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Abstract

This paper presents a direct method for computing the time optimal trajectory for a robot
among stationary and moving obstacles, subject to robot’s dynamics and actuator constraints.
The motion planning problem is first formulated as an optimization problem, and then solved
numerically using a gradient descent. The initial guess for the optimization is generated using a
method based on the concept of Velocity Obstacles. The method is demonstrated for a 2-DOF
planar manipulator moving in static and dynamic environments.

1. Introduction

Motion planning is central to the operation of autonomous robots. It concerns the genera-
tion of a trajectory from start to goal that satisfies objectives, such as minimizing path distance
or motion time, while avoiding obstacles in the environment and satisfying the robot mechanics
(kinematics and dynamics). We distinguish between planning and control in that the former
generates a nominal trajectory, whereas the latter tracks that trajectory. Robot motion plan-
ning is generally too complex to be handled by on-line feedback controllers due to the nonlinear
state constrains introduced by the obstacles and the highly nonlinear and coupled nature of
robot mechanics.

Traditionally, motion planning has been treated as a kinematic problem, i.e. determining
the path that avoids obstacles without concern to robot speeds. This was first extensively
addressed for articulated robots by transforming the problem into the configuration space, in
which the robot reduces to a point and the obstacles map into C-space obstacles [25,29]. The
focus in this body of work has centered on computational complexity and completeness (the
ability of the algorithm to find a path if one exists). More recently the kinematic problem was
extended to car-like robots, which are subject to non-holonomic kinematic constraints due to the
assumption of no slip between the wheels and ground. Here the focus has centered on obstacle
avoidance [27] and on minimizing path distance [26].

While solving a problem fundamental to robotics, kinematic motion planning ignores the
important effects of robot dynamics which become significant at all but the lowest speeds. For
example, non-holonomic motion planning of a car is useful for parking [31], which is usually done



at very low speeds, but is all but meaningless for high speed emergency maneuvers [36]. Similarly,
obstacle-free paths computed using robot kinematics only may be dynamically infeasible at even
moderate speeds, causing the robot to deviate from the kinematic path due to its dynamics and
limited actuator efforts. This gave rise to dynamic motion planning', which produces a trajectory
in the state space rather than just a path in the configuration space. Planning in the sate space,
while computationally more extensive, allows one to minimize dynamic cost functions, such as
time or energy. These problems have been treated previously for both articulated [34,35] and
mobile robots [37].

We distinguish between motion planning in static and in dynamic environments. In static
environments, the obstacles are static, and the robot is the only one that moves, whereas in
dynamic environments, both robot and obstacles move. Typical examples of dynamic environ-
ments include manufacturing tasks in which robot manipulators track and retrieve parts from
moving conveyers, and intelligent vehicles negotiating freeway traffic.

Motion planning in dynamic environments was originally addressed by adding the time
dimension to the robot’s configuration space, assuming bounded velocity and known trajectories
of the obstacles [8,18,32]. Reif and Sharir [32] solved the planar problem for a polygonal robot
among many moving polygonal obstacles by searching a visibility graph in the configuration-
time space. Erdmann and Lozano-Pérez [8] discretized the configuration-time space to result in a
sequence of configuration space slices at successive time intervals. This method essentially solves
the static planning problem at every slice and joins adjacent solutions. Fujimura and Samet [18]
used a cell decomposition to represent the configuration-time space, and joined empty cells to
connect start to goal.

Another approach to dynamic motion planning is to decompose the problem into smaller
problems: path planning and velocity planning. This method first computes a feasible path
among the static obstacles, and represents it as a parametric curve in the arc length. Then,
the intersections of the moving obstacles with the path are represented as forbidden regions
in an arc length-time plane. The velocity along the path is chosen to avoid the forbidden
regions [14,15,17,19,24,28]. Kant and Zucker [24] selected both path and velocity profile using a
visibility graph approach. Lee and Lee [28] developed independently a similar approach for two
cooperating robots, and compared the effects of delay and velocity reduction on motion time.
Fraichard [14] considered acceleration bounds, and used a search in a state-time space (s, $,t)
to compute the velocity profile yielding a minimum-time trajectory. Fraichard and Laugier [15]
considered adjacent paths that could be reached from the nominal path when the nominal path
becomes blocked by a moving obstacle. Fujimura [17] considered the case of a robot moving on a
fixed time-dependent network, whose nodes could be temporarily occluded by moving obstacles.

A different, approach consists of generating the accessibility graph of the environment, which
is an extension of the visibility graph [19,20]. Fujimura and Samet [19] defined it as the locus
of points on the obstacles which are reachable by the robot moving at maximum speed. These
points form the collision front, and can be linked together to construct a path from start to goal.
The accessibility graph has the property that, if the robot moves faster than the obstacles, the
path computed by searching the graph is time-minimal. This concept was extended in [16] to
the case of slowly moving robots and transient obstacles, i.e. obstacles that could appear and
disappear in the environment.

None of the previous methods considered the non-linear robot dynamics, and none produced
time optimal motions. Time-optimal motions have obvious benefits in industrial applications by
reducing cycle times and thus increasing the productivity of automated manufacturing systems.

'Others use dynamic motion planning to denote motion planning in dynamic environments [25], which is a subset
of our definition.



Other application domains, such as intelligent vehicles and air traffic control, may benefit from
time-optimal motions by minimizing the recovery time from emergency situations and when
defining emergency maneuvers.

The time-optimal motion planning problem in static ecnvironments has been treated previ-
ously, beginning with the work by Kahn and Roth [23], who solved the problem for a linearized
robot model, using the Pontryagin’s Minimum Principle (PMP). The full robot model was used
in [30], assuming bang-bang control and using a steepest decent over the switching times, derived
to satisfy the necessary conditions of optimality stated by the PMP. However, the most efficient
methods to date seem to consist of parameter optimizations over the trajectory [1,22,35], which
are similar to the Differential Inclusions introduced in [33], and the Inverse Dynamic Optimiza-
tion introduced by Bryson [3].

In this paper, we present a method for computing the time optimal trajectories of a robot
moving in a dynamic cnvironment. To make the problem computationally tractable, we restrict
the treatment to the plane and assume circular robot and obstacles. We also assume a full
knowledge of the environment.

Central to this approach is the computation of the initial guess for the optimization. This is
done by utilizing the concept of Velocity Obstacle [9], which maps the dynamic environment into
the robot velocity space. The velocity obstacle is the first-order approximation of the robot’s
velocities that would cause a collision with an obstacle at some future time, within a given time
horizon. Feasible avoidance maneuvers are computed simply by selecting velocities outside the
velocity obstacle, and satisfying additional velocity constraints computed from robot dynamics
and actuator constraints. The initial guess of the optimal trajectory is computed by a global
search over a tree of feasible avoidance maneuvers, generated at discrete time intervals so as to
minimizc time to the goal.

The optimal trajectory is computed using a steepest descent algorithm over the admis-
sible controls [5-7], modified to consider time varying state inequality constraints. The state
inequality constraints due to the moving obstacles are considered by transforming them into
state-dependent control constraints. The method was implemented for intelligent vehicles ne-
gotiating freeway traffic [38], and for a planar SCARA robot, considering its full nonlinear
dynamics and moving circular obstacles [9]. Examples of the latter are presented in this paper.

The paper is organized as follows. Section 2 formulates the motion planning problem as a
minimum time problem and presents the numerical method for computing the optimal solution
satisfying state inequality constraints and state-dependent control constraints. Then, Section 3
addresses the problem of generating the nominal trajectory for the numerical optimization.
Finally, examples of optimal trajectories of a SCARA robot avoiding fixed and moving obstacles
are presented in Section 4.

2. The Dynamic Optimization

The dynamic motion planning problem in the context of this paper consists of determining
the trajectory between two specified boundary conditions that avoids all static and moving
obstacles and minimizes motion time. This is formulated as an optimization problem with time-
varying state constraints, and is solved numerically using the steepest descent method [7], as
discussed next.



2.1. Problem Formulation
The motion planning problem can be formulated as follows: Find the control u*(¢) € U in

to <t <t;, which minimizes the cost function J:

ty
i = i L = Pmin 5 = 1
u{glenUJ in | (x(t), u(t))dt = Pmin(x(ty), t7) =1y (1)

where t; is free, subject to robot dynamics

% = F(x,u) = £(x) + g(x)u (2)
admissible controls
U= {u | Wpip S U < umaa:} (3)
initial conditions
x(to) = xg (4)
terminal manifold
Q(x(ty),ty) =0 (5)

and statc incquality constraints duc to the moving obstacles:
v J [Si(x(t),t) > 0] (6)

where S;(x(t), ) represents the time-varying boundaries of the moving obstacles.

The original problem calls for a fixed final point. However, we assume instead a terminal
manifold (a hyper-sphere around the final point) so that we can use influence functions to com-
pute the initial conditions of the Lagrange multipliers, and thus avoid using the more sensitive
shooting method [2].

State inequality constraints are generally difficult to satisfy although necessary conditions
for optimality have been developed for such problems [21,39]. One way to consider state inequal-
ity constraints is to transform them into state-dependent control equality constraints, active only
when the robot slides along the obstacle boundary [6,7].

To demonstrate the treatment of the state inequality constraints, we consider a single
obstacle:

U S(x(t),t) >0, S(x)eR™ (M)

where m is the dimension of the position space. Differentiating (7) with respect to time p
times until it becomes explicit in the control u, and assuming an active constraint, yields the
state-dependent control constraint

S®) (x,u) =0 (8)

where $) denotes the pth derivative of S, with p being the order of the constraint.

A solution satisfying (8) does not necessarily satisfy (7), unless it passes through at least
one point satisfying (7) and all the derivatives of order less then p. We choose this point to be
the initial entry point of the constrained arc, at time #; > t5. The inequality constraint (7) is



thus replaced by the tangency point condition, ¥, and the state-dependent equality constraint,
\112:

S(x(t1),t1) =0
\111 : S(X(tl):, tl) =0 (9)
S(p_l)(x(tl),tl) =0
(10)
Wy SO (x(t),u(®),t) =0 t <t<ty (11)

where t; is the entry time, and {5 is the exit time of the constrained arc. This also modifies the
admissible controls (3) to:

S®) (x(t),u(t),t) =0 for t & (t1,1]

The addition of the tangency constraint, ¥y, thus transforms the original Two Point Boundary
Value Problem (1) into a Three Point Boundary Value Problem (for a single moving obstacle),
which is solved numerically using the method discussed next.

Note that this treatment of the state inequality constraints may over-constrain the problem
since the trajectory is forced to satisfy the state constraint as an equality along a finite arc.
Consequently, this approach cannot find solutions that touch the state constraint at multiple
isolated points [21]. This, however, has been shown to affect only constraints of order higher
than two, and is hence not an issue for the circular obstacles treated here [21].

2.2. Numerical Computation

We apply the steepest descent method, which rigorously satisfies a set of necessary optimal-
ity conditions. This method was originally developed in [5], modified to include state dependent
control inequality constraints in [7], and modified to consider bang-bang controls in [30].

The steepest descent method iteratively computes the optimal controls by following the
negative gradient of the augmented cost function with respect to the controls and the final time.
The gradient is derived by adjoining the differential of the cost function with the differentials of
the terminal manifold and the tangency-point constraint, as discussed below.

2.2.1. The Differential of the Performance Index

Following the classic approach to constrained optimization [6], system dynamics and control
constraints are adjoined to the performance index J using two arrays of Lagrange functions
Ag(t) € R™ and p(t) € R*, where n is the dimension of the state space, and k is the number of
active state-dependent control constraints. This leads to the performance index J:

J = p(x(ts)) + /tt/ MG (F(x,u) = %) + T p(x, u)| dr (13)

90:{ 0 t¢ (t17t2) (14)

where
st S (tl,tg)
and p is a vector of Kuhn-Tucker multipliers [6]

0 when ¢ =0
= —1 15
a —ATg(x) (—6“’(’(’“)) otherwise (15)

du



By defining the Hamiltonian as:

H(Ap,x, 1) = A, F(x,u) + 1" o(x, u) (16)
and by choosing:
: LA
Ag(t) = — (a—x> (17)
¢
Y 1
Mo(tr) <3X>tf (18)
we reduce the differential dJ to:
~ t
ai = [ M suar + (a_¢ + 7—[) d (19)
to u at tf

This establishes the relations between variations in the independent variables, u and tf, and
variations in the cost function for the unconstrained problem.

2.2.2. The Differential of the Terminal Constraint
The differential of the terminal constraint €2 is:

L
(d), = (de + Wdt))ﬁf (20)

Following the derivation in Appendix A, and choosing multipliers Ao € ®" x R (where [ is
the number of terminal constraints) to satisfy:

: OF\T
ja) = ~(52) a0 21)
7z
o0
_ 29
Aa(ty) (3x)tf (22)
the differential d? (20) reduces to:

tr pOF o0 o0
Q), — T (_ i _) 23
(d)y, /to )\QauéudT—i— 8xm+ 5 tfdtf (23)

2.2.3. The Differential of the Point Constraint

Similarly, the differential of the intermediate tangency constraints, Wy, at time ¢1, is:

(d¥1),, = <%d:c + %dt>
t1

24
ox ot (24)

Following the derivation in Appendix A, and choosing the Lagrange functions Ay € " x R*
(where k is the number of constraints ¥ )

- OF\T

= — (% 2

hott) = —(55) Ao (25)
oV

= (== 2

i) = (5), (26)
the differential d¥ (24) reduces to:
e OF ov ov

e T— - R 2

(d¥1)y, \ Ay a dudr + ((%Ux + T >t1 dty (27)



2.2.4. Discontinuity of the Lagrange Functions

The Lagrange functions A4, and \q are integrated through the entry point of the constrained
arc at {1, where they are discontinuous. This discontinuity is computed as a function of the jump
in the acceleration (for a second order system) across the entry point to the constrained arc [4]
(see also Appendix B):

~ x(t;) — x(t]) s~
M) = Ai(tf)(!— )~ xth)

(i) = b)) (I—*“”""

2.2.5. The Differential of the Augmented Performance Index

The differential of the augmented performance index dJ consists of the differentials (23)
and (27), appended to the differential dJ with the constant multipliers n and v:

[Zf + T%? + <g¢ +v ax) %+ p(x, u)] ) dty (30)

e (N5 TG + 0" ADF + 1T (%, u)
to 811

N /tf l()xg +vIADF + T o(x,u)
t+

dJ

1 dudr

oa ] dudr

1

Note that the multipliers Ay are defined only between &g to 1, since ¥ is not affected by
the states after ;. Setting Ag(¢) =0 for ¢ > t; we define an augmented Lagrange function, A:

AT =0T +0I0E + 0" (31)
which yields the Hamiltonian:
H(Aa X, u) = AT]:(X7 u) + .U'TQD(Xa u) (32)

and reduces (30) to:

dJ = (a¢+ o +’H>

t iy
J dt; + / " U Sudr + / Hodudr (33)
ot to ti*‘

tr

This establishes the relations between variations in the independent variables, u and tf, and
variations in the cost function for the consirained problem, including the terminal manifold,
the tangency point, and the state-dependent control constraint. Assuming bang-bang control,
we usc these relations to compute the variations in the switching times that would zero the
differential of the augmented cost function.

2.2.6. The Bang-Bang Solution

It is easy to show that the solution for minimum-time problems consists of bang-bang con-
trols for systems linear in the controls, excluding singular arcs [6] [40]. By assuming bang-bang
control we reduce the functional optimization to a parameter optimization over the switching
times. The number of switches is approximated from the initial guess, as discussed later, and
the singular arcs are approximated by a finite number of switches [30].



For bang-bang controls, the variations du; in (33) are replaced with:
du; = (o — o) sgn(di;;) (34)

where sgn is the signum function, and dt;; is the change of the jth switching time for control
u;. Note that du; #£ 0 only at the switching times where u; switches between the extremes.
Therefore du; is represented by

ou; = (—1)j71AOé dt;; (35)

where

Aa = oy — oy, (36)

Using (35) we now discretize the augmented cost function dJ of (33) as a function of the
switching times:

m 81,4 m 82,
Z Z w)ty Dadtiy + 0D (Hu, )i, Aot (37)
i=1j= =1 j=1
m S3,¢ a¢
+ZZ(Hui)ti]‘Aadtzj + (81& +v 8 +7‘[> dtf
i=173=1 ¢ ly

where s; represents the segment of the trajectory before the obstacle, so represents the con-
strained arc, and obstacle, s3 is the segment of the trajectory from the obstacle to the target,
and m is the dimension of u. Since the second term in (37) corresponds to the constrained arc,
the corrections dt;; are computed only for the controls not determined from S®)(x, u,t) = 0.

The objective now is to determine the variations dt;; that would minimize the differential
dJ. This can be done by following the negative gradient of dJ defined by the coeflicients of the
dt;; in (37). The step size of each move is determined by adding a quadratic term in d¢;; and
dts to (37) [30]:

m Si,i
= 2D (Hu)u; Dadtyy + 5 w,,AantQ (38)
i=17=1

m S$2,i
> (Ha,) I]Aadt,jJr quoz Zdi;

i=1j5=1

m $3,¢
+ )0 (M), Aadty; + quazdtQ

i=17=1
N <a¢ 709

+

1 2
LT +H) dity -+ bldty)

tr

where b is a positive constant, and w;; are the elements of a diagonal positive definite matrix.
The step size that minimizes (38) is given by:

_ (Hui)tij

g = A (39)
! 06 700

dt; = b<H+at+u m) (40)

The values of dt;; and dt; in equations (39) and (40) depend on the multipliers 7 and v,
which are computed by back-substituting (39) and (40) in (23) and (27), and by multiplying
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Figure 1: The feasible avoidance velocities RAV.

d¥(t1) and dQ(ts) by —e, with € a small positive constant. This scales the improvements in 7
and v to satisfy the first-order necessary conditions of optimality.
With this substitution, equations (23) and (27) yield:

n = —Igg(—ed¥y + Iyqv + Iyy) (41)
1 (dadaT\ \
v = — 1IQQ + 1[9\1/1]\;&,1[\119 + 2IQQ + 3IQQ + - ——
b\didi ),
- 1 /dQdg
- 1 1 1r—1{ 1 2 3 el ks
( ¢ d; + T — ow Ty (—e i+ ag) + Pl 1 2las 1 (dt dt)tf>

where the terms I}, are defined as:

m Sl T
oF _,0F
e =3 (M . w;; ! - Aot (42)

i=1j=1

with h = ¥1,Q, k = ¥1,Q,¢, ] = 1,2, 3, representing before, on and afier the state constraint,
and ¢ indicating the independent controls.

This procedure reduces the differential defined in (33) to zero, which also satisfies the
necessary conditions of optimality stated by the Pontryagin Minimum Principle, as discussed in

[9].
3. The Initial Guess

The dynamic optimization discussed earlier converges only to a local minimum, which
depends on the initial guess. Since the dynamic motion planning problem is generally not
convex, i.e. it has multiple local minima, selecting the appropriate initial guess would determine
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Figure 2: Tree representation for the global search.

the quality of the solution. While it is generally desirable to compute the global minimal
trajectory, it is equally important to obtain a trajectory specified in terms of the sequence of
avoidance and the side from which each obstacle is being avoided. Selecting an initial guess in
dynamic environments is in itself a dynamic motion planning problem, as discussed earlier in
the Introduction. Imposing a desired structure makes the problem only harder.

An efficient method for solving both problems has been recently developed [12]. It gen-
erates trajectories that are both collision-free and dynamically feasible. Below, we first briefly
summarize this approach, and then compute a bang-bang approximation for the controls.

3.1. Generating the Trajectory

The method for generating feasible trajectories in dynamic environments is based on the
concept of velocity obstacles, which is a first-order approximation of the robot velocities that
would cause a collision with some obstacle at some future time [9,11]. Collision is avoided
by selecting velocities outside the union of the velocity obstacles due to all moving and static
obstacles.

To ensure that the selected maneuver is also dynamically feasible, we impose additional
velocity constraints duc to robot dynamics and actuator constraints, as shown in Figurc 1.
Figure 1 shows the velocity obstacle of B , moving at some velocity vg, with respect to a point
robot, A. Also shown are the feasible velocities RAV, which for a planar robot are represented
by a parallelogram. The feasible avoidance velocities are confined to the set defined by the
difference between the feasible avoidance velocities and the velocity obstacle.

An avoidance maneuver consists of a velocity vector and a time interval over which that
velocity is applied. Maneuvers can be selected to minimize a global cost function, such as motion
time, or to satisfy local objectives, such as passing an obstacle from the front rather than from
the rear.

A trajectory consists of a sequence of avoidance maneuvers. A trajectory that minimizes
motion time can be generated by searching over a tree of feasible avoidance maneuvers, generated
at discrete time intervals. Figure 2 shows two branches of the tree, rooted in node n; at time ¢



11

N
Qg

obstacle

m
s

Figure 3: Planar 2-dof Manipulator: a) top view, b) side view

and reaching nodes n; 1. The feasible avoidance velocities at times ¢ and 7 4+ 1 are represented
by RAV? and RAV* L. A trajectory generated by this search is a good initial guess for the
dynamic optimization, since it is quasi optimal, and it has the desired topological propertics
(i.e. sequence of avoidance and type of maneuvers). A drawback of this trajectory is that its
velocity profile is discontinuous, and hence cannot be differentiated to compute the nominal
controls. This is resolved by first smoothing the trajectory using Hermite splines, as discussed
next.

3.2. Generating the Controls

To compute the controls, we first smooth the trajectory, consisting of a sequence of avoidance
maneuvers, using a spline interpolation. First, the path is smoothed by joining the mid-points
of every consecutive path segments with a third order Hermite spline that matches the slopes
of the path segments [13]. Then, the velocity profile along the resulting path is smoothed using
a cycloid between the mid-points of consecutive velocity segments, given by:

wt — sin(wt)

() = 35, (43)

where w = #, and T is the motion time between the two mid-points.
Using inverse dynamics, we now compute the controls associated with the smoothed tra-
jectory. The resulting actuator efforts are approximated by bang-bang controls by choosing

the switching times at the zero crossings of the smooth controls, with a dead-band to avoid
chatter [9,11] .

4. Examples

Here we present examples for the two degree-of-freedom planar manipulator shown in Fig-
ure 3. The problem is greatly simplified by assuming a planar SCARA manipulator with two
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uniform links and with only the end effector reaching the plane of the obstacles. Then, only the
end effector trajectory among the obstacles needs to be computed. The parameters of the arm
are: [1 = 1.5 m, {5 = 1.3 m, m; = 10.0 Kg, me = 10.0 Kg, 71 = 10.0 Nm, 75 = 3.0 Nm.

4.1. Single Obstacle

The objective in the following examples is to move the end-effector from rest at the starting
position x = (—.15 m, .55 m), to rest at the goal position x = (1.5 m, —.5 m), in minimum

time.

First, the optimal path, computed with no obstacles, is shown in Figurc

Figure 5: Optimal controls in the free environment

4. The actuator
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Figure 6: Optimal trajectory with a static obstacle

torques for this solution are shown in Figure 5. For this case, the second joint has one switch,
whereas the first joint has two switches and a possible singular arc (multiple switches) near the
start point. This singular arc may be explained by the smaller angular rotation of the first
joint compared to the rotation of the second joint. This solution closely satisfies the necessary
conditions of optimality, and is similar to the solution computed by the parameter optimization
presented in [35]. The optimal time for this case is 3.59 s.

The second case considers a static obstacle, represented by a circle of radius r = .4 m,
1.5 T T T T T
1k ul — |
0.5 3
obom ]
o5 | _
o _
1.5 ! ! ' ' |
0 1.0 2.0 3.0 4.0 5.0 6.0
t.
1.5 T T T T T
. uz — |
0.5 3
L s
ot _
1.5 ! ! ' ' |
0 1.0 2.0 3.0 4.0 5.0 6.0

Figure 7: Optimal controls with a static obstacle
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Figure 8: Optimal trajectory with a large static obstacle

centered at C = (.6 m, —.2 m). The constraints ¥, and ¥y due to this obstacle are:

U, (z — xo)2 +(y — 90)2 —r? =0
’ (x - xo)vx + (y - yo)vy =0
Ty v%—l—(m—xo)am—i-v;—i—(y—yo)ay=O t1 <t<ty

0 1.0 2.0 3.0 4.0 5.0 6.0
1.5 T T T T T
u_z —
1 4
0.5 1
ob- ]
0.5 F ‘ i
-1 - 4
1. ) 1 I ) )
0 1.0 2.0 3.0 4.0 5.0 6.0

Figure 9: Optimal controls for a large static obstacle
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The optimal path for this case is shown in Figure 6, and the actuator torques are shown in
Figure 7. Here the path grazes the obstacle at one point, and does not follow the obstacle
because of its high curvature. The optimal time for this case is 5.17 s.

This case was repeated with a larger obstacle, as shown in Figure 8, where the path follows
the obstacle boundary. Here, the obstacle is of radius » = .6 m, located at C = (.8 m, —.15 m).
The optimal time for this case is 5.38 s, and the controls are shown in Figure 9.

Finally, the third case considers a moving obstacle, as shown in Figure 10. The constraints

1.5 T T T T T T T T
. Optimal u_1 — |
0.5
o T S —
-0.5
1k
1.5 ' I I 1 I ' I '
0 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
t
1.5 T T T T T T T T
. Optimal u_2 — |
0.5 3
e
-0.5 b
1k i
1.5 ' I I 1 I ' I '
0 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 11: Optimal controls with a moving obstacle
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U, and ¥y are now:

(:C - (Uomt + xo))Q =+ (y - (ont + yo))2 -2 =9
@1 : (‘,E - (ont + "EO))(UI - on) t = tl
TR SR /i N
Vy — Voz )~ + (T — (Voxl + Zo))az+
v ((vy — voy)? + (y — (Voyt +70))ay = O hhsts<t

The optimal path for this case, shown in Figure 10, slides along the moving obstacle. The
actuator torques for this case are shown in Figure 11. The motion time for this case is t = 4.36 s,
which is longer than the unconstrained time, but shorter than the time with a fixed obstacle.

4.2. Multiple Obstacles

In this example, the optimal trajectory is computed for two moving obstacles, using the
SCARA manipulator as in the previous examples. The obstacles are moving at constant ve-
locities: obstacle 1 at (.045,.045) m/s and obstacle 2 at (—.007, —.03) m/s, starting at time ¢
from the positions (.1, —.5) m and (1.15,.7) m, respectively. The end-effector starts at rest from
(.3,.2) m, and ends at rest at (1.5, —.5) m.

The initial guess for this case is shown in Figure 12, with the motion time of 4.81 s. The
bang-bang controls approximated for this trajectory are shown in Figure 13. Optimizing from
this initial guess resulted in the path shown in Figure 12, and the actuator torques shown in
Figure 14. The optimal motion time for this case is 2.6 s.

The improvement in motion time of the optimal trajectory compared to the initial guess
is due to the fact that avoiding the velocity obstacles produces conservative trajectories, i.e.
trajectories consisting of velocity segments that are guaranteed to avoid both obstacles at all
times [10]. For this reason, the initial guess passes both obstacles from behind. The optimal
trajectory, on the other hand, passes both obstacles from the front, which explains the significant
reduction in motion time.
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Bang-Bang u2 — |

Figure 13: Bang-bang controls for the initial guess shown in Figure 12.

5. Summary

This paper presented a method for computing the time-optimal trajectories of a manipu-
lator moving in dynamic environments, subject to system dynamics and actuator constraints.
Formulating the problem as a time-minimization, the state incquality constraints duc to the
moving obstacles are transformed to state-dependent control constraints and a tangency point
constraint at the entry point of the constrained arc. Assuming bang-bang controls, this opti-
mization problem is solved numcrically as a paramcter optimization over the switching times
and the final time, using a steepest descent algorithm. The initial guess for the optimization
is computed using the previously developed concept of the Velocity Obstacle [9]. The velocity
obstacles allow one to select an initial guess that has a desirable structure, i.e. a desirable
sequence of avoidance and a desirable side from which each obstacle should be avoided. The

Figure 14: Bang-bang controls for the optimal path shown in Figure 12.
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method is demonstrated in several examples for a 2 DOF planar manipulator moving amongst
static and moving circular obstacles.

This method is meant for ofi-line computations, and is thus applicable to repetitive tasks,
such as manipulators operating between moving conveyor belts, or manipulators operating off
moving platforms. A more efficient method for on-line planning (with no guarantee of optimality)
in dynamic environments has been presented in [11].
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Appendix

A. Derivation of the Terminal Differential

The differential of the terminal constraint 2 can be computed using [5]:

L
(d), = (a—xdx + Edt))ﬁf (44)

Using dx = dx + &dt it follows that
(dQ)s; = (0Q)s, + Q,dt; (45)

The variation 0z satisfies the first order perturbation equation:

. OF oF

Therefore, there exists a state transition matrix ®(¢,7) expressing the variation (dz):s [6]. The
variation 6€2 is then:

t

o2
(6Q)tf = a—

T

tof B(L;. T)g—f(summ) (47)

(cp(tf,to)ax(to) +
ty

This expression can be simplified by defining a multiplier Ay € R" x ! as:
o0
/\Tt:(—) B(ts,t 48
b0 =(3,), #er (18)

where n is the dimension of x and [ is the number of terminal constraints. Taking advantage
of the properties of the state transition matrix ® [6], a set of adjoint equations for Aq can be
written as:

. OF\T (E)Q)
o) = - (55) Al at) = (5,),  ©
(49)
Therefore, using
b pOF
= — Q 1
(6)¢, \ AO 9a dudr + 082 (51)

in equation (45), and assuming fixed initial conditions, the total differential of  becomes:

, OF . a0

ty
= _— _ 2
asd)(ty) /to AQ 8u5UdT+ <8xx+ 3t>tf dts (52)
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B. Effect of the Point Constraint on the Multipliers

The co-state equations for App;, Ao used in the previous Sections do not take into account
the effects of the constraints ¥y and Wy given by:

Al =Af 40" (53)

Oz (t1)

This discontinuity affects the co-state equations, as illustrated in the following using multipliers
Aa [7].

The unknown 7 is computed by relating the value of A at ¢7, i.e. just before reaching the
constraint ¥y, to its value at ¢, i.e. just after reaching ¥;. To do this, Ao (¢]) and Aq(i]) are
first computed independently of each other, using the expressions for d? at ¢y and ¢;.

The value of A\g(t]) is computed from the expression of the changes in d2(¢s) due to the
variation of x, 6x(t;):

dQts) = MNyox(tF) = M (dx — xdt1)+ (54)

that can be rewritten as:

(9] (9]
Q = — -
d0(t;) ( S dxt o aht>t+ (55)
from which:
00 .
= D) (56)
(9]
— = =G
o B (i) (57)
The value of dQ? at ¢} is computed using:
dQ(ty) = (69), + Qt; diy (58)
where:
(09),- = (Aadx),, + AT‘W Sudr
1 to a
Since dS®~1(x) = 0, the value of dt; is:
_ 1 T haor OF
dtl = W |:— ()\S(p_l)(s)()to — ” AS(p 1) 81]_ 5udt] (59)

By replacing dt; in d of equation (58) with (59), and since S®=Y and €2 are both independent
of the integration variable, dQ2(¢;") becomes:

t 0 oF Q
— _ (T ! T T
d0(iy) = (Mox), + A (AQ - —S@MS@U) a0 — =5 -

1

T
()\S(pfl)(sx) o (60)
The desired expression of \q, at ], satisfying d(S®~1) = 0 is then:

Q
T T T
AQ,S( )( 1) ()‘ S(pfl) As(pl)) ~ (61)

4



This equation can be further simplified by replacing Q(¢_;) with:

o) = 22

| (D) B xG)

t
Since the differentials dx(t1) and dt; are the same at #; and ¢, equation (56) gives:

o2

e i AL

t

and similarly
a5(r—1)
T -\ —
)\S(pfl) (tl ) - ax

t

By using equations (63), (64), and (62) in (61), the discontinuity of Aq at ¢; becomes:

T T [ %) —x(@) 98P
AQ’S(p—l)(tl ) - )\Q(tl ) (I S(p) (tl) ax

)

which is equivalent to the necessary condition (53) if the multiplier 7 is equal to:

x(t7) — x(tf
n" =-25(t) ( (tgzp) (751—(;1 )>
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(62)



