
Reflective Navigation

Boris Kluge Erwin Prassler
InMach Intelligente Maschinen GmbH Bonn-Rhein-Sieg University of Applied Science
Helmholtzstr. 16, 89081 Ulm, Germany Grantham-Allee 20, 53757 Sankt Augustin, Germany

kluge@inmach.de erwin.prassler@fh-brs.de

1 Introduction

Motion planning for a robot in an environment containing obstacles is a fundamental
problem in robotics. For the task of navigating a mobile robot among moving obsta-
cles, numerous approaches have been proposed. However, moving obstacles are most
commonly assumed to be traveling without having any perception or motion goals (i.e.
collision avoidance or goal positions) of their own.

In the expanding domain of mobile service robots deployed in natural, everyday envi-
ronments, this assumption does not hold, since humans (which are the moving obstacles
in this context) do perceive the robot and its motion and adapt their own motion accord-
ingly. Therefore, reflective navigation approaches which include reasoning about other
agents’ navigational decision processes become increasingly interesting.

In this paper an approach to reflective navigation is presented which extends the veloc-
ity obstacle navigation scheme to incorporate reasoning about other objects’ perception
and motion goals.

1.1 Related Work

Predictive navigation is a domain where a prediction of the future motion of the ob-
stacles is used to yield more successful motion (with respect to travel time or collision
avoidance), see for example the work of Foka and Trahanias [3] and Miura and Shirai
[5]. However, reflective navigation approaches are an extension of this concept, since
they include further reasoning about perception and navigational processes of moving
obstacles.

The velocity obstacle paradigm, which belongs to the class of predictive navigation
schemes, has been presented by Fiorini and Shiller [2] for obstacles moving on straight
lines, and has been extended by Shiller et al. [6] for obstacles moving on arbitrary (but
known) trajectories.

1



Modeling other agents’ decision making similar to the own agent’s decision making
is used by the recursive agent modeling approach [4], where the own agent bases its
decisions not only on its models of other agents’ decision making processes, but also on
its models of the other agents’ models of its own decision making, and so on (hence the
label recursive).

1.2 Overview

Assume a robot B uses deterministic velocity obstacles for its navigation. Then, there is
some freedom in choice of avoiding velocities. That is, a unique velocity vB ∈ R2 cannot
be an adequate prediction of the future velocity of B. Therefore, if velocity obstacles
are used in a recursive manner, they have to be extended in a way which allows to
express uncertainty about the velocity of the obstacles, i.e. by using (possibly multi-
modal) probability distributions. Such a probabilistic extension of the velocity obstacle
approach is presented in Section 2.

Being able to cope with uncertain obstacle velocities, Section 3 describes how to apply
the velocity obstacle scheme recursively in order to create a reflective navigation behav-
ior. The proposed method is evaluated for a collection of simulated in Section 4, and
finally concluded after discussing the presented work.

2 Probabilistic Velocity Obstacles

Let Bi and Bj be circular objects with radii ri and rj, placed at positions ci ∈ R2 and cj ∈
R2, as in the deterministic velocity obstacle approach.

However, now we will consider uncertainty in shape and velocity of the objects. This
allows to reflect the limitations of real sensors and object tracking techniques.

2.1 Shape Uncertainty

A first source of uncertainty is the actual shape of the obstacles. With real sensors,
there will always be measurement errors, which should be reflected by the navigation
approach.

It turns out that defining the notion of an “uncertain shape” is not straightforward.
One idea might be to model uncertainty about the actual shape of a rigid body B by a
function

PB : R2 → [0, 1] (1)

where PB(p) is interpreted as the probability of point p belonging to B. However, we
would have to specify dependencies between the points, too, which will become clear

2



after the following definition of a simple class of “probabilistic” objects.

Definition 2.1 (Disc with Uncertain Radius) A disc with uncertain radius D(a, b) is a
disc centered at the origin whose radius is a variate R with range [a, b] and

P(R ≤ r) =


0, if r < a,
r−a
b−a

if r ∈ [a, b], and
1, if r > b.

(2)

For the sake of brevity, we may call a disc with uncertain radius probabilistic disc or p-disc,
too.

Discs with uncertain radius cannot be represented by a mapping PB : R2 → [0, 1] as
above alone, since for example the events (0, r) ∈ B and (r, 0) ∈ B for r ∈ R are not
independent if B is a disc with uncertain radius. Therefore we will focus on p-discs as
probabilistic objects in the following. This is not a severe restriction, since the remain-
der of this paper remains valid after changing the definition of probabilistic objects,
provided that the definition of a probabilistic collision cone is adapted accordingly.

Definition 2.2 (Placed Disc with Uncertain Radius) The ordered pair (D(a, b), c) of a p-
disc D(a, b) and a position c ∈ R2 is called a placed disc with uncertain radius.

The ordered triple (D(a, b), c, v) of a p-disc D(a, b), a position c ∈ R2, and a velocity v ∈ R2

is called a moving disc with uncertain radius, and the point c + v · t is called its position at
time t.

Property 2.3 (Collision of Discs with Uncertain Radius) Let (D(ai, bi), ci) and (D(aj, bj), cj)

be placed p-discs with variates Ri and Rj representing their radii. Then, the placed p-discs are
colliding if Ri + Rj ≤ |ci − cj|.

In the deterministic velocity obstacle approach, the collision cone of an ordered pair of
moving objects is a set of relative velocities which lead to a collision. If the shapes of the
objects are uncertain, e.g. the radius of a circular objects is only known up to some error,
all we can expect as a probabilistic collision cone is a mapping which assigns collision
probabilities to relative velocities.

Definition 2.4 (Probabilistic Collision Cone) The probabilistic collision cone of an or-
dered pair of placed discs (D(ai, bi), ci) and (D(aj, bj), cj) with uncertain radii is a map-
ping PCCij : R2 → [0, 1] with

PCCij : vij 7→ P

(
Xi + Xj ≥ min

t∈R+
0

|ci + vij · t − cj|

)
, (3)

that is, in words, PCCij(vij) is the probability of (D(ai, bi), ci+vij·t) colliding with (D(aj, bj), cj)

for some t ∈ R+
0 .

3



vij

PCCij(vij) = 1

PCCij(vij) = 0

0

ai + aj

bi + bj

0 < PCCij(vij) < 1
cj − ci

Figure 1: Probabilistic collision cone of two discs (D(ai, bi), ci) and (D(aj, bj), cj) with
uncertain radii

4



As an example, Figure 1 shows the probabilistic collision cone of two discs with uncer-
tain radii.

2.2 Velocity Uncertainty

Another source of uncertainty is the motion of the obstacles. In fact, we are confronted
with two types of uncertainty here, one which stems from the measurement errors of
the sensor system, and another one which stems from unpredictable changes of the
motion of the obstacles. Therefore we represent the uncertain velocity of object Bj as a
probability density function

Vj : R2 → R+
0 . (4)

Given such an blurred velocity Vj of a placed p-disc Dj = (D(aj, bj), cj), we may ask for
the collision probability with respect to a moving p-disc Di = (D(ai, bi), ci, vi) repre-
senting the robot, which leads us to a probabilistic formulation of a velocity obstacle as
a function

PVOij : R2 → [0, 1] (5)

which maps absolute velocities vi of Bi to the according probability of colliding with Dj.
Assume Dj moves with velocity vj ∈ R2. Then, the probability of a collision between Di

and Dj is PCCij(vi − vj). Since the velocity of Dj is uncertain, we have to weigh that col-
lision probability with Vj(vj), the probability density at vj. Integrating over all possible
velocities vj of Dj delivers

PVOij(vi) =

∫
R2

Vj(vj)PCCij(vi − vj)d
2vj, (6)

which is equivalent to
PVOij = Vj ∗ PCCij (7)

where ∗ denotes the convolution of two function.

When a moving p-disc Di is confronted with a set of moving p-discs B = {Dj | 1 ≤
j ≤ n, i 6= j}, the probability of Di colliding with any other obstacle Dj ∈ B equals the
probability of not avoiding collisions with any other moving obstacle. Therefore, the
function PVOi : R2 → [0, 1] with

PVOi(vi) = 1 −
∏

j6=i, Dj∈B

(1 − PVOij(vi)) . (8)

assigns to a velocity vi of Di the probability of colliding with any other p-disc from B.
That is, PVOi is the probabilistic counterpart of the composite velocity obstacle.

5



2.3 Navigating with Probabilistic Velocity Obstacles

In the deterministic case, navigating is rather easy since we consider only collision free
velocities and can choose a velocity which is optimal for reaching the goal. But here,
we have to balance two objectives: reaching a goal and minimizing the probability of a
collision.

Let Ui : R2 → [0, 1] be a function representing the utility of velocities vi for the motion
goal of Di. However, the full utility of a velocity vi is only attained if (a) vi is reachable,
and (b) vi is collision free. Therefore we define the relative utility function

RUi = Uα
i · R

β
i · (1 − PVOi)

γ, (9)

where Ri : R2 → [0, 1] describes the reachability of a new velocity, i.e. it corresponds to
the set RV of reachable velocities in the deterministic velocity obstacle approach. The
exponents α, β, γ ∈ R+ are weights for the three factors of the relative utility.

A simple navigation scheme for p-disc Di based on probabilistic velocity obstacles can
be obtained by periodically choosing a velocity vi which maximizes the relative util-
ity RUi. In order to implement this approach, the use of continuous functions has to
be replaced by discretized version, and explicitly represented functions have to be re-
stricted to a finite size.

2.3.1 Discretization

Step functions s : R2 → R with s(x, y) = s(x ′, y ′) for iκ ≤ x, x ′ < (i + 1)κ and jκ ≤
y, y ′ < (j + 1)κ are used for discretization of continuous (in the sense of non-discrete)
functions. In other words we use functions which are piecewise constant on squares of
size κ× κ, where κ is a predefined constant.

For a point p = (x, y) ∈ R2, its discretization is

discr(p) = p =
(⌊x

κ

⌋
,
⌊y

κ

⌋)
∈ Z2. (10)

Conversely, for a discretized point p = (z1, z2) ∈ Z2 we define its cell as

cell(z1, z2) = {p ∈ R2 | discr(p) = (z1, z2)}

= [z1κ, (z1 + 1)κ)× [z2κ, (z2 + 1)κ) .
(11)

For any function F : R2 → [0, 1] we define the discretization of F to be the function F :

Z2 → [0, 1] with

F(z1, z2) =
1

κ2

∫
cell(z1,z2)

F(x, y)dx dy, (12)

6



i.e. F(z1, z2) is the average of F on cell(z1, z2). However, in practise we will only re-
quire F(z1, z2) ∈ F(cell(z1, z2)) for F to be called a discretization of F, since the com-
putation of the integral is expensive and not negligible. A simple extension to over-
come potential difficulties would be to draw a constant number n of random points pi

from cell(p) and use the average value 1
n

∑
F(pi) as value for F(p), approaching the ex-

act value for n → ∞. A more thorough treatment of this problem involves sampling
theory, i.e. an analysis of the spectrum of F and the selection of κ according to Shannon’s
sampling theorem, and goes beyond the scope of this thesis. We will call a function F
a strict discretization of F, if it fulfills Equation 12, and otherwise assume that the value
of κ is adequate for F.

Finally, for a discretized function F : Z2 → R+
0 the set

σ(F) = {(x, y) ∈ Z2 | F(x, y) > 0} (13)

is called the supporting set of F, which is the set of cells on which the discretized function
does not vanish. The property

σ(FG) = σ(F) ∩ σ(G) (14)

is easily shown. Furthermore, ∑
p∈Z2

F(p)κ2 =

∫
R2

F(p)d2p (15)

holds for strict discretizations.

2.3.2 Restriction

Now we discuss the restriction problem in the context of navigating a p-disc Di. As-
suming that the velocity of any other p-disc Dj is bounded or is known with bounded
error, the supporting set σ(Vj) is finite. Therefore, PVOij(vi) can be computed for any vi

by using
PVOij(vi) =

∑
vj∈σ(Vj)

Vj(vj)PCCij(vi − vj)κ
2, (16)

which is the discrete version of Equation 6. The unbounded probabilistic collision
cones PCCij have to be represented implicitly by a subroutine which computes the re-
spective collision probabilities on demand.

Furthermore, for any real (i.e. physical) p-disc Di, the set σ(Ri) describing reachable
velocities is finite, as any bounded acceleration applied to a body of non-zero mass for
a bounded period of time results in a bounded change of velocity. Since only velocities
from σ(RUi) will be considered for navigating Di, and since σ(RUi) ⊆ σ(Ri), we can
restrict velocities to the finite domain σ(RUi).

7



Algorithm 1 RELATIVE UTILITY

1: input: a set of placed p-discs B = {Di = (D(ai, bi), ci) | i = 1, 2, . . . , n}

2: input: uncertain velocities Vi : R2 → [0, 1] for each p-disc Di ∈ B
3: input: a function Ui : R2 → [0, 1] describing utility of velocities
4: input: a function Ri : R2 → [0, 1] describing reachable velocities
5: input: a function PCC : N× N× Z2 → [0, 1] with PCC(i, j, vij) = PCCij(vij)

6: input: the index i of the p-disc representing the robot
7: for vi ∈ σ(Ri) do
8: RUi(vi)← Uα

i (vi) · Rβ
i (vi)

9: for j ∈ {1, 2, . . . , n} − {i} do
10: PVOij(vi)← 0

11: for vj ∈ σ(Vj) do
12: PVOij(vi)← PVOij(vi) + Vj(vj) · PCCij(vi − vj) · κ2

13: end for
14: RUi(vi)← RUi(vi) · (1 − PVOij(vi))

γ

15: end for
16: end for
17: return RUi

2.3.3 Algorithm

Combining the results from the previous subsections, we get

PVOi = 1 −
∏
j6=i

(1 − PVOij) (17)

and further

RUi(vi) = Ui(vi)Ri(vi)(1 − PVOi(vi))

= Ui(vi)Ri(vi)
∏
j6=i

(1 − PVOij(vi))
(18)

for any vi ∈ σ(RUi). This observation is summarized in Algorithm 1, too.

Assuming that PCCij(vi), Ri(vi), and Ui(vi) can be computed in time O(1) for vi ∈ Z2,
we can compute PVOij(vi) in time O(|σ(Vj)|) (according to Equation 16 and lines 10–
13 in Algorithm 1), and RUi(vi) in time O(

∑
j6=i |σ(Vj)|) (according to Equation 18 and

lines 8–15 in Algorithm 1). Finally, a discrete velocity vi maximizing RUi can be found
in time

O

(
|σ(Ri)| ·

∑
j6=i

|σ(Vj)|

)
, (19)

integrating the search into the loop from line 7 to line 16 in Algorithm 1. That is, the
dependence of the running time on the number of obstacles is only linear, but the de-
pendence on the discretization is O(1/κ4).

8



3 Recursive Probabilistic Velocity Obstacles

Traditionally, when navigating a mobile robot among moving obstacles (like humans),
these obstacles’ abilities to avoid collisions and their resulting motion behaviors are not
taken into account. In contrast to this plain obstacle modeling, recursive modeling ap-
proaches presume the opponents (or more generally, the interaction partners) to apply
decision making processes for navigation similar or equivalent to the own process. In
the given context of mobile robot navigation, this means to put the robot into the posi-
tion of its obstacles, let it reason about their decisions and then integrate the resulting
insight into its own decision making. We will call such intelligent moving obstacles (or,
obstacles which are considered intelligent) agents. Furthermore, we will consider a fi-
nite set of agents B = {Di = (D(ai, bi), ci) | i = 1, 2, . . . , n} with uncertain velocity Vi for
each Di ∈ B for the remainder of this section.

3.1 Agent Modeling

Agents are assumed to perceive their environment and deduce according reactions, the
reasoning process being similar to that of the robot. That is, any agent Dj is assumed
to take actions maximizing its relative utility function RUj. Therefore, in order to pre-
dict the action of agent Dj, we need to know its current utility function Uj, reachable
velocities Rj, and velocity obstacle PVOj.

The utility of velocities can be inferred by recognition of the current motion goal of the
moving obstacle. For example, Bennewitz et al. [1] learn and recognize typical motion
patterns of humans. If no global motion goal is available through recognition, one can
still assume that there exists such a goal which the agent strives to approach, expecting
it to be willing to keep its current speed and heading. By continuous observation of
a moving agent it is also possible to deduce a model of its dynamics, which describes
feasible accelerations depending on its current speed and heading. These two problems
are beyond the scope of this thesis and will not be addressed in detail in the following.

The remaining problem is the computation of a probabilistic velocity obstacle for an
agent Dj, and this requires to presume assumptions on the velocities of the other moving
agents Dk, k 6= j, to agent Dj. In principle, we can base assumptions on the future
velocities of an agent on its probabilistic velocity obstacle again and again. This is a
recursive description, hence these probabilistic velocity obstacles will be called recursive
probabilistic velocity obstacles, and will be abbreviated as “RPVO.”

However, at some point the recursion has to be terminated, i.e. the velocity obstacle
must be based on perceived velocities. Therefore, we may distinguish different levels or
depths of recursion, denoted by superscript d as in PVO(d)

i for agent Di, such that PVO(1)
i

is based on perceived velocities of the other agents, and PVO(d)
i for d > 1 is based on

velocities of the other agents deduced using probabilistic velocity obstacles of recursive

9



depth d − 1.

Of course this recursive modeling is not restricted to any constant depth of recursion by
a matter of principle. However, computational demands will increase with the depth of
the recursion, and intuitively, one does not expect recursion depths of more than three
or four to be of broad practical value, since such deeper modeling is not observed when
we are walking as human beings among other humans.

Note that accurate recursive models of moving agents are prerequisite for more sophis-
ticated reflective navigation approaches in order to be able to deceive and feint particu-
larly malevolent agents like deliberate obstructors. However being dreams of the future,
such potential abilities indicate the importance of reflective navigation approaches and
their investigation.

3.2 Formal Representation

In order to interact with their surroundings, intelligent agents create models of their
environment. If this environment contains other agents, these can become part of the
model, as well as these agents’ models of the environment and so forth. This section
presents a formal representation of recursive models in the given context, which serves
as a basis for the implementation later on.

Definition 3.1 (Models of Functions by Agents, Interpretation of Models) Let F be the
symbol of a function from R2 to [0, 1]. Then, the symbol µi[F] denotes a function from R2 to [0, 1]

and is verbalized as model of F by agent i.

An interpretation I assigns functions to symbols µi[F], that is, I(µi[F]) : R2 → [0, 1].

Informally, we denote by µi[F] the current knowledge of agent i about an entity F. For
example, if Ri : R2 → [0, 1] is the function which specifies the reachability of veloci-
ties for an agent i, we will denote by µj[Ri] the function specifying the reachability of
velocities as attributed to agent i by agent j.

Using these symbols, we can now express the basic principle of recursive agent mod-
eling in the context of probabilistic velocity obstacle navigation as follows. Each agent
assumes that the others will choose their velocity according to their relative utility func-
tion, that is

µi[V
(d)
j ] =

{
1
w

µi[RU(d)
j ] if d > 0 and w :=

∫
RU(d)

j d2v > 0,
µi[Vj] else.

(20)

Note that V
(d)
j is a probability density, that is∫

R2

Vj(vj)
(d) d2vj = 1,

10



but RU(d)
j is a [0, 1]-valued function with bounded support, that is

0 ≤ w :=

∫
R2

RU(d)
j (vj)d2vj <∞.

This is the reason for the scaling factor 1
w

in the first case of Equation 20, and the second
case in that equation terminates the recursion for d = 0 or is a fallback position for w =

0.

For a recursive depth d = 0, no reflection about the other agents’ motion is assumed,
and therefore the relative utility RU(0)

i will depend only on the utility Ui of reachable
velocities as indicated by Ri. For a recursive depth d > 0, the relative utility RU(0)

i of an
agent i depends on its probabilistic velocity obstacle PVO(d)

i , too. Together, we have

RU(d)
i =

{
Uα

i · R
β
i if d = 0,

Uα
i · R

β
i ·
(
1 − PVO(d)

i

)γ

else,
(21)

with weights α, β, γ ∈ R+.

The actual reflection appears in the specification of the recursive probabilistic velocity
obstacle PVO(d)

i : R2 → [0, 1] of depth d for agent i, since this entity depends on the
(recursive) model of other agents’ velocities µi[V

(d−1)
j ] and is defined as

PVO(d)
i = 1 −

∏
j6=i

(
1 − µi[V

(d−1)
j ] ∗ PCCij

)
, (22)

which completes our specification of RPVO.

Before any utility RU(d)
i (v) for v ∈ R2 can be computed, we have to specify an interpre-

tation of symbols µi[F] for function symbols F, which will be given in a recursive way by
a set of rules, and two sets of rules will distinguished. Motivation for the first set stems
from the given context of reflective navigation. The second set of rules stems from our
assumptions on the way how the agents acquire information about each other, and is
more or less specific to a certain implementation.

The first set of interpretation rules is defined as follows.

Definition 3.2 (Interpretation of RPVO Function Models) Let F be a symbol for a func-

11



tion from R2 to [0, 1]. Then, F will be interpreted as follows

I(F) =



I(µi[G]) if F = µi[µi[G]],
I(µi[G]) op I(µi[H]) if F = µi[G op H] with op ∈ {+, ·, ∗},
I(µi[G])α if F = µi[G

α] with α ∈ R,
I(C) if F = µi[C] and C symbolizes a constant function,
Ui if F = µi[Ui],
Ri if F = µi[Ri],
Vi if F = µi[Vi],
PCCij if F = µi[PCCij], and
F if F is not of the shape µi[G],

(23)

for i, j ∈ {1, 2, . . . , n}.

The first rule, I(µi[µi[G]]) = I(µi[G]), is motivated by the assumption that an agent
“knows what it knows,” i.e. its model of its model of an entity is the model of that
entity.

The second and the third rule are motivated by the assumption that all agents use the
same approach for decision making, i.e. they perform the same operations to compute
a certain function.

The remaining rules terminate the interpretation, either for a symbol of a constant func-
tion (e.g. “1”), or when an agent models itself, since we assume that each agent has
accurate information about itself, or when no modeling is involved.

For d > 1, and wj :=
∫

RU(d−1)
j d2v > 0 for j 6= i, we get

RU(d)
i = Uα

i R
β
i

∏
j6=i

(
1 −

1

wj

µi[RU(d−1)
j ] ∗ PCCij

)γ

, (24)

from Equations 20–22, and with the rules from 3.2 follows

µi[RU(d)
j ] = µi

[
Uα

j R
β
j

∏
k6=j

(
1 −

1

wk

µj[RU(d)
k ] ∗ PCCjk

)γ
]

= µi[Uj]
αµi[Rj]

β
∏
k6=j

(
1 −

1

wk

µi[µj[RU(d)
k ]] ∗ µi[PCCjk]

)γ

,

(25)

that is, modeling is propagated towards the primitive (i.e. not composed) functions Ui,
Ri, Vi, and PCCij. Furthermore, the number of models µi1 [. . . µid [F] . . . ] of primitive
functions occurring in a full expansion of RU(d)

i may increase exponentially with the
recursive depth d, depending on their interpretation.

12



3.2.1 Interpretation under Equal Information

As seen above, we must specify interpretations of (recursive) models of the functions Uj,
Rj, Vj and PCCjk in order to evaluate a relative utility RU(d)

i . That is, we must say what
agents assume or know about other agents’ perception, intention, and reachable veloci-
ties.

As a first simple approach, we will assume equal information among the agents. That
is, no agent “knows more” or has a “more accurate model” of an entity than an other
agent. This is expressed technically in the following definition.

Definition 3.3 (Interpretation under Equal Information) We say all agents have equal
information, iff

I(µi[F]) = I(µj[F]) (26)

for agents i and j, and F symbolizing a function from R2 to [0, 1].

If all agents have equal information, any recursive model µi1 [. . . µik[F] . . . ] collapses to
a simple model µi[F] for any i1, . . . , ik, i:

I(µi1 [µi2 [. . . µik[F] . . . ]]) = I(µi2 [µi2 [. . . µik[F] . . . ]])

= I(µi2 [. . . µik[F] . . . ])

. . .

= I(µik[F])

= I(µi[F]),

(27)

and with Definition 3.2 we have

I(µi1 [. . . µik[F] . . . ]) = F, for F ∈ {Ui, Ri, Vi, PCCij} (28)

and any agent i1, . . . , ik, i, j. Consequently, when agents have equal information, we
do not reason about mutual perception but on relative positions and velocity selections
only. Furthermore, relative utilities RU(d)

i (vi) of velocities vi for an agent i at a recursive
depth d > 0 can now be computed efficiently using dynamic programming.

3.3 Implementation

For the implementation we assume equal information among the agents as defined
above. With this simplification, the dependence of the complexity on the recursion
depth is reduced to linear, since the number of models to be computed is equal on each
level of recursion. Algorithm 2 gives the details of the used dynamic programming
approach

13



Algorithm 2 RECURSIVE RELATIVE UTILITY

1: input: a set of placed p-discs B = {Di = (D(ai, bi), ci) | i = 1, 2, . . . , n}

2: input: uncertain velocities Vi : R2 → [0, 1] for each Di ∈ B
3: input: functions Ui : R2 → [0, 1] describing utility of velocities for each Di ∈ B
4: input: functions Ri : R2 → [0, 1] describing reachable velocities for each Di ∈ B
5: input: a function PCC : N× N× Z2 → [0, 1] with PCC(i, j, vij) = PCCij(vij)

6: input: the desired recursive depth r ∈ N
7: for i = 1, . . . , n do
8: V(0)

i ← discr(Vi)

9: RU(0)
i ← discr(UiRi)

10: end for
11: for d = 1, . . . , r do
12: for i = 1, . . . , n do
13: RU(d)

i ← RELATIVE UTILITY as in Algorithm 1 for
• p-discs B,
• uncertain velocities V(d−1)

j for each Dj ∈ B,
• functions Uj and Rj for each Dj ∈ B,
• the function PCC, and
• considering Di as the robot.

14: w← κ2 ·
∑

v∈σ
(

RU(d)
i

) RU(d)
i (v)

15: if w > 0 then
16: V(d)

i ← 1
w

RU(d)
i

17: else
18: V(d)

i ← V(0)
i

19: end if
20: end for
21: end for
22: output: relative utilities RU(d)

i for each Di ∈ B and d = 0, 1, . . . , r

23: output: uncertain velocities V(d)
i for each Di ∈ B and d = 0, 1, . . . , r

14



3.3.1 Complexity

We begin the complexity assessment by measuring the sizes of the supporting sets of
the discretized functions used in Algorithm 2, where line 9 implies

σ(RU(0)
i ) ⊆ σ(Ri), (29)

and from line 13 follows
σ(RU(d)

i ) ⊆ σ(Ri) (30)

for d > 0. Line 8 implies
σ(V(0)

i ) = σ(Vi), (31)

and from lines 16 and 18 follows

σ(V(d)
i ) ⊆ σ(Ri) ∪ σ(Vi) (32)

for d > 0, using the three preceding Equations.

Now we count the numbers of operations used in the algorithm, which we write down
using Ni := |σ(Ri)∪σ(Vi)| as an abbreviation. Line 13 requiresO(Ni ·

∑
j6=i Nj) operation

(cf. Equation 19). Lines 14, 16, and 18 require O(Ni) operations each, and are thus
dominated by line 13. Therefore the loop from line 12 to line 20 requires

O(

n∑
i=1

(Ni

∑
j6=i

Nj)) (33)

operations, and the loop from line 11 to line 21 requires

O(r

n∑
i=1

(Ni

∑
j6=i

Nj)) (34)

operations. The complexity of the loop from line 11 to 21 clearly dominates the com-
plexity of the initialization loop from line 7 to 10. Therefore Equation 34 gives an upper
bound of the overall time complexity of our implementation. That is, the dependence
on the maximum recursive depth is linear, the dependence on the number of objects
is O(n2), and the dependence on the discretization remains O(1/κ4).

4 Results

The approach has been evaluated in different simulated situations, including (a) two
objects on a collision course, (b) a faster object approaching and overtaking a slower
object, and (c) two objects encountering each other close to a static obstacle, see Figure 2.

15



(a) Collision course (b) Overtaking (c) Static obstacle

Figure 2: Situations for RPVO simulation

A

B

final position of B initial position of B

initial position of A final position of A
(a) Resulting motion

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

RU(0)
B

RU(1)
B

RU(2)
B

RU(0)
A

RU(1)
A

RU(2)
A

selected velocities

recursive depth

vy

vx0

object maximum relative utility

(b) Relative utilities and velocity selection

Figure 3: Legend for simulation results

16



For each situation, varying values for the recursive depth for each moving object have
been used.

The results for each situation and selected recursive depths are presented in the fol-
lowing. For each experiment, the entire resulting motion is depicted as in Figure 3(a),
where one disc is drawn per four iteration steps. For selected points in time the relative
utilities for the involved agents are depicted as in Figure 3(b). Higher values of relative
utility are indicated by darker shades of grey. For better visibility, maximum values are
emphasized in black.

4.1 Collision Course

In this situation, two agents are involved which face each other initially. Their desired
velocities are conflicting, i.e. they are directed against each other. Both agents have the
same maximum velocities and accelerations.

Figure 4 shows the collision course experiment with two agents A and B, where agent A
from the left uses recursive depth 1 and agent B from the right uses recursive depth 2.
That is, agent B models agent A correctly and assumes that A is able to perceive its
environment and to avoid collisions. Therefore agent B is moving more aggressively
and with less deviation from its optimal path than agent A.

Similarly, Figure 5 shows the encounter of agent A from the left and agent B from the
right, but now agent A uses recursive depth d = 3, and agent B uses depth d = 2 as
before. Depth 3 means that agent A assumes agent B to move according to depth 2, i.e.
in a somewhat self-confident way, so agent A chooses rather defensive velocities for its
motion, and deviates more decidedly and with higher velocity from its optimal path
than above. This becomes visible when comparing the velocities of A with maximum
relative utility for recursive depths d = 1 and d = 3 in Figure 5(c). Furthermore, the
distance between agent A and agent B when they meet is smaller when agent A uses
recursive depth 3, compare Figures 4(a) and 5(a).

Finally, an agent which uses recursive depth d = 2, i.e. assuming the other agents to
avoid collisions, is still able to avoid collisions with moving obstacles which are oblivi-
ous to other agents, as shown in Figure 6.

4.2 Overtaking

In this situation, two agents are moving in the same direction, agent A behind agent B,
whereby agent A desires a much higher velocity than agent B. This creates a conflict
that the two agents have to solve.

Figure 7 shows the result when agent A uses recursive depth 1 and agent B uses recur-
sive depth 2. Agent B does not leave its optimal path as much as agent A does, which

17



A

B

(a) Resulting motion

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

(b) Step 1 (c) Step 2

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

(d) Step 5 (e) Step 10

Figure 4: Collision course, object A at depth 1 versus object B at depth 2

18



A

B

(a) Resulting motion

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

(b) Step 1 (c) Step 2
A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

(d) Step 5 (e) Step 10

Figure 5: Collision course, object A at depth 3 versus object B at depth 2

19



A

B

(a) Resulting motion

A, d=0

A, d=1 B, d=1

B, d=2A, d=2

B, d=0 A, d=0

A, d=1 B, d=1

B, d=2A, d=2

B, d=0

(b) Step 1 (c) Step 2

A, d=0

A, d=1 B, d=1

B, d=2A, d=2

B, d=0 A, d=0

A, d=1 B, d=1

B, d=2A, d=2

B, d=0

(d) Step 5 (e) Step 10

Figure 6: Collision course, object A at depth 2 versus object B at depth 0

20



A

B

(a) Resulting motion

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

(b) Step 1 (c) Step 2

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

A, d=0

A, d=2

B, d=0

B, d=1A, d=1

B, d=2

(d) Step 5 (e) Step 10

Figure 7: Overtaking, object A at depth 1 versus object B at depth 2

21



is what one expects for chosen pair of depths.

When agent A uses recursive depth 3 instead of 1, its downward velocity component
is slightly larger than in the previous experiment, which is visible when comparing its
relative utilities and selected velocities at step 10 between Figure 7 and Figure 8. Fur-
thermore, agent B starts to move horizontally again earlier when agent A uses depth 3,
which can be seen when comparing Figure 7(a) to Figure 8(a). All this indicates that in
the latter experiment agent A passes by faster than in the former experiment.

In the overtaking examples until now, we had a slow agent B using recursive depth 2.
Now we will consider examples where the fast agent A uses depth 2 and encounters a
slow agent B at depth 1 or 3.

We start with agent B using depth 1. Having seen the experiments above, we would
expect the fast agent at depth 2 to force the slow agent to leave its optimal path. This
is not the case, as can be seen in Figure 9. The reason for this is simple: agent B cannot
move fast enough out of agent A’s path. In the first step, agent B chooses an avoiding
velocity while agent A moves straight ahead, as depicted in Figure 9(b). In the next step,
agent B has moved a little downward, and therefore agent A starts to move upward,
allowing agent A a faster motion in its desired direction (i.e. to the right).

If agent B uses recursive depth 3, it assumes that agent A expects it to avoid collisions,
and therefore starts moving out of the way more quickly. As a result, the vertical com-
ponent of agent A’s velocity is smaller in this case, which can be seen when comparing
the relative utility (which is centered at the current velocity) of agent A for step 10 in
both cases. Anyhow, the avoidance maneuver of agent B is more prominent when using
depth 3 than when using depth 1, which becomes obvious when comparing Figures 9(a)
and 10(a).

Finally we will consider overtaking examples where both agents use the same recursive
depth. We will start with both agents using depth d = 2, see Figure 11. Due to the sym-
metry, none of the agents considers deviating from its optimum path, and the initially
slower agent B accelerates to avoid a collision.

But if both agents use recursive depth d = 3, the conflict is solved in a more intelli-
gent way. In a first step, both agents deviate in the same direction in order to avoid the
pending collision, see Figure 12. In the next step, agent B still chooses a velocity with a
small deviating component, while agent A decides to move horizontally. This asymme-
try is amplified during the subsequent steps, such that both agents avoid the collision
cooperatively.

4.3 Static Obstacle

The last type of experiments which we will consider involves two agents moving in
opposite directions with an encounter close to a static obstacle.

22



A

B

(a) Resulting motion

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

(b) Step 1 (c) Step 2

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=3A, d=3

B, d=2

(d) Step 5 (e) Step 10

Figure 8: Overtaking, object A at depth 3 versus object B at depth 2

23



A

B

(a) Resulting motion

A, d=0

A, d=1

B, d=0

B, d=2A, d=2

B, d=1

A, d=0

A, d=1

B, d=0

B, d=2A, d=2

B, d=1

(b) Step 1 (c) Step 2

A, d=0

A, d=1

B, d=0

B, d=2A, d=2

B, d=1

A, d=0

A, d=1

B, d=0

B, d=2A, d=2

B, d=1

(d) Step 5 (e) Step 10

Figure 9: Overtaking, object A at depth 2 versus object B at depth 1

24



A

B

(a) Resulting motion

A, d=0

A, d=1

A, d=3

B, d=0

B, d=1

B, d=2A, d=2

B, d=3

A, d=0

A, d=1

A, d=3

B, d=0

B, d=1

B, d=2A, d=2

B, d=3

(b) Step 1 (c) Step 2

A, d=0

A, d=1

A, d=3

B, d=0

B, d=1

B, d=2A, d=2

B, d=3

A, d=0

A, d=1

A, d=3

B, d=0

B, d=1

B, d=2A, d=2

B, d=3

(d) Step 5 (e) Step 10

Figure 10: Overtaking, object A at depth 2 versus object B at depth 3

25



A B

(a) Resulting motion

A, d=0

A, d=1

B, d=0

B, d=1

A, d=2 B, d=2

A, d=0

A, d=1

B, d=0

B, d=1

A, d=2 B, d=2

(b) Step 1 (c) Step 2

A, d=0

A, d=1

B, d=0

B, d=1

A, d=2 B, d=2

A, d=0

A, d=1

B, d=0

B, d=1

A, d=2 B, d=2

(d) Step 5 (e) Step 10

Figure 11: Overtaking, object A at depth 2 versus object B at depth 2

26



A

B

(a) Resulting motion

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=2

A, d=3 B, d=3

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=2

A, d=3 B, d=3

(b) Step 1 (c) Step 2

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=2

A, d=3 B, d=3

A, d=0

A, d=1

A, d=2

B, d=0

B, d=1

B, d=2

A, d=3 B, d=3

(d) Step 3 (e) Step 4

Figure 12: Overtaking, object A at depth 3 versus object B at depth 3

27



A

B

C

(a) Resulting motion

A, d=0

A, d=1

B, d=0

B, d=2A, d=2

B, d=1

A, d=0

A, d=1

B, d=0

B, d=2A, d=2

B, d=1

(b) Step 1 (c) Step 5

Figure 13: Static obstacle, object A at depth 2 versus object B at depth 1

28



In the first example of this type, agent A uses depth 2 and agent B uses depth 1, see Fig-
ure 13. Having seen the examples above, the result of this experiment is not surprising,
since agent A using depth 2 is able to exploit the collision avoiding behavior of agent B
and succeeds in moving on the shorter path, closer to the static obstacle C.

Similarly, when agent B uses depth d = 3 instead of depth d = 1, agent A succeeds in
moving on the shorter path, too, see Figure 14.

Finally, Figure 15 demonstrates that the defensive behavior of agent B at depth 3 allows
agent A to move on its desired path even when using depth 1.

Note that in no case the agents decided to pass by obstacle C on different sides. The rea-
son is the way a velocity with maximum relative utility is selected. A simple approach
is to accept the first velocity with that property, when (discrete) velocities are considered
in their lexical order, resulting in the observed velocity selection. Another approach is
to select one velocity from the optimal (discrete) velocities by random, which will at
least remove artifacts which stem from some velocities being systematically preferred
to others.

5 Discussion

To navigate a mobile robot Bi using depth-d recursive probabilistic velocity obstacles,
we repeatedly choose a velocity vi maximizing RU(d)

i . For d = 0, we get a behavior that
only obeys the robot’s utility function Ui and its dynamic capabilities Di, but completely
ignores other obstacles. For d = 1, we get the plain probabilistic velocity obstacle be-
havior as described in Section 2. Something new happens for d > 1, when the robot
starts modeling the obstacles as perceptive and decision making. Agents navigating at
depth d = 2 appear to move more aggressively than agents navigating at depths d = 1

or d = 3, whereby especially depth d = 3 appears to result in rather defensive behav-
iors, and may become an an attractive option for considerate service robots.

Finding good models of another agent’s dynamic capabilities Rj and utility functions Uj

is a problem beyond the scope of this thesis. When the action to be taken is considered
the first step of a longer sequence, computing the utility function may involve motion
planning, or even game-tree search, if reactions of other objects are taken into account.
Due to the recursive nature of the approach, such a procedure would have to be applied
for any object at any recursive level. This renders such enhancements of utility functions
rather infeasible, since already single applications of such procedures are computation-
ally expensive.

The role of the weights α, β, and γ of the three factors of relative utility is largely
unexplored. Some first experiments indicated that they in fact do influence the re-
sults, but not in a ground-breaking manner. This might change when the uncertainty
about shapes and velocities is increased. During the experiments presented above,

29



A

B

C

(a) Resulting motion

A, d=0

A, d=1

A, d=3

B, d=0

B, d=1

B, d=2A, d=2

B, d=3

A, d=0

A, d=1

A, d=3

B, d=0

B, d=1

B, d=2A, d=2

B, d=3

(b) Step 1 (c) Step 5

Figure 14: Static obstacle, object A at depth 2 versus object B at depth 3

30



A

B

C

(a) Resulting motion

A, d=0

A, d=2

A, d=3

B, d=0

B, d=1

B, d=2

A, d=1

B, d=3

A, d=0

A, d=2

A, d=3

B, d=0

B, d=1

B, d=2

A, d=1

B, d=3

(b) Step 1 (c) Step 5

Figure 15: Static obstacle, object A at depth 1 versus object B at depth 3

31



weights α = β = γ = 1 were used. Note that each agent might use a different set
of weights.

Oscillations may appear in models for successive depths. Reconsider the collision course
example with both agents facing each other. Assume at depth d, both objects avoid a
collision by deviating to the left or to the right. Then at depth d + 1, none of the objects
will perform an avoidance maneuver, since each object’s depth-d model of the other
object predicts that other object to avoid the collision. Subsequently, in depth d+2, both
objects will perform collision avoidance maneuvers again, an so on.

When driving a car on a highway, reasoning similar to the presented approach arises.
Cars in front have to be avoided, and when they are already driving on the rightmost
lane, they expect faster cars from behind to perform all maneuvers necessary for over-
taking without further collaboration. That is, cars from behind are to be modeled with
depth 1 or depth 3, and cars in front are to be modeled with depth 0 or depth 2. But the
situation is different for emergency cars from behind. They expect any other car to give
way to them, and therefore need to be modeled with depth 2.

In the context of pedestrian traffic, a rather different aspect of the presented recursive
modeling scheme is that it can serve as a basis for an approach to reasoning about the
objects in the environment. One could compare the observed motion of the objects to the
motion that was predicted by recursive modeling, possibly discovering relationships
among the objects. An example for such a relationship is deliberate obstruction, when
one object obtrusively refrains from collision avoidance.

Finally, more accurate models of the interaction partners are required for effectively gen-
erating unexpected actions. If µj[Ui] “differs notably” from Ui, but µi[µj[Ui]] is “rather
close” to µj[Ui], agent i can detect the difference between µi[µj[Ui]] and Ui, and exploit
this situation by doing something that is unexpected, and therefore unobstructed by
agent j.

5.1 Conclusion

An approach to coordinated motion in dynamic environments has been presented, which
reflects the peculiarities of natural, populated environments: obstacles are not only
moving, but also perceiving and making decisions based on their perception. This per-
ception and decision making of the intelligent obstacles is taken into account, i.e. it is
modeled and integrated into the robot’s own decision making.

The approach can be seen as a twofold extension of the velocity obstacle framework.
Firstly, object velocities and shapes may be known and processed with respect to some
uncertainty (by means of a probabilistic extension). Secondly, the perception and de-
cision making of other objects is modeled and included in the own decision making
process (by means of a recursive extension).

32



6 Acknowledgments

This work was supported by the German Department for Education and Research (BMB+F)
under grant no. 01 IL 902 F6 as part of the project MORPHA.

References

[1] M. Bennewitz, W. Burgard, and S. Thrun. Learning motion patterns of persons for
mobile service robots. In Proceedings of the International Conference on Robotics and
Automation (ICRA), 2002.

[2] P. Fiorini and Z. Shiller. Motion planning in dynamic environments using velocity
obstacles. International Journal of Robotics Research, 17(7):760–772, July 1998.

[3] A. F. Foka and P. E. Trahanias. Predictive autonomous robot navigation. In Pro-
ceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pages
490–495, EPFL, Lausanne, Switzerland, Oct. 2002.

[4] P. J. Gmytrasiewicz. A Decision-Theoretic Model of Coordination and Communication in
Autonomous Systems (Reasoning Systems). PhD thesis, University of Michigan, 1992.

[5] J. Miura and Y. Shirai. Modeling motion uncertainity of moving obstacles for robot
motion planning. In Proc. of Int. Conf. on Robotics and Automation (ICRA), 2000.

[6] Z. Shiller, F. Large, and S. Sekhavat. Motion planning in dynamic environments:
Obstacles moving along arbitrary trajectories. In Proceedings of the 2001 IEEE Inter-
national Conference on Robotics and Automation, pages 3716–3721, Seoul, Korea, May
2001.

33


