the component systems. 

Ht(Pe-9 q z ) = f f e ( P e ) + H z ( q z ) *  (36) 

The equations for the coupled system are as follows: 

Eje = - Htq ( 42) - B(Htp(Pe)) (37) 

4, = Htp (Pe) (38) 

This system is at equilibrium when pe  = 0. If the potential 
energy of the impedance is a positive-definite, nondecreasing 
function of the displacements then the system has a unique 
equilibrium point at the origin of the state space ( p ,  = 0, q, = 
0). The rate of change of the Hamiltonian is 

dH,/dt  = Hfqqz - HfpEje 
- H ‘ H  - “ H  - H t B = -  .f 

‘4 ‘P tp ‘9 rp 4,B. (39) - 

A sufficient condition for global asymptotic stability of that 
equilibrium point is 

qiB>O for pe#O. (40) 

An impedance of the form of (23) which satisfies the 
conditions that 1) the potential energy of the impedance is a 
positive-definite, nondecreasing function of the displacements 
q, and 2) the net power dissipated by the nonconservative 
forces is a positive-definite function of the generalized 
momenta p ,  will be referred to as a simple impedance. 

COUPLED STABILITY OF SIMPLE IMPEDANCES 

Now consider the stability of the system formed when a 
simple impedance interacts dynamically with the more general 

environment described by (9), (lo), (20)-(22). Once again, 
because of the isenergic nature of the interaction, the coupled 
system Hamiltonian is the sum of the Hamiltonians of the 
components. 

Ht(Pe9 qe)=Ek(Pe, q e ) + E p ( q e ) + H z ( L e ( q e ) - X O ) .  (41) 

The equilibrium configuration for the environment is at the 
minimum of Ep(q,). The equilibrium configuration for the 
simple impedance is at Xo, the minimum of H,(q,). We will 
assume that the two systems are at equilibrium and that the 
positions of their interaction ports coincide before they are 
coupled. Consequently, the minima of H, and Ep coincide and 
the coupled system Hamiltonian HI is a positive-definite, 
nondecreasing function of the momenta pe  and displacements 
4,. The rate of change of the coupled system Hamiltonian is 

dHt / d t  = Hiq J,  Hep + H b  Hep - H& Heq - H‘ eP De 

- H:pJ:HZq-H:pJ:B (42) 

dHt/dt= -4:De-q:B. (43) 

Thus the sufficient conditions for assymptotic stability of 
each of the two individual systems (14) and (40) are also 
sufficient to guarantee that the rate of change of the Hamilto- 
nian of the coupled system is never positive. In physical terms, 
because the isenergic coupling does not generate energy, there 
is no mechanism through which the total system energy can 
grow, and the nonconservative terms ensure it will decrease. 
Furthermore, the coupled system has a unique equilibrium 
state and therefore the coupled system is globally asymptoti- 
cally stable. 

Summarizing briefly, this discussion has shown that a 
simple impedance described by (23) where K(q,) is the 
gradient of a positive-definite, nondecreasing function and 
V:B > 0 for V, # 0 has strong stability robustness 
properties. Dynamic interaction with any object which is a 
generalized admittance described by (9), (lo), (20)-(22), 
where H,(p,, 4,) is a positive-definite, nondecreasing func- 
tion of pe and qe and qLD, > 0 for all pe  f 0 cannot cause 
instability. 

If the behavior of this simple impedance can be imposed on 
a manipulator, then if the manipulator is stable in isolation it 
will remain stable when it grasps any of a large class of objects 
of arbitrary dynamic complexity, provided that object was also 
stable in isolation. 

IMPLEMENTING A SIMPLE IMPEDANCE 

We will next consider the implementation of a simple 
impedance on a class of manipulators. There are, of course, 
many ways to implement a given desired impedance; some 
have been discussed elsewhere [9]. For simplicity, we will 
restrict our attention to manipulators which, in the absence of a 
controller, are neutrally stable at each configuration in the 
workspace. Any mechanism which is dynamically balanced or 
statically balanced has this property. Robots of this type can 
exhibit the problems of contact instability [l 13. We will 
further assume that the manipulator may be adequately 
modeled as a rigid-body kinematic mechanism driven by 
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controllable-force actuators. This is an idealizing assumption 
common in the robotic literature, and the recent work on 
direct-drive robot designs [2] has resulted in practical robots 
which are well-described by these assumptions. Such a 
manipulator is usually described using a Lagrangian formula- 
tion similar to (1) and (2), but to simplify the stability analysis, 
we will use a generalized Hamiltonian formulation. 

The Hamiltonian for the manipulator without a controller is 
the kinetic energy of the mechanism. 

Hm 4 PkI(qm)-’Pm* (44) 

The generalized input forces to this mechanism are the 
actuator efforts and the forces from the environment. Defining 
an interaction port for the manipulator, its position is a 
function of the generalized coordinates. 

x m  = L m  ( q m ) .  (45) 

Given the kinematic transformations, the relation between 
velocities and forces may be derived and the input/output 
relation at the interaction port is as follows: 

4 m  = Hmp (46) 

Pm= -Hmq-Dm+Pa+JLFm (47) 

V,,, = Jmqm. (48) 

We wish to impose the behavior of the target impedance of 
(23). Suppose that impedance were coupled to the manipulator 
interaction port, i.e., X,  = X,. Given the kinematic 
transformations and (35), the target impedance may be 
transformed into the generalized coordinates of the manipula- 
tor. 

Pa = - Jm ( q m )  ‘K(Lm ( q m )  - XO) - Jm ( q m  )‘B( Jm ( q m )  4 m )  - 
(49) 

If we assume that measurements of the position and velocity 
of the manipulator generalized coordinates are available, then 
one simple way to implement the target impedance is to regard 
(49) as the specification of a nonlinear feedback control law 
[12]. Note in passing that this approach requires no inversion 
of the kinematic equations or of the Jacobian and thus is 
computable for all configurations of the manipulator. 

This controller coupled to the manipulator may be described 
as an equivalent physical system in generalized Hamiltonian 
form. The Hamiltonian for the controlled system H, is the sum 
of the Hamiltonians for the uncontrolled manipulator and the 
impedance. 

Hc(Pm, q m ) = H m ( P m ,  q m )  + f f z ( L m ( q r n ) - x o ) .  (50) 

Thus we arrive at the following representation: 

4 m  = Hcp (51) 

p m = - HCq-Dm- JkB+ JkFm (52) 

V,,, = Jmqm. (53) 

Note that the structure of the equations for the controlled 

system is the same as that for the uncontrolled physical 
system. In this sense the controlled system is equivalent to a 
physical system (and subject to the same constraints). This is 
an example of physical equivalence, the starting assumption 
behind impedance control. 

To assess stability we examine the rate of change of the 
Hamiltonian H,. 

d H c / d t = H ~ q H c p - H ~ p H , q - H ‘  CP D ,  

At first glance it might appear that the properties of the 
simple impedance are sufficient to guarantee asymptotic 
stability of the controlled manipulator in isolation, but this is 
not necessarily the case. A feature of this implementation of 
the simple impedance controller is that if the mechanism is 
capable of joint motions which do not affect the motion of the 
interaction port (motions in the null-space of the Jacobian) the 
impedance imposed by the controller is unaffected by those 
motions. This is advantzgeous insofar as any desired strategy 
for using those “extra” degrees of freedom can be applied in 
conjunction with the controller. On the other hand, the 
converse is also true: this controller will have no effect on 
null-space motions. The simple impedance only guarantees 
asymptotic stability of the interaction port and not of the 
configuration of the manipulator. 

There are several ways to overcome this problem. One is to 
augment this implementation of the simple impedance with a 
joint-space controller which stabilizes the manipulator config- 
uration; for example, the position and velocity feedback 
controllers discussed by Takegaki and Arimoto [19]. How- 
ever, in the interest of simplicity, in this paper we will assume 
that the manipulator and the interaction port have the same 
number of degrees of freedom so that the manipulator cannot 
make null-space motions. 

Even given this assumption, there exist equilibrium configu- 
rations other than qm = 0 for which the rate of change of the 
Hamiltonian vanishes identically. For example, a planar two- 
segment mechanism with no limits on joint motion can reach 
any end-point position not on the boundaries of its workspace 
at two joint configurations (the “left-hand” and “right-hand” 
solutions of the inverse kinematic equations). As a result, this 
implementation of the simple impedance does not provide 
global asymptotic stability. 

However, it does provide local asymptotic stability because 
there exists a region centered on the equilibrium configuration 
qm = 0 in which the Hamiltonian H, is a positive-definite, 
nondecreasing function of the displacements qm. Because of 
the inertial properties of the mechanism, the Hamiltonian is a 
positive-definite, nondecreasing function of the momenta pm. 
When the system is isolated Fm = 0 and from the properties of 
the simple impedance, V‘B 2 0 for all pm.  A sufficient 
condition for isolated stability of the impedance-controlled 
manipulator is 
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This result is similar to that presented by Takegaki and 
Arimoto [ 191 which established the stability properties of 
general position and velocity feedback controllers. Those 
authors also point out that if the manipulator is coupled to an 
ideal kinematic constraint, the effect is to reduce the number 
of degrees of freedom of the coupled system, but the 
Hamiltonian defined above still remains locally positive- 
definite. However, in general, dynamic interaction with an 
environment will add to the degrees of freedom of the coupled 
system (rather than reduce them) and couple the environmental 
dynamics to the manipulator and its controller, thereby placing 
stability in jeopardy. The next section will show that this 
impedance-controlled manipulator has the stability robustness 
property of the target impedance. 

Thus the sufficient conditions for assymptotic stability of 
each of the two individual systems (14), (40), and (56) are also 
sufficient to guarantee that the rate of change of the Hamilto- 
nian of the coupled system is never positive. Because the 
coupled system Hamiltonian is locally positive-definite, the 
coupled system is locally asymptotically stable. Dynamic 
interaction with a large class of objects which are stable in 
isolation cannot cause instability. 

INSENSITIVITY TO KINEMATIC ERRORS 
How sensitive is this result to the inevitable departure of a 

real manipulator or a real control algorithm from the idealizing 
assumptions made by using (46)-(48)? This is a topic of 
current investigation [5] which will not be discussed in depth 
here, but robustness to certain classes of errors will be 
demonstrated. One interesting and useful result is that the 
coupled stability property is completely insensitive to errors in 
the kinematic equations. 

Suppose (49) is implemented as a control algorithm using 
kinematic equations which differ from the correct equations. 

COUPLED STABILITY OF THE CONTROLLED MANIPULATOR 
If the manipulator and envi rom~nt  are coupled at a set of 

points of common velocity, some of the generalized coordi- 
nates of the two systems will become interdependent. In that 
case, a new set of generalized coordinates qt for the coupled 
system may be defined in terms of the old. 

(57) qt=qt(qrn, q e ) .  
Because of this constraint equation, the generalized mo- 

Pa= - ' J(qrn)'K( 'L(qrn)-&) - ' J(Qrn)fB('J(qm)Orn)* 

(62) 
menta of the two systems become interdependent, as do the 
generalized velocities and forces. The effect of the coupling is 
to confine the system trajectories to a subspace of the state 
space defined by the momenta and displacements of the 
manipulator, p m  and qm, and the environment, pe and qe. 
Nevertheless, the total energy for the coupled system is still 
the sum of the energies of the two systems in isolation, and the 

The 
Onto a point 'x where 

lunematic equations the coordinates qrn 

'X= ' L  ( qm). (63) 

Define the potential function 

analysis of stability may proceed as before. 'Hz(qrn) 6 Hz('L(qm)-xo)* (64) 

Hr = q e )  +E,(~,)  + H,(~,, qrn) + H,(L,(~,) - xo). It is a nonnegative function of the displacements qrn with a 
local minimum at ' X  = Xo Define the candidate Lyapunov 

( 5 8 )  function 

The equilibrium configuration for the environment is at the 
minimum of Ep(qe). The equilibrium configuration for the 
simple impedance is at Xo, the minimum of H,(qz). Assuming 
that the two systems are at equilibrium and that the positions of 
their interaction ports coincide before they are coupled, the 
minima of H, and Ep coincide and there is a region centered on 
the equilibrium configuration in which the coupled system 
Hamiltonian HI is a positive-definite, nondecreasing function 
of the momenta pe and pm,  and displacements qe and qm. 

Using (12), (22), and (55 ) ,  the rate of change of the coupled 
system Hamiltonian is as follows: 

dHt/dt= -q:De+q:Jpe-q4: , (Drn+ JLB)+4LJ;Frn. 

(59) 

Using (21) and (48) we may identify the terms representing the 
power generated by the coupling. 

Because the coupling cannot generate power, the last two 
terms sum to zero. 

(61) dHt/dt = - qPe - qLDm - VLB. 

'Hc(~rn, Qrn)  6 Hrn(Prn9 qrn)+Hz('Lrn(qrn)-Xo)- (65) 

Its rate of change is 

d'HJdt = Hiq [a'L/aqrnlHrnp + HtqHrnp 

- H i p  Hmq - HLpDrn - HLP' Jt  Hzq 

- HLp' J'B + JLF,,,. (66) 

If the (erroneous) Jacobian ' J( e )  is the correct derivative of 
the (erroneous) kinematic equation 'L(  a )  then dL/aqrn = ' J 

d'X/dt= ' V =  'J(qrn)Qm. (67) 

d'H,/dt= - QLD, - V'B. (68) 

If the manipulator is isolated Frn(t) = 0 

Equation (56) (a property of the manipulator) and (40) (a 
property of the target impedance) guarantee that these noncon- 
servative forces are a positive-definite function of the mo- 
menta, and that is sufficient to establish isolated local 
asymptotic stability of the controlled manipulator. 

We can then proceed as above (57)-(61) to analyze the 
stability of the controlled manipulator coupled to the environ- 
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ment. The Hamiltonian of the coupled system is 

'Ht=Ek(Pe, q e ) + E p ( q e ) + H r n ( P m ,  4,) 

+ Hz( ' L  (4,) - XI). (69) 

d ' H t / d t =  -q:De-qLDm- ' V'B. (70) 

Its rate of change is 

Thus conditions sufficient to guarantee local asymptotic 
stability of the controlled manipulator in isolation are also 
sufficient to guarantee that dynamic interaction with a large 
class of objects which are stable in isolation cannot cause 
instability. 

An interesting point is that this result does not require any 
assumption of small errors. Differences between the true 
kinematic equations and those implemented in the controller 
could arise due to kinematic calibration errors, in which case 
we might expect the differences to be small. But they could 
also arise if the manipulator contacted the environment at a 
point other than the expected interaction port (e.g., when the 
forearm touches down before the hand does). In that case, the 
differences neLd not be small by any measure. However, the 
coupled stability property remains intact: if the manipulator is 
(locally) stable in isolation, it will remain (locally) stable when 
coupled to an arbitrarily complex environment of the class 
defined above. 

INSENSITIVITY TO INTERFACE DYNAMICS 

Another important way a real manipulator may depart from 
the idealizing assumptions made above is that the interface 
between the manipulator and environment (e.g., the hand, the 
fingers) may exhibit dynamic behavior which this simple 
implementation does not take into account. We will next show 
that the coupled stability property is insensitive to a broad 
8 lass of unmodeled interface dynamics. 

The simple implementation described above which treats 
(49) as a nonlinear feedback control law is not completely 
successful at achieving the desired impedance. It adds the 
desired impedance to the manipulator but does nothing to 
change the manipulator's fundamental inertial behavior. (A 
more sophisticated controller would be required to do that, 
e.g., [ l l ] ,  [14], [21].) The dynamics of the controlled 
manipulator is composed of the imposed impedance coupled to 
the intrinsic admittance of the manipulator. 

To the extent that the environment is an admittance (our 
starting assumption), a compatible model of the interface 
behavior is that of an impedance. This is physically reason- 
able: The soft fingertip pads of the human hand are predomi- 
nantly visco-elastic; the wrist force sensor used in many robots 

The velocity associated with the interface is the difference 
between the velocity of the manipulator interaction port and 
the velocity of the environment interaction port 

v; = v, - ve. (72) 

Consequently, as required by physical systems theory, the net 
power generated by the coupling is zero 

Ff V;+ F: Ve+ F& V, = 0.  (73) 

From this fact we can proceed as above to show that if 1) the 
interface dynamics are stable in isolation, 2) the environment 
is stable in isolation, and 3) the manipulator is stable in 
isolation, then the total energy of the coupled system is the 
sum of the energies of the components and never increases. 
Therefore, dynamic interactions between these three systems 
cannot cause instability. 

Just as the environment dynamics may be of arbitrary order, 
this result could be derived for interface dynamics of arbitrary 
order, but for brevity we will show it for the following case in 
which the interface is a simple visco-elastic system. Denoting 
the displacement of the interface by q;, where 

q; = x, - xe (74) 

we will assume the interface is described by the following 
equations: 

(75) 

For stability analysis we will represent this impedance in 
Hamiltonian form. The Hamiltonian for the interface is the 
potential function defined by the elastic behavior 

Fj=Kj( 4;) + Bj( V;) .  

Hi(qi) fi 'j Ki(qi) dqi (76) 

(77) 

q i =  V;(t)  (78) 

F; = p i .  (79) 

rii = Hiq ( 4;) + Bi( vi) 

To ensure that this interface is stable when the manipulator 
grasps an arbitrarily small rigid body, we will assume that 
H;(q;) is a positive-definite nondecreasing function of q; and 
that VfB; > 0 for Vi # 0. 

When the manipulator, interface, and environment are 
coupled, the generalized coordinates of the total system are q, 
and qe, the generalized coordinates of the interface being 
determined by (74). The Hamiltonian for the coupled system 
Ht may be obtained by adding the individual Hamiltonians 

is basically an instrumented spring. In both cases, the 
dynamics of the interface may be well described as a 
generalized mechanical impedance. 

Now consider the stability of the coupled system composed 
of the manipulator, a dynamic environment of an arbitrary 
number of degrees of freedom, and this interface. Any force 
exerted on the environment is also exerted on the interface and 
is equal and opposite to the force on the manipulator 

F;=F,= -Fm. (71) 

Assuming that the systems are at equilibrium and that the 
positions of their interaction ports coincide before they are 
coupled, there is a region centered on the equilibrium 
configuration in which the coupled system Hamiltonian Ht is a 
positive-definite, nondecreasing function of the momenta pe  
andp,, and displacements qe and 4,. The rate of change of the 
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coupled system Hamiltonian is as follows: 

Using (12), (21), (22), ( 5 3 ,  and (77) 

dH,/dt= -qpe+ V2Fe-ijhDm- VhB+ VLFm 

- ViBi+ VfFi. (82) 

But the power generated by the coupling is zero (73), therefore 

Thus the properties of the environment, the manipulator, the 
simple impedance, and the interface are sufficient to guarantee 
that the Hamiltonian for the coupled system is 1) locally 
positive-definite and 2) never increases, thus the coupled 
system is locally asymptotically stable. In physical terms, 
because the interface dynamics add degrees of freedom to the 
system but cannot supply energy without bound, dynamic 
interactions between the controlled manipulator, the interface, 
and the environment cannot cause instability. 

SUMMARY 
The approach discussed in this paper and elsewhere- 

impedance control-is founded on physical systems theory. 
One important aspect of the dynamic equations of a physical 
system is their structure. This paper has shown that imposing 
appropriate structure on the dynamic behavior of a manipula- 
tor can result in superior stability robustness properties. It 
must be stressed that in general the stability of a dynamic 
system is jeopardized when it is coupled to a stable dynamic 
environment. In contrast, in this paper it was shown that if the 
manipulator has the behavior of a simple impedance then the 
stability of the manipulator is preserved when it is coupled to 
a large class of stable environments. 

If the manipulator is isolated or the environment is an ideal 
kinematic constraint, the results presented here and in [lo] 
reduce to those of Takegaki and Arimoto [19]. However, this 
analysis goes considerably further; no such restrictive assump- 
tions about the environment are necessary. In fact, to prove the 
results requires almost no information about the environment. 
The key assumption is that the environment is stable in 
isolation. No restriction need be placed on its complexity or 
linearity. The environment may be of arbitrary order; it may 
even be a continuous, distributed system (as real environments 
are). The environment may contain nondifferentiable nonlin- 
earities (as real environments do). For this reason, the 
robustness property is extremely general. For example, it is 
straightforward to show [5] that if the manipulator is coupled 
to a nonstationary support of arbitrary dynamic complexity, 
then, if the support is stable in isolation, the stability of the 
manipulator is not jeopardized by dynamic interaction with the 
support. 

Robustness to dynamic interaction is not an exclusive 
property of the simple impedance nor of the simple nonlinear 
position and velocity feedback control law considered in this 
paper. The arguments presented here can readily be extended 
to more general forms of the target impedance and more 

sophisticated controllers can be found to implement the target 
impedance without losing the basic result. The only restriction 
is that the controlled system have a Hamiltonian representation 
with a positive-definite energy function and positive-definite 
nonconservative internal forces. 

The reason for this strong stability robustness property is 
because although the manipulator and controller are clearly an 
active system, the behavior of the controlled manipulator as 
seen from the environment masquerades as a passive and 
dissipative system. Note that imposing passive and dissipative 
behavior is not essential to impedance control, but it does offer 
significant benefits. For example, any “non-ideal’’ aspect of a 
particular implementation of impedance control (e.g., the 
failure of the simple controller considered in this paper to 
impose the target impedance under all conditions) which 
preserves this apparently passive and dissipative behavior will 
also preserve the stability robustness property. This is the 
reason why the algorithm considered in this paper is com- 
pletely insensitive to kinematic errors. 

However, this restriction to apparently passive and dissipa- 
tive behavior is a limitation. For example, it was assumed 
throughout that Xo is constant. If it is assumed to vary with 
time, then the stability of the manipulator is no longer 
guaranteed. This does not mean that the manipulator is 
necessarily unstable, but the theoretical result no longer holds. 
Similarly, it the environment contains active power sources (as 
many real environments will) the manipulator stability is no 
longer guaranteed. Kazerooni et al. [13] have shown that if the 
environment contains active sources which do not depend on 
the state variables of the manipulator, then the stability 
robustness of the simple impedance is preserved. However, 
that result was derived from a local, linear analysis which 
assumes that the environment is either linear or at best 
differentiable. In contrast, the analysis presented here and in 
[lo] requires no such assumptions. 
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