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ABSTRACT 

 
Engineers have long used control systems utilizing models and feedback loops to control real-
world systems. Limitations of model-based control led to a generation of intelligent control 
techniques such as adaptive and fuzzy control. Human brain, on the other hand, is known to 
process a variety of inputs in parallel, ignore distractions to focus on the task in hand. This 
process, known as cognitive control in psychology, is unique to humans. We are interested in 
implementing such cognitive control functionality in robots. This paper outlines the multi-agent-
based, hybrid cognitive architecture for a humanoid robot and the progress made on the 
implementation of cognitive control functionalities using attention, affect, working memory and 
internal rehearsal. 
  
KEYWORDS: humanoid robot, cognitive control, working memory, episodic memory, affect, 
task switching, self-motivation, internal rehearsal 
 
 

1. INTRODUCTION 
 

As the need to control complex robotic systems increases, it is important to look beyond 
engineering- and computer science-based approaches. For example, humans have the capacity to 
receive and process enormous amount of sensory information from the environment, exhibiting 
integrated complex sensory-motor associations as early as two years old [Gazzaniga, 2002].  
Most goal-oriented robots currently perform only those or similar tasks they were programmed 
for and very little emerging behaviors are exhibited. What is needed is an alternative paradigm for 
task learning and execution. Specifically, we see cognitive flexibility and adaptability in the brain 
as desirable design goals for the next generation of intelligent robots.  

In 2004, we introduced a multi-agent-based, hybrid robot control architecture with memory 
structures [Kawamura, 2004]. In this paper, we will present the progress made since then on the  
architecture, cognitive control, sensory-motor binding, task execution and switching, internal 
rehearsal, and a self-motivated action selection mechanism.   
 
 

2.  COGNITIVE CONTROL FOR ROBOTS 
 

Engineers have long used control systems utilizing feedback loops to control mechanical systems. 
Limitations of model-based control led to a generation of intelligent control techniques such as 
fuzzy control, neuron-computing and reconfigurable control [IEEE Control Society]. The human 
brain, on the other hand, is known to process a variety of stimuli in parallel, ignore non-critical 
stimuli to execute the task in hand, and learn new tasks with minimum assistance. This process, 
known as executive or cognitive control, is unique to humans and a handful of animals 
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[Botvinick, 2001]. We are interested in realizing this cognitive control capability in our humanoid 
robot. Figure 1 illustrates a conceptual model of cognitive control process, which we are using to 
realize cognitive control for ISAC humanoid robot. 

 

Sensor Actuator

Experience and 
Working Memory

Stimuli Action

Executive Functions
and goal-related 

information Cognitive Control

 
 

Figure 1. Model of Cognitive Control. Modified from Miller, et al [Miller, 2003] 
  

As the complexity of tasks grows, so does the software complexity necessary to provide 
robust sensory-motor coordination. During earlier development of our humanoid robot, it was 
realized that development and maintenance of complex software systems could benefit from 
domain-specific guidelines that promote code reuse and integration through software agents.  
This led us to develop a multiagent-based  robot control architecture based on the Intelligent 
Machine Architecture (IMA) [Pack, 1997]. IMA is designed to provide software platform that 
allows anyone to developed own structure using atomic agents. IMA (website: 
http://eecs.vuse.vanderbilt.edu/cis/concepts/ima.shtml) allows for modular design and the 
development of subsystems from perception modeling to behavior control through the collections 
of software agents and associated memories.  Figure 2 was configured using IMA agents and 
associated memory structures. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Multiagent-Based Cognitive Robot Architecture 
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    For any learning system, memory plays an important role. As Gazzaniga, states, “Learning has 
an outcome, and we refer to that as memory. To put it another way, learning happens when a 
memory is created or is strengthened by repetition.” [Gazzaniga, 2002, p. 302]. ISAC memory 
structure is divided into three: Short-term memory (STM), long-term memory (LTM), and the 
working memory system (WMS).  STM holds sensory information of the current environment in 
which ISAC is situated. LTM holds learned behaviors, semantic knowledge, and past experience. 
WMS holds task-specific information called “chunks” and streamlines the information flow to the 
cognitive processes during the task execution. STM is implemented using a sparse sensory data 
structure called the Sensory EgoSphere (SES) and serves as a spatial-temporal STM [Peters, 
2001]. LTM stores information such as skills learned and experiences gained for future recall. 
WMS is a goal-directed subsystem that performs task-critical operations on the contents of 
working memory chunks. Operations are executed using the Working Memory Toolkit [Phillips 
and Noelle, 2005]. 

In our architecture, cognitive control is implemented using agents such as the Central 
Executive Agent and the First-Order Response Agent, and other modules such as the Attention 
Network, WMS and the Episodic Memory as discussed in later sections. 

 
 

3.  WORKING MEMORY SYSTEM 
 
There is extensive evidence that the brain contains a memory system that actively maintains a 
small amount of task-essential information in a manner that allows that information to guide 
attention, focus learning efforts, and generally support the execution of tasks [Waugh and 
Norman, 1965]. Driven by this evidence, we have constructed a robotic working memory system 
whose components are fabricated by a software toolkit [Phillips and Noelle, 2005]. This section 
describes how this neuroscience-inspired working memory toolkit has been used to train percept-
behavior binding within the cognitive architecture. 
 
3.1 Pre-Frontal Cortex Working Memory Model 
 
Working memory (WM) may be considered as a short-term memory cache that actively maintains 
information relevant to the current task for a short period of time. There is evidence from 
neuroscience that WM is distinct from other forms of memory, and that the prefrontal cortex 
(PFC) plays an important role in WM [O’Reilly, et al., 1999]. More recently, Kobayashi 
demonstrated that dorsolateral prefrontal cortex (DLPFC) is responsible for task execution in 
organizing human behaviors spatially and temporally by measuring the level of oxy-hemoglobin 
in DLPFC during cognitive task execution [Kobayashi, 2007]. 

The function of WM is based on the expectation of future reward. There is reason to believe 
that the neurotransmitter dopamine plays an important role in this reward-based learning 
[McDonald, et al., 2000]. Inspired by this, a PFC-based computational working memory model 
based on a neural network and temporal difference (TD) learning [Sutton, 1988] has been 
developed at Vanderbilt [Phillips and Noelle, 2005]. 

Another important concept of WM is its size (or capacity). Early research on working 
memory suggested the capacity as “seven plus-or-minus two” [Miller, 1956], however recent 
research suggests this number may be closer to four [Cowan, 2001].  

 
3.2 Working Memory System Training for Percept-Behavior Association Learning 
 
One of the best known working memory models is the behavioral study-based framework of 
Baddeley and Hitch, in which a central executive controls two separate subsystems [Baddeley, 
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1986]. More recently a third structure, an episodic buffer, has been added to the framework 
[Baddeley, 1990]. Working memory system within ISAC was inspired by their work and is 
implemented using the Central Executive Agent, the Attention Network and the Working 
Memory Toolkit.  
 
3.2.1 Percept-Behavior Association Learning 
The Attention Network [Hambuchen, 2004] assigns the focus of attention (FOA) to recently 
processed percepts as described in Section 4. FOA-indexed percepts are then sent to the working 
memory as the candidate chunks for percept-behavior association learning as shown in Figure 3. 
For the remainder of this paper, the term behavior denotes the stored information in procedural 
LTM. This behavior information represents the raw data used to generate a motion along with a 
unique identifier. Skill, on the other hand, relates to the ability of the cognitive processes to use 
these stored behaviors to accomplish tasks. 
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Figure 3. Percept-Behavior Association Learning Loop 
 

 
Working Memory System (WMS) training was done using the Working Memory toolkit 

(WMtk). This toolkit is based on the computational model of working memory [Braver, et al., 
2000] that attempts to load chunks of information from a candidate chunks list (Appendix 2). The 
size of WM, i.e. the number of chunks, is dependent on the type of task being attempted. For the 
experiment described in this section the size was two. WMS also aids the development of 
symbolic grounding [Harnad, 1990] in our system. For example, when ISAC receives a command 
reach to bean bag, WMS associates this command with one (or more) of the behaviors stored in 
the Procedural Memory. When ISAC operates on the symbol reach there is a direct link with the 
raw data, or trajectory information, used to move the arm.  If this link, i.e. association, helps task 
execution, then WMS maintains the chunks for the duration of the task. Finally, WMS facilitates 
the development of association connections between different types of chunks for a particular 
task. This final point will be discussed further in Section 3.3. 

 
3.2.1 Task Category 
WMS faces many of the same computational constraints that other machine learning algorithms 
face. Primarily, it is intractable to encode all possible states or situations that ISAC may 
encounter within a single instance of WMtk. Therefore tasks have been grouped into a set of 
categories and single instances of the WMtk were used for similar categories of tasks. For 
example, the tasks reach to bean bag and play with LEGO toy both involve one object and one 
skill, and thus can be categorized together as one category. A more complex task requires more 
than one object or one skill and therefore would require a separate instance of WMtk. The goal of 
separating working memory in this manner is to avoid the time delays associated with the 
potentially exponentially growing state and chunk comparison. For our work, we are only dealing 
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Category1 Task :  { Object } x { Skill }

SchemaSemantic Net

with tasks belonging to one of the following four categories to reflect the types of tasks which 
ISAC generally encounters: Category1 tasks are a combination of a single object and a single 
skill. Category2 tasks represent the Category2 tasks represent the situation where ISAC is 
performing simultaneous is performing simultaneous single object - single skill tasks. For 
example, when ISAC uses both arms to manipulate one object, the task is considered to be 
Category2. Category3 and Category4 represent situations in which multiple skills are necessary 
or multiple objects are present. In the future, more complex tasks will be considered using 
semantic net and schema representations as shown in Figure 4. 
  
Task category: 

* Category1 : {object} x {skill} 
* Category2 : [{object} x {skill}] x [{object} x {skill}] 
* Category3 : {one object} x {multiple skills} or {multiple objects} x {one skill} 
* Category4 : {multiple objects} x {multiple skills} 

 
 

  
 
 
 
 
 
 
 
 
 
Figure 4. Task Representation using semantic net [Shapiro, 1971] and schema [Platt, et al., 2006] 
 

The object-skill association training in this section represents ISAC’s initial trial-and-error 
learning to a new Category1 task. For each experiment, WMS initializes an untrained instance of 
working memory. New task is defined to be a task for which no similar episode is found in the 
Episodic Memory. After a behavior has been selected to represent a skill, the motion interpolation 
and execution of the behavior to act on the object in the environment was performed using a 
modification of the Verbs and Adverbs algorithm [Rose, et al., 1998] discussed in Appendix 2. 
An example of interpolated behavior is shown in Figure 5.  

 

 
 

Figure 5. Interpolated Reach to Barney behavior  
 
3.2.2 Experiment 
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In this experiment, WM was trained to perform the task to reach to bean bag (a Category1 or a 
Category3 task) from the home position, i.e. arms in stationary position. Also ISAC is assumed to 
be right-handed, i.e. ISAC will use the right arm. In the trials, two bean bags were placed on a 
table in front of ISAC and WMS was required to choose one. Preliminary results for training WM 
have been presented in [Gordon and Hall, 2006].  

First, several behaviors were taught to ISAC through teleoperation and encoded within the 
Procedural Memory. Each behavior was numbered in the order in which that behavior was 
trained, e.g., the first behavior trained was given the name “Behavior1”. For easier understanding, 
these behaviors are listed below using a symbolic name and shown in Figure 6: 

 
Behavior1 -Handshake  
Behavior2 -General (three dimensional) reaching  
Behavior3 -Wave  
Behavior4 -Reach left and right on a table 
Behavior5 -Reach up and down  
 

 
 

    

 

 
(a)   (b)     (c) 

 

      
(d)   (e) 

 
Figure 6. Sample Configurations for Behaviors used: (a) Behavior1, (b) Behavior2,  

 (c) Behavior3, (d) Behavior4, (e) Behavior5 
 
Since WMtk uses a TD learning algorithm, it is necessary to provide a task-specific reward 

rule. This reward rule was embedded within WMS that rewarded each chunk selection based on 
the success of the current trial. The specific reward used is discussed in Section 3.3. WMtk also 
allows the use of an exploration percentage. This percentage specifies how often WMS should 
choose random chunks rather than the chunks for which it expects a reward. This is intended to 
avoid local maxima by encouraging random exploration even after learning has been 
accomplished [Phillips and Noelle, 2005]. The exploration percentage was set to 15% during the 
experiment.   
 
 
 
3.3 System Performance 
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The performance of the working memory system was evaluated using the following criteria: 
  

1. The ability to choose the appropriate behavior chunk to accomplish the task.  
2. The ability to choose the appropriate percept chunk to accomplish the task.  
3. The ability to use a higher decision rule to distinguish among similar performances (e.g. 

reaching to the nearest bean bag rather than the farthest one). 
 

For the given task to reach to bean bag, one behavior from the set in Figure 6 must be chosen 
to associate with the “reach” skill along with one percept from SES. For each candidate percept-
behavior combination, the following reward wad given: 
 

  
Distc
b

R
+

=       (1) 

 
where Dist is the minimum Cartesian distance from the hand to the bean bag during task 
execution.  The terms b and c are constants that define the maximum reward possible. This  
reward rule is to let WMS distinguish between two seemingly correct percept-behavior 
associations in order to find the best action (Gordon and Hall, 2006). For example, if two bean 
bags were present, i.e. a Category3 task, this reward rule should guide WMS to choose to reach to 
the nearest bean bag.  

Initial trials for this experiment were performed in simulation in order to speed-up the testing 
phase of learning. Percept identification, selection, and tracking were all performed by the system 
at run-time, but interpolated actions were not performed assuming that the actuators and low-level 
arm controllers performed correctly. Appendix 3 shows sample contents of SES, LTM and WM  
during this experiment. 

Figure 7 shows the results for learning the correct behavior for the given task, reach to bean 
bag. For this experiment, the bean bag was randomly placed in front of ISAC. After several 
exploration, the system converged on Behavior2 (three-dimensional reach motion) except for 
occasional exploration.  
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Figure 7. Behavior Selection for the Reach to Bean Bag Task. 

 
This system is also capable of distinguishing between similar percept-behavior learning. 

Figure 8 shows a different training curve for learning to choose the nearest bean bag. This was 
performed after the correct behavior had been learned. In this figure, Percept1 is the nearest bean 
bag and Percept2 is the bean bag that is farther away. The system started by randomly choosing 
percepts and tried to reach. However, after further trials the system converged on the correct bean 
bag. Finally, it is important to note that during exploration WMtk did consider the option of not 
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loading any chunks (i.e. Percept0 in Figure 8) a possibility. During these trials no reward was 
received.  
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Figure 8. Learning to Choose the Nearest Bean Bag. 

 
  

4. THE ROLE OF CEA AND FRA FOR TASK EXECUTION AND SWITCHING 
 
A cognitive robot should be able to make decision and act accordingly based on the situation it is 
in and its internal states.  The representation of internal states within the ISAC cognitive 
architecture is an IMA agent called the Self Agent.  The Self Agent is a virtual agent consisting of 
a number of atomic agents that maintain tight communications among them in order to share and 
act on a common set of information.  Among them, the Central Executive Agent (CEA) and the 
First-order Response Agent (FRA) play important roles on decision making and task execution.  
Their roles are described below. 
 
4.1 Central Executive Agent (CEA) and First-order Response Agent (FRA)  
 
Figure 9 shows the current structure of the Self Agent. The Central Executive Agent (CEA) is 
responsible for cognitive control during task execution.  It makes decisions and invokes skills 
necessary to perform the given task using the Focus of Attention (FOA) and past experience.  
CEA operates in accordance to the intention which the Intention Agent interprets from the task 
command. Decision making within CEA is mediated by affect which is managed by the Affect 
Agent.  The Activator Agent invokes head, arm and hand agents to generate actions.  
 

The First-order Response Agent (FRA) is responsible for generating both routine and reactive 
responses.  The term first-order response was originally used by Shanahan [Shanahan, 2006] for 
reactive responses as opposed to the higher-order cognitive response. (Section 5 provides further 
discussion on this.)  In our implementation, FRA handles reactive responses by invoking 
corresponding behaviors when certain percepts receive the focus of attention. Reactive responses 
within FRA is implemented as a multithreaded process where the associations between percept-
behavior are embedded within separate running threads.  Salient percepts on SES are put in the 
Focus of Attention (FOA) by the Attention Network.  Each running thread compares the most 
salient percept from the candidate percept-skill pairs.  If a matching if found, FRA posts both the 
percept and the skill onto the working memory (WM) as chunks.  The Activator Agent then takes 
the chunks from WM and distributes them to relevant atomic agents for action. 
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Figure 9. Structure of the Self Agent  
 

Besides reactive responses, FRA maintains one thread that is responsible for routine task 
execution.  This thread invokes corresponding skills when the current task command matches the 
learned task in LTM. Note that the current task could be assigned externally by a human or 
internally generated by self-motivation as discussed in Section 6.  FRA then posts the behavior 
found in the learned task and the percept in FOA into WM as chunks where the Activator Agent 
uses the chunks similarly to the case of reactive responses.  This routine response thread will be 
suppressed whenever any one of reactive response threads become active as in the case of 
Brook’s Subsumption Architecture [Brooks, 1986]. 

If FRA finds no matching skill to the task command, task execution will be handled by the 
Central Executive Agent which uses the past experience and the current situation as a separate 
cognitive process.  Past episodes that contain the similar task information as the current task will 
be recalled and the behaviors that are used to perform tasks in these episodes will be considered 
based on maximum likelihood.  The candidate skills and the percept on SES will then be posted 
on the working memory and the Activator Agent will activate one skill-percept pair based on its 
maximum likelihood of success.   

 
4.2 Task Switching Experiment 
 
A two-part experiment was conducted to validate how FRA handles the routine and reactive 
responses.  Figure 10 shows the FRA response process involved in the experiment. 
 
4.2.1 Routine-to-Reactive Response Experiment 
The first part of the experiment was conducted to validate the cognitive loop to execute a 
Category1 task using a routine response and the ability to maintain the task context after a 
reactive response is invoked.  
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Figure 10. First-order Response Loop  
 
 

Experimental steps:  
1. ISAC actively monitors the environment around the entrance door on the right hand side 

using its laser scanner. 
2. Barney doll is placed within the field of view of head cameras, prompting ISAC to play 

with the doll according to its innate preference. 
3. When someone claps the hands, ISAC react to the noise, stops playing with Barney and 

saccades toward the source of the sound. 
4. Since the current task context is still active in the working memory, ISAC goes back to 

the task after the reactive response is completed. 
 
4.2.2 Task Switching Experiment 
The second part of the experiment was to validate the functionality of FRA to switch tasks when a 
new situation is recognized. 
 

Experimental steps: 
1. ISAC continues the task of playing with Barney. 
2. Someone enters the room and approaches ISAC. 
3. When a motion is detected, ISAC stops executing the current task, and fixates the 

cameras on the detected motion. 
4. When the moving object, i.e. a person, enters the workspace, ISAC recalls a similar 

experience with the person and executes the handshake skill instead of going back to the 
previous task. 

 
Figure 10 shows the lab view during the experiment. 

 

    
 
  (a)    (b)               (c)           (d) 
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Figure 10: Lab views during experiment - ISAC (a) Plays with Barney using stereo vision , 
(b) Responds to clapping sound, (c) Detects motion using a laser scanner, (d) Shakes hands with 
the person 

 
 

4.3 System Performance 
 

4.3.1 Routine-to-Reactive Response Experiment 
This experiment shows how the cognitive cycle to perform task switching involving CEA and 
FRA works.  CEA was used to generate the task command internally and responsible for task 
switching.  The operation was evaluated using the following criteria: 

 
1. The ability to perceive the environment using a variety of sensors.. 
2. The ability to use routine responses to execute tasks. 
3. The ability to switch tasks based on an event or situational change. 
4. The ability to switch back and forth between reactive and routine responses. 

 
To take advantage of a multiagent architecture, each stimulus is handled by a different 

perception agent with its own signal processing techniques embedded.  This allows ISAC to 
expand its perception capability by easily adding more sensors in the future.  The outputs from 
perception agents govern how ISAC perceive its environment.  In this experiment, a sound (in 
addition to human voice) detection agent was newly created to detect the sound of clapping 
hands. The quality of the clapping sound depends mainly on the distance between the sound 
source and the microphones, but also it depends on how different people produce hand clapping 
sounds. Data from the two microphones on ISAC were processed using the energy level, the 
histogram and the angle of the sound.  A set of clapping sounds were given at various angles as 
shown in Figure 12.  
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Figure 12. Hand Clapping Experiment 
 
 
When a clapping sound was detected, it was posted on SES as a percept. FRA reactively 

responded to the percept by posting the percept and its associated behavior into WM as chunks. 
FRA removed the chunks when the percept disappeared and ISAC went back to its previous 
action. Table 1 summarizes the amount of time that the system took to respond after clapping 
sounds were heard, and the amount of time the system takes to resume the previous action after 
the reaction responses were completed. 
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Trial Angles 

(degrees) 
Histogram 
Similarity 
(0-100) 

Energy 
Level 

(0-100) 

Detected 
(yes/no) 

Probability 
Measure 

Response 
Time 
(ms) 

Resuming 
Time 
(ms) 

1 64.07 83 88 yes 0.84 102 153 
2 -38.65 78 75 yes 0.87 106 143 
3 18 76 86 yes 0.89 105 135 
4 -49 86 93 yes 0.85 114 141 
5 -2.65 93 85 yes 0.92 96 139 
6 27 23 45 no 0.24 N/A N/A 

 
 

Table1. Hand Clapping Experimental Results 
 

A set of built-in percept-behavior associations represented the reactive responses.  The 
behavior is executed as soon as the percept appears on SES, but because of the complexity of the 
sound detection algorithms and the communication delay time, a small delay (i.e. the time the 
system took to invoke a reactive behavior and the time it resumed the previous routine behavior) 
occurred as shown in Table 1. 
 
4.3.2 Task Switching Experiment 

The second part of the experiment used motion detection as a cue that alerts the system of  
other events  in the environment that may require attention.  Since ISAC is a stationary robot, it is 
vigilant of people entering and leaving the room.  Figure 13 shows several paths of the detected  
motions.  FRA innately reacts to a motion at the area around the door to detect any motion. It is 
assumed that ISAC has positive experiences to greet people when someone approaches.  CEA 
thus recalls such episodes and greets the when the person enters ISAC workspace.  
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Figure 13. Motion Detection Experimental Results - Trial 1: Approaching with normal speed,  
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                    Trail 2: Approaching fast, Trial 3: Approaching slowly, Trial 4: Approaching from 
the left, and Trial 5: Walking across the room 

 
As shown in Figure 13, ISAC only responded to the motions that stopped within its 

workspace and approached it from the right. (Remember, ISAC was actively monitoring the right 
hand side of the environment for any movement.) These motions are indicated by the solid line.  
The motions that were ignored are shown in dotted lines.  When ISAC decided not to greet, it 
went back to perform the previous task. 

 
 

5. INTERNAL REHEARSAL USING COLLISION DETECTION 
 
Humans are able to have sensory experiences in the absences of external stimuli [Ziemke, et al, 
2002]. This has been illustrated by experimental results of, e.g., Lee and Thompson [1982]. It 
thus seemed reasonable to assume the existence of an ‘inner world’ where sensory experiences 
and consequences of different behaviors may be anticipated. The idea of the existence of such an 
‘inner world model’, however, has been questioned since the mid-1980s by a number of 
researchers (e.g., Brooks, 1986; Clancy, 1997; Clark, 1997; Pfeifer and Scheier, 1999) who de-
emphasize the role of internal world models and instead emphasize the situated and embodied 
nature of intelligence. An alternative to internal world models is the ‘simulation hypothesis’ by 
Hesslow [2002] which accounts for the ‘inner world’ in terms of internal simulation of perception 
and behavior. Inspired by these observations, we are developing the Internal Rehearsal System 
(IRS) which utilizes one type of internal simulation of perception and behavior.  
 
5.1 Design of The Internal Rehearsal System (IRS) 
 
Internal simulation research has now moved into the robotics field  [Shanahan, 2005].  
Shanahan’s architecture, shown in Figure 14, involves two separate loops, the reactive or first-
order loop and the cognitive or higher-order loop.  The first-order loop involves the sensory 
cortex (SC), motor cortex (MC), and basal ganglia (BG). This loop directly maps sensory input to 
motor actuation. The higher-order loop internally rehearses the decision from the first-order loop 
and changes the output of the system based on the observation of this rehearsal through the 
Amygdala (Am) or emotion system. 
 

 

Figure 14. Shanahan’s Cognitive Architecture with Internal Simulation [Shanahan, 2005] 
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In our architecture, the Self Agent handles dual sensory-motor loops in Shanahan’s model for 
task execution as shown in Figure 15. The First-Order Response Agent (FRA) is responsible for 
the reactive and routine responses of the system while the Central Executive Agent (CEA) is 
responsible for the cognitive response. The Internal Rehearsal System (IRS) takes the working 
memory chunks as the motor commands, the current situation as the external state and sends a 
rehearsed result to CEA.  If IRS produces a poor prediction, CEA will suppress the Activator 
Agent, replace the working memory chunks, and tell the Activator Agent to switch action.  
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Figure 15. ISAC Self Agent Cognitive Cycle 
 
5.2 Collision Detection 
 
IRS uses collision detection techniques described in [Charoenseang, 1999]. This work involved 
the use of virtual spheres around each joint of the robot which provided virtual force feedback on 
contact as shown in Appendix 6. These spheres were designed to prevent both arms from 
colliding with an object or each other.  The key to the spherical collision detection method is the 
distance from the center of one sphere to another. A collision occurs when two spheres touch, and 
if a collision occurs with the right or left arm, the arm physically moves so that the colliding 
spheres no longer touch. 

IRS uses this collision sphere concept in a different manner. Instead of using spheres on the 
elbow, wrist and end effecter of the robot, the percept on the Sensory Egosphere is seen as a 
sphere. Figure 16 shows the ISAC Simulator where one object,  Barney doll, is shown on the SES 
as a sphere in (x, y, z) coordinates. If either arm in the simulator collides with this sphere, a 
collision has occurred. The simulated arm has 6 collision detection points located in the shoulder, 
bicep, elbow,  
forearm, wrist, and end effector of each .  
 



15 

 
 

Figure 16. ISAC Simulator Displaying a Barney Doll as a Sphere 
 

When IRS is invoked by CEA, it takes the current behavior chunk as the motor command and 
the current environment ISAC is in as the current state. After CEA selects a behavior to perform 
the skill described by the task, IRS internally rehearses the behavior with the percept 
corresponding to the current state using an accelerated Verb/Adverb Interpolation technique. This 
acceleration is performed by using only fourth of the interpolated points with Verbs and Adverbs 
to speed up rehearsal. If a collision occurs with the percept during the rehearsal, IRS returns the 
percept, the step in the Verb/Adverb interpolation where the collision occurred, and the total 
number of joint steps in the interpolated motion to CEA.  
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Figure 17. Flow Chart of CEA Execution involving Internal Rehearsal 
 

Figure 17 illustrates the internal rehearsal process. First, CEA will a behavior list based on 
past episodes involving the given task. At the same time, FRA will determine if the percept has a 
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corresponding routine learned object-skill pair from LTM; if it does, FRA will immediately place 
the corresponding percept as chunks into the working memory, runs internal rehearsal, and send 
the result to CEA. CEA will use the prediction from IRS to determine if t he Activator Agent 
should be suppressed or not. If CEA determines an acceptable, it will remove this behavior from 
the list and select new chunks. This process continues until a suitable skill is found to accomplish 
the task or the list is exhausted.  
 
5.3 Internal Rehearsal Experiment 
 
The following experiment is designed to evaluate how FRA, CEA, and IRS work together. The 
experiment involves two percepts: Barney (goal percept) and the Lego toy (obstacle percept). The 
experiment will proceed as follows:  
 

1. A task to reach to Barney is given to ISAC. FRA immediately places ReachRight and 
Barney into the working memory (WM) as chunks. 

2. Using the chunks, IRS will try to reach to the Barney with the right arm using an 
accelerated Verb/Adverb interpolation, but predicts a collision with the Lego toy. 

3. CEA will suppress the Activator Agent based on this prediction from IRS. 
4. CEA will use the episodic retrieval technique as shown in Appendix 5. CEA will replace 

the chunk ReachRight to ReachLeft.  
5. IRS will reach to the Barney with the virtual left arm. This reach will be successful and 

reach  the Barney percept. 
6. CEA will let the Activator Agent proceed to reach the Barney using the left arm. 

 
5.4 System Performance  
 
During this experiment, ISAC perceives a Lego toy and the Barney doll, and these two percepts 
are posted on the SES. The ISAC Simulator displays both the position of the object on the SES 
and its (x,y,z) coordinates as two spheres. This can be seen in Figure 18. 
 

  
 

Figure 18. ISAC Simulator with Two Objects during the Experiment 
 

ISAC was given a command to reach to the Barney. At this time, FRA placed two chunks 
“ReachRight” and “Barney” into working memory. (ISAC is right handed.) Both the Activator 
Agent and IRS began to process these chunks. IRS completed the computation within 3.202 
seconds and sent its results to CEA. At the same time, the Activator Agent sent a motion 
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command to  the Right Arm Agent to perform the reaching motion. The Right Arm Agent would 
take 10.985 seconds to perform this type of reach if no obstacle exists. 

 
 
 
 
When IRS finished, the following output was sent to CEA: [15 68 lego_toy]. This means that 

during the simulation, IRS determined a collision with the Lego toy in the fifteenth step of the 
verb/adverb interpolated reach behavior out of the total of 68 interpolated steps. Figure 18 shows  
the trajectories of the right arm collision points during the rehearsal. CEA took this result and 
determined that it did not reach to Barney. CEA then suppressed the Activator Agent and 
prevented the right arm from further action.  

CEA then decided to use an episode involving the left arm and replaces the working memory 
chunks with “ReachLeft” and “Barney”. IRS and Activator Agent were once again initiated, and 
IRS internally rehearsed the reach skill and determined no collision with the Lego toy. Indead, 
IRS found  a collision with the Barney, a success, as shown in Figure 20.  Both the wrist and end 
effector points entered the Barney percept sphere on the sixteenth step of the Verb/Adverb 
interpolation. The output of IRS wass [16 69 barney_toy] after 2.983 seconds. CEA determines 
this as a success and did not impede the Activator Agent thus allowing ISAC to reach to Barney 
using his left arm. The result of the experiment is shown in Table 2 and Figure 21. 

 
Performance Time (Seconds) 
  Right Arm Left Arm 

Internal 
Rehearsal 

3.202  2.983  

 Arm  Agent 10.985  7.110 

 
Table 2. Performance time 

 
The Internal Rehearsal System currently determines a collision by using collision spheres. 

Collision spheres are used since most of the objects ISAC encounters such as dolls and bean bags 
are small in size and can be safely represented by spheres. In the future, IRS  need to include 
larger objects such as tables or chairs as shown in Figure 20. 
 

 Figure 19. Right Arm Internal Rehearsal                          Figure 20. Left Arm Internal Rehearsal 
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Figure 19. ISAC Reaching to Barney with Left Arm                     Figure 20.  Collision with a 
table 
 

 
 
 
 

6. A SELF-MOTIVATED, INTERNAL STATE-BASED ACTION SELECTION 
MECHANISM 

 
In his book, Damasio [1999] associates higher-order reasoning with planning and conscious 
behavior execution. Below this level of reasoning is unconscious feelings, emotions, and basic 
life regulations (homeostasis). It is the interaction of these various levels that enable cognitive 
systems (such as humans) to handle many complex situations. Embedded cognitive systems such 
as cognitive robots may also face situations where they cannot rely on conscious state alone to 
make appropriate decisions. Therefore, in our architecture we are developing a subsystem capable 
of lower-level unconscious, internal state-based responses exhibited by biological cognitive 
systems. In this section we discuss the use of one such internal state affect in our work. In our 
architecture, affect is maintained by the Affect Agent, which keeps track of the current affective 
level of ISAC. Similar to the work of Shanahan [Shanahan, 2006], affect interacts with CEA by 
running in parallel, influencing focus of attention, and mediating task execution by influencing 
the probabilistic decision making model within CEA [Ratanaswasd, et al, 2006]. It is important to 
note that while the affect system we are developing contains  similarities to human affect, it is not 
grounded and thus it should more appropriately be considered as an “affect-like” system. For 
brevity, we refer to it as an affective system. 

As seen in earlier sections, the Attention Network functions as an important part of cognitive 
control loops within the ISAC cognitive system. In the following, we will explore the manner in 
which internal states such as emotions interact with attention and the rest of the cognitive system. 
This section involves the Affect Agent, the Intention Agent, and CEA.  
 
6.1 Role of Internal State 
 

The role of internal states in goal and action selection has been explored by a number of 
researchers. For example, Cos-Aguilera, et al., and Canamero focused on the role of internal 
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homeostatic variables within the robotic system [Cos-Aguilera, et al., 2005; Canamero, 1997].      
Such variables are used to indicate a preferred normalcy (i.e. homeostasis) within the robot. For 
example, a mobile robot may possess the homeostatic variable, hunger, which keeps track of the 
remaining battery life of the robot. As the value of this internal variable lessens, an urge (or drive) 
motivates the robot to seek out some form of refueling station. Using a set of homeostatic 
variables, coupled with appropriate drives, robots can attempt to maintain an internal level of 
homeostasis during task execution. Cos-Aguilera and Canamero both used this type of system to 
learn behavior selections.  

Internal states have also been used to create robotic emotional systems [Gockley, et al, 2006] 
[Breazeal, 2004]. One of the primary goals of robotic emotional systems is to enable a more 
natural interaction between human and robot. We hypothesize that in order for such robotic 
systems to be truly effective and useful, the robot must use internal states in its decision making 
and action selection in a manner that is more readily apparent to a human counterpart.  

Our main goal in using internal state-based action selection and decision making is to develop 
a dynamic system capable of acting based on internal preferences that can be modified through 
experience. In this section, the use of internal variables that represent the system’s deviation from 
a normative emotional level is proposed. While it is not sufficient for a cognitive system to use 
only emotional preferences in the decision-making process, we believe that it is nonetheless 
important for any cognitive system to have emotions.  

The total state of the ISAC cognitive system is represented by two sets of state variables, 
external and internal. External state variables, Sext , include percepts such as detected objects, 
faces, keywords, sounds, etc. Internal state variables, Sint  , include hardware parameters such as 
joint angles, positions of right and left hands  as well as qualitative variables such as intention and 
affect (Figure 2). These variables combine to form the overall situation: 

 
 Situation ( Stotal ) =  Sext x Sint     (2) 

 
The work discussed in this section requires Sext and a portion of Sint. The portion of Sint used, 

denoted as Saffect , represents the internal variables used by the Affect Agent. Saffect is not designed 
to be a constant. Rather, past experience (e.g., previous reward) should be used to update the 
preferences to a novel situation over time. In this manner, Saffect is used to reflect the both the 
system’s innate preferences for a situation as well as reflecting the system’s dynamic state 
change. The past experience comes in the form of Episodic Memory (see Appendix 7), a form of 
memory currently being developed for ISAC.  
 
6.2 Affect Agent and Excitement Meter 

 
Robots operating in the real world often encounter situations where more than one choice of 
action could be considered acceptable. In any cognitive robot, this choice should be mediated by 
past experience and internal states. This mediation enables a cognitive robot to make its own 
choices to deal with competing demands. Towards the goal of developing a self-motivated action 
selection mechanism, we have begun to develop a means of allowing ISAC to make decisions 
based on its own preference. In our case this preference is represented through affect variables 
associated with particular tasks. Though much prior work involving affective states in the 
decision-making process involving artificial systems has been conducted [Gockley, et al, 2006] 
[Picard, et al, 2004], there does not seem to exist a formal, universally accepted definition of what 
affect is. In our work, we adopted the working definition that “affect is an internal unconscious 
level of state, including feelings and emotions, in response to a particular situation or event”. This 
is similar to the use of the term in [Gockley, et al, 2006]. When cognitive content is attached to 
emotions, (e.g., playing with toys is exciting) then this definition becomes similar to that used in 
[Picard, 1997] and [Franklin, et al, 2006].  
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6.2.1 Calculation of Excitement 
In the ISAC architecture the Affect Agent determines affective responses to the current situation. 
These responses implicate which choices lead to higher or lower affective levels. This is similar 
to the Winner-Take-All (WTA) behavior selection technique discussed in [Ho, et al., 2005]. In 
their approach, an agent has a set of homeostatic variables that need to be maintained. The 
motivation to compensate each of these variables is determined at each time step, and the 
behavior corresponding to the homeostatic variable with the most motivation is chosen. Their 
study shows that the WTA strategy resulted in longer agent life spans (over all settings) when 
compared with Static-Thresholding and Voting-Based selection techniques. There is an important 
difference however between the WTA behavior selection technique and the work discussed here. 
Their work revolves around internal variables that are homeostatic or “life-sustaining” (i.e. 
hunger, thirst, fatigue, etc.). The work discussed here involves  “preferential” internal variables. 
This difference is analogous to an agent needing to eat (i.e. life-sustaining drive) versus preferring 
to eat pizza rather than asparagus (i.e. preferential drive). Choosing the least preferred option 
(asparagus) does not kill the agent.  

Because of this difference, the behavior selection mechanism we propose is a modification of 
the WTA technique where the winning motivation has the highest probability of taking all. Based 
on the affective response to the situation, the Affect Agent modifies the probabilities used by the 
CEA for action selection (Appendix 5). This happens during the following process: CEA 
determines initial probabilities for choosing each task; these values are passed to the Affect Agent 
where they are modified based on the current affective responses; the new probabilities are 
returned to CEA along with the strength of the individual affective responses. Based on the 
overall strength of the affective responses, CEA may choose to ignore or accept the updates in 
probabilities determined by the Affect Agent. For example, the affective response to the event 
“person leaving the room” may be very low and CEA may choose to disregard any change in the 
probabilistic model based on this event. However, the event “person entering the room with toys” 
may have a very high affective response and the system should more likely switch tasks.  

Appendix 5 discusses the decision-making model used by CEA. With affect variables added 
to the system, the action associated with the higher affective state has a higher priority, and 
subsequently priorities of all other actions are decreased. This affect-based dynamic prioritization 
of an action is used to determine the probability of the chosen action.  

Figure 22 illustrates this process. The Affect Agent monitors the current situation, i.e. the 
external states Sext. The Affect Agent then determines new values for affective variables to be used 
on the next time interval. CEA is simultaneously monitoring the situation and creates an action 
list from similar episodes in the Episodic Memory, and assign probabilities to the actions.  
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Figure 22. Affect-based Dynamic Prioritization of Action Selection 
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Prior work involving the Affect Agent used fixed values [Ratanaswasd, et al., 2006]. The 
current model extends to a dynamic affective variable called excitement. Our model of excitement 
uses the following function as suggested by Picard [Picard, 1997] for determining the affective 
level: 

 
Excitement level = Ae-Bt                                                                                 (3) 

 
where A and B are calculated as follows: For new situations, the initial values of A and B (Ainit, 
Binit) are set to the system’s innate preference values. Once a situation has been encountered and 
the experience stored within the Episodic Memory, the values (A, B) can be recalled from that 
episode. As ISAC gains more experience with a particular situation, A and B must be updated.      
Following summarizes our tentative thinking of how to update the values. 
      It is important that the excitement increase due to the successful past experience. However, 
encountering the same situation frequently will have an adverse effect on the excitement. Thus we 
are thinking of using the following update equations for the affect parameters: 

 
Ac = f(�, �, Aret)      (4) 

 
where Aret is the retrieved value of A. The parameter � is a bounded function of the previous 
success of the situation and � is function of the number of occurrence within the Episodic 
Memory of the retrieved situation. For this system to function properly, it is important that � be 
bounded and that the bound of � not exceed the limit of �. This ensures that A will not grow 
without bound. The sigmoid function, 1/(1+e-x), is used for � where ‘x’ is the success of the 
previous experience. The function, log(y), is used for � where ‘y’ is the number of occurrences of 
the given situation. Using this design, the excitement associated with any situation is a function of 
that situation’s initial excitement level, Ainit, the system’s recorded success (or failure) with the 
situation, and the frequency of occurrence of the situation. Using a functional design with the 
bounded parameter, �, in the numerator and � in the denominator ensures that eventually, 
repetition will win out and through continued exposure to a situation the excitement ISAC 
associates with that situation will return to neutral. The calculation of Bc is done in a similar 
fashion except that the signs are reversed.  
 

Bc = g(�, �, Bret )      (5) 
 

Figures 23 and 24 show how the values (Ac, Bc) change as a function of the number of trials 
performed where the success of the past experience is assumed to be maximum over all trials. 
These figures represent the basic equations without the use of any adjustment constants. Because 
no adjustments are made the scale shown is an arbitrary one.  

 



22 

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Trial

A

 
Figure 23 Evolution of Parameter A over time with a Constant Positive Reward  
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Figure 24 Evolution of Parameter B over time with a Constant Positive Reward  

 
 
6.2.2  Excitement Meter 
In parallel to the theoretical development of the affective variables, we are working on a graphical 
display method of excitement called the Excitement Meter. The main reason for the development 
of the Excitement Meter is to aid human-robot interaction. As the internal states of ISAC grow, it 
is important to have a means of relating that information to human counterparts. This meter 
calculates the excitement response level to a set of stimuli and displays the history of excitement 
value on the “chest” monitor mounted on ISAC (Figure 25). The current value of excitement is 
shown on the black axis. The previous values trail off to the right. Figure 25(a) shows the chest 
monitor as it normally is used showing the Sensory EgoSphere. Figure 25(b) shows a close-up of 
the chest monitor when the Excitement Meter is displayed. Two jumps in excitement can be seen 
in the history section of the meter.  

The current implementation of the Excitement Meter is still too simple. However, a pilot 
study (performed by the Vanderbilt Psychology Dept.) indicates that the presence of the meter 
aids humans to understand why ISAC took particular actions.  

 



23 

         
   (a)                                              (b) 

                                                    Figure 25. ISAC Chest Monitor 
 

                                                       7.  CONCLUSIONS  
 
This paper outlined our effort to develop an integrated robotic cognitive architecture in 
which a number of cognitive loops are running in parallel. Collectively, these cognitive 
loops are expected to realize a certain level of cognitive control functionalities for our 
ISAC humanoid robot. Results of experiments conducted so far are encouraging. However, 
many challenges still remain in order to truly realize integrated cognitive robotic systems.  
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APPENDICES 
 
Appendix 1. Working Memory System (WMS) 
 
1.1 Working Memory Toolkit - WMtk  
 
The WMtk is an ANSI C++ library of classes and methods that can be used to instantiate and 
train WMS. The WMtk loads “chunks” of information in the form of  simple data structure from a 
supplied list of candidate chunks. These chunks are void data structures that represent stored 
information within the memory in the system. In our system, the candidate chunk list is derived 
from filtering the contents of STM (SES), LTM, and the Episodic Memory. The WMtk encodes 
the current state of the system within a state feature vector in the toolkit, compares this with a 
chunk feature vector and then chooses chunks for which it expects the most reward. To make 
these decisions, the state and chunk feature vectors are passed through a neural network that 
learns using the temporal-difference (TD) learning algorithm [Sutton, 1988]. In Figure 3, the 
Learned Network Weights represent the particular instance of the WMtk used for the current 
situation. 

Because the WMtk uses feature vectors and neural nets, some of the same computational 
constraints associated with machine learning are present. For instance, if new states are added to 
the system after training, WMS must be re-trained. In order to for WMS to be scalable, the 
system requires the ability to dynamically create new instances of the WMtk for novel situations. 
As discussed in Section 3.2.1 separate instances of the WMtk are used for different category 
tasks.  
 
1.2 Memory Contents during WM Training 
 

Table A1 shows the contents of short-term (SES) and long-term memory (LTM) during the 
experiment discussed in Section 3. In the experiment, two bean bags were present in front of 
ISAC. Additionally, five behaviors had been trained and placed in LTM. This information was 
encoded into the working memory as “chunks,” i.e. void data structures. The WMtk then chose 
two from these chunks and the contents of working memory were used for task execution. In 
other words, if the chunks Behavior5 and red_bag were present, ISAC performed the fifth 
behavior in LTM on the red bean bag percept, i.e.  the two-dimensional reach motion towards the 
red bean bag. Table A2 shows sample contents of working memory during four of the training 
trials. When a percept and/or a behavior chunk were not present, the missing chunk(s) were filled 
in at random.  
 

SES LTM 
1. Percept-1, Semantic label= 
“blue_bag”, Location = node1518 

1. Behavior-1 

2. Percept-2, Semantic label = 
“red_bag”, Location = node1212 

2. Behavior-2 

 3. Behavior-3 
 4. Behavior-4 
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 5. Behavior-5 
 

  Table A1. Memory Contents During Simulation Training 
 
 
 

   Working Memory Contents 
Sample 
Trial #: 

1 2 3 4 

Chunk 1 
blue_bag red_bag  Behavior-3 

Behavior-5 

Chunk 2 Behavior-2 
Blank blue_bag red_bag 

Random: NA Behavior-1 NA NA 
Reward: 50.7 0 0 22.4 

 
                Table A2. Working Memory Contents During WMS Training 
 
APPENDIX 4. Verbs and Adverbs Algorithm for Behavior Execution 
 
Verbs and Adverbs is a motion interpolation technique originally developed for computer 
graphics [Rose, et al., 1998]. We use this technique because it is scalable to work on an arbitrarily 
sized dimension spaces. In this technique motion exemplars are used to construct verbs that can 
be interpolated across different spaces of the motion represented by the adverbs. An important 
aspect in storing and re-using a motion for a verb is the identification of the keytimes [Rose, et al, 
1998] [Spratley, 2006]. The keytimes represent significant structural breaks in the particular 
motion. For the Verbs and Adverbs technique to function properly, individual motions for the 
same verb must have the same number of keytimes and each keytime must have the same 
significance across each motion. These keytimes relate to the structure of the motion and are 
conceptually similar to breakpoints of the motion. Figure A1 shows the structure for three 
example motions. The example motions shown are recordings of the same motion, three different 
times. This information is used to create the verb, handshake. The keytimes in this example are 
derived by analyzing the motions using a technique called Kinematic Centroid [Jenkins and 
Mataric, 2003]. The x-axis represents the normalized point index for each motion. The y-axis 
represents the Euclidian distance of the kinematic centroid of the arm from the base of the arm.  

  Each verb can have any number of adverbs, each of which relate to a particular space of the 
motion. For example, the verb reach could have two adverbs: the first related to the direction of 
the reach and the second related to the distance from ISAC’s body that the particular motion is to 
extend. To extend this method to include other features, such as speed, example motions 
representing the variability of these features need to be added to the verb. In addition, new 
adverbs also need to be added.  
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Figure A1. Example Motion Structures Using Kinematic Centroid [Spratley, 2006] 

 
      For our experiments, motions were provided to the system through teleoperation. Groups of 
exemplar motions were used to create verbs. Each verb directly corresponds to a skill, as 
discussed in Section 3, and each verb is given a label (such as Behavior1, Behavior2, etc.). LTM 
is used to store the verb exemplars and the adverb parameters for each verb. New motions for the 
behaviors that represent reaching or handshaking are interpolated at run time using the new 
(desired) adverb values. This approach is analogous to a memory-based learning approach 
mentioned in [Thrun & Pratt, 1998]. One important limitation in the Verbs and Adverbs 
technique is that new motions are never extrapolated. This is due to the fact that extrapolated 
motions can potentially lead to undesirable or unachievable arm configurations. When 
extrapolation is required, the necessary behavior is approximated through interpolation at the 
adverb limit. 
 
 
Appendix 3. Focus of Attention and Action Selection 
 
Humans pay attention by emphasizing the locations of percepts with high saliency.  This process 
is known as spatial attention [Cohen and Shoup, 1997]. In our architecture, spatial attention is 
realized through assigned Focus of Attention (FOA) by the Attention Network [Hambuchen, 
2004]. The Attention Network puts flags on percepts with high saliency as input from the Affect 
Agent.  The flagged percepts become candidates which to be posted to the working memory for 
further processing. 

During an event, such as when ISAC is given a task, a set of past episodes are recalled from 
the Episodic Memory using cues such as percepts in FOA and task information.  If no relevant 
percepts exist or no relevant episodes can be recalled, ISAC cannot perform this task, in which 
case the default action will be executed.  Currently ISAC will say “I cannot do it” when it cannot 
perform a task.  In case that multiple tasks are presented, relevant past episodes for all tasks are 
recalled and ISAC must decide which task will be handled first.  This decision is made based on 
the utility values of the tasks.  Currently, the utility value is computed using the success rate of 
the task, referred to as the expected reward as follows: For a task Tk, assume Nk episodes are 
retrieved. Each episode receives the score Si=1 if it was a success, otherwise -1.  The expected 
reward Rk for the task is computed by 
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Once a task is selected, a behavior must be selected.  A list of behaviors is created from the 
recalled episodes.  The list is arranged according to the priority value of the task as follows:   Let 
Bj be a behavior within the list and EBj be the set of recalled episodes that contain Bj for the task 
Tk. The priority, pj , then, is computed as 

M

S
p j

j =     (2) 

where M is the number of members in EBj, and Sj is the summation of relevancy of successful 
episodes in EBj. 
 
The relevancy of an episode is computed based given the current task and the percepts by 
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where, 
dp is the number of edges on the SES geodesic dome from the node that the current percept 
appears to the percept present within the episode, and 
db  is the traveling distance of the behavior Bj when it was used for the past execution. 
 

Once the behavior list is generated and rearranged, the behavior from the top of the list is 
selected for the task execution.  The flow chart in Figure A2 summarizes this behavior 
selection process. 
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Task

Locate task-relevant
percepts on SES

Recall task-relevant
episodes

Create behavior list 
from the recalled episodes

Find relevancy for each
successful episode

Calculate priority for 
each successful behavior

And rearrange the list 
according to priority

Behavior from the top of 
the list is selected

Relevant percepts 
exist?

Relevant episodes
exist?

Execute default action
(Say “I cannot do it”)

Yes

Yes

No

No

 
 

Figure A2: Summary of the behavior selection process 
 

Appendix 4.  Episodic Memory – Under development  
 


