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Toward the Neurocomputer: Image Processing and
Pattern Recognition With Neuronal Cultures

Maria Elisabetta Ruaro, Paolo Bonifazi, and Vincent Torre*

Abstract—Information processing in the nervous system is based
on parallel computation, adaptation and learning. These features
cannot be easily implemented on conventional silicon devices. In
order to obtain a better insight of how neurons process informa-
tion, we have explored the possibility of using biological neurons as
parallel and adaptable computing elements for image processing
and pattern recognition. Commercially available multielectrode
arrays (MEAs) were used to record and stimulate the electrical
activity from neuronal cultures. By mapping digital images, i.e.,
arrays of pixels, into the stimulation of neuronal cultures, a low
and bandpass filtering of images could be quickly and easily ob-
tained. Responses to specific spatial patterns of stimulation were
potentiated by an appropriate training (tetanization). Learning
allowed pattern recognition and extraction of spatial features in
processed images. Therefore, neurocomputers, (i.e., hybrid devices
containing man-made elements and natural neurons) seem feasible
and may become a new generation of computing devices, to be
developed by a synergy of Neuroscience and Material Science.

Index Terms—Long-term potentiation, multielectrode array,
neuronal culture, pattern recognition.

I. INTRODUCTION

UNDERSTANDING differences and similarities between
conventional computers and biological nervous systems

is a fascinating problem, at the core of Neuroscience and Com-
puter Science. This comparison can provide a deeper under-
standing of human intelligence and may pave the way to the de-
sign of new computing devices. Standard silicon devices solve
serial problems very efficiently, but, despite their remarkable
speed, are less suitable for solving the parallel problems of artifi-
cial intelligence, computer vision and robotics [1], [2]. Because
of the difficulty of forming large numbers of interconnections,
man-made devices are not ideal for massive parallel processing,
a task for which biological neurons are very suitable. Biological
neurons form connections and synapses between themselves
very naturally. Despite being slow and often unreliable com-
puting elements [3]–[5], neurons operate extremely well in par-
allel and can adapt and learn.

In order to capture basic computational properties of biolog-
ical neuronal networks, artificial neural networks (ANNs) were
developed [1], [2]; [6]–[8]. ANNs can be trained to recognize
features and patterns. However, ANNs are usually implemented
on conventional serial machines thereby losing their biological
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inspiration. Their implementation on genuinely parallel devices,
ideally networks of natural neurons that are able to learn, is cer-
tainly desirable.

The major aim of the present manuscript is to explore the
possibility of using biological neurons as computing elements in
a task commonly solved by conventional silicon devices: image
processing and pattern recognition.

Advances in the biocompatibility of materials and electronics
have allowed neurons to be cultured directly on metal or sil-
icon substrates, through which it is possible to stimulate and
record neuronal electrical activity [9]–[16]. The work here de-
scribed shows that by using commercially available multielec-
trode arrays (MEAs), it is possible to process simple patterns
using two fundamental properties of natural neuronal networks:
parallelism and learning. By mapping digital images into the
extracellular stimulation of the neuronal culture (in a one to
one correspondence between pixels and electrodes) a low-pass
filtering of the images is obtained. This processing occurs in
just few milliseconds, independently from the dimension of the
image processed. In addition, neuronal cultures can be trained
to potentiate the response to a simple spatial pattern, due to
changes in synaptic efficacy or long-term potentiation (LTP)
[17], [18]. Therefore, the neuronal culture can be trained to rec-
ognize simple spatial patterns. Moreover filtering and learning
can be combined to extract features from processed images.

These results show that biological neurons can be effectively
used as computing elements for massively parallel problems and
support the feasibility of neurocomputers, i.e., hybrid devices
composed of biological neurons and artificial elements.

II. METHODS

A. Neuronal Culture Media

Dissection Medium: Hanks’ modified / free-
solution supplemented with 4.2 mM , 12 mM
Hepes, 33 mM D-glucose, 200 kynurenic acid, 25
DL-2-amino-5phosphonovaleric acid (APV), 5 gen-
tamycin, 0.3% BSA.

Digestion Medium: 137 mM NaCl, 5 mM KCl, 7 mM
, 25 mM Hepes, 4.2 mM , 200

kynurenic acid, 25 APV).
Culture Medium: Minimal Essential Medium with Earle’s

salts (GIBCO-Brl) supplemented with 5% fetal calf serum,
0.5% D-glucose, 14 mM Hepes, 0.1 mg/ml apo-transferrin,
30 insulin, 0.1 d-biotin, 1 mM Vit. B12 and
2 gentamycin.

B. Neuronal Dissection and Dissociation

The hippocampus from three-day-old Wistar rats was dis-
sected in ice-cold dissection medium. Slices, were cut with a
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razor blade, transferred in a 15-ml centrifuge tube and washed
twice with the dissection medium. Slices were then treated with
5 mg/ml Trypsin and 0.75 mg/ml DNAseI in digestion medium
for 5 min at RT to perform enzymatic dissociation. Trypsin
was then neutralized by 1 mg/ml trypsin inhibitor in dissection
medium for 15 min on ice. After three washes with the dissec-
tion medium, mechanical dissociation was performed by 10 pas-
sages through a P1000 blue tip. The cell suspension was then
centrifuged at 100 g for 5 min, and pellet was re-suspended in
culture medium.

C. MEA Coating

MEA dishes were coated by overnight incubation at 37
with 1 ml of 50 polyornithine (in water). Dishes were
then air-dried and a film of BD-Matrigel (Beckton–Dickinson)
was added on the electrode matrix region 20 min before seeding.

D. Cell Culture

100 of cell suspension was laid on the electrode array of
precoated MEA at the concentration of 8 . Cells
were let to settle at room temperature for 20 min, and then 1 ml
of culture medium was added to the MEA and incubated in a
5% atmosphere at 37 . After 48 hours 5 cytosine-
-D-arabinofuranoside (Ara-C) was added to the culture medium,
in order to block glial cell proliferation, and re-incubated with
gentle rocking.

E. Maintenance of Neuronal Cultures

Neuronal cultures were kept in an incubator providing a con-
trolled level of (5%), temperature (37 ) and moisture
(95%). Half the medium was changed twice a week. Recordings
were performed, in culture medium, from 3 weeks after seeding
for up to 3 months. To decrease water evaporation and to main-
tain sterile conditions outside the incubator [19], during elec-
trical recordings dishes were sealed with a cap manufactured by
ALA Science and distributed by MCS (MultiChannelSystem).
After termination of the experiment, usually after 3 to 10 hours,
the cap was removed, the medium was changed and the dish was
moved back to the incubator. The same dish could be used for
other experiments in the following days and often repetitively
over a month. In some cases the same dish was used for more
than four different experiments.

F. Electrical Recordings and Electrode Stimulation

MultiChannelSystems commercially supplied the MEA
system used for electrical recording. We used a 10 6 mi-
croelectrode array, with 500 spacing between adjacent
electrodes. Each titanium-nitride microelectrode has a 30
diameter circular shape; its frequency-dependent impedance
is of the order of 100 at 1 kHz. Through gold contacts
it is connected to a 60 channel, 10 Hz –3 kHz bandwidth
preamplifier/filter-amplifier (MEA 1060-AMP) which redirects
the signals toward a further electronic processing (i.e., amplifi-
cation and AD conversion), operated by a board lodged within
a high performance PC. Signal acquisitions are managed under
software control. A thermostat (HC-X) maintains the tempera-
ture at 37 underneath the MEA. The MEA provided by MCS
is able to digitize in real time at 20 kHz all voltage recordings
obtained from the 60 metal electrodes. One electrode was

used as ground [see Fig. 1(c)]. Sample data were transferred
in real time to the hard disk for later processing. Each metal
electrode could be used for recording or for stimulation, but
the present MCS system does not allow a computer-controlled
switch from one mode to the other. Therefore, during a trial,
each electrode can be used either for stimulation or recording.
Voltage stimulation consisted of bipolar pulses lasting 100 at
each polarity, of amplitude varying from 0.2 V to 1 V, injected
through the STG1004 Stimulus Generator. An artifact lasting
5 – 20 ms caused by the electrical stimulation was induced on
the recording electrodes but was removed from the electrical
recordings during data analysis.

Tetanus: The tetanus, i.e., a high frequency stimulation, con-
sisted of 40 trains of bipolar pulses of lasting for
200 delivered every 2 s. Every train consisted of 100 pulses
at 250 Hz. Test stimuli before and after tetanus were delivered
every 2 s. The tetanus had a spatial profile usually composed by
two perpendicular bars of electrodes meeting in a corner, or by
a vertical or horizontal bar of electrodes.

G. Data Analysis

Acquired data were analyzed using the software MatLab (The
Mathworks, Inc., Natick, MA).

Artifact Removal: The artifact at each electrode and for each
pattern of stimulation was estimated and subtracted from the
voltage recordings. The artifact was estimated in the following
way: for each pattern of stimulation and at each electrode the
voltage response was averaged over all trials (typically 50),
computed and fitted by 2 polynomials of ninth degree. Using
polynomials of a lower order provide similar results in most of
experiments, but not in all, therefore, ninth degree polynomials
were routinely used. The 2 polynomials fitted respectively
the data in the time windows of 0.5–25 ms and 7.5–100 ms
after stimulation. The first polynomial was used to evaluate
the artifact in the time window of 0.5 to 7.5 ms, while the
second in the time window of 7.5 and 82.5 ms. The artifact,
so evaluated, was subtracted from the original voltage signal.
The time window between 0 and 1 ms after stimulation was not
considered in the data analysis.

Computation of Firing Rate ( ) and Related Quantities
( , , , , , ): Let

be the voltage recorded at electrode and be the
standard deviation of the noise computed considering a period
of at least 1 s where no spikes were visually observed. The of
the noise ranged for individual electrodes from 3 to 6 . Ac-
tion potentials are considered to be events exceeding 5 . The
firing rate per electrode is computed with a binwidth
of 10 ms centered on . The counts spikes from dif-
ferent neurons, making a good electrical contact with electrode

. The average firing rate was computed by aver-
aging over the entire set or a subset of identical stimu-
lations [Figs. 1(e), (f) and 5(a), (b)]. Let active electrodes be the
electrodes showing a clear electrical contact with the neuronal
culture, i.e., where spikes can be recorded. Generally, in order
to have a simple measure of the overall evoked firing rate, the
firing rate spatially averaged was obtained by averaging

over the entire set of active recording electrodes. Only
for the computation, shown in Figs. 2(a) and 3(a), the spatial
average was limited to a row of electrodes. The average overall
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TABLE I

evoked response is the average of over the en-
tire set or a subset of identical stimulations [Figs. 3(b), 4(c),
and 5(c), (d)]. The coefficient of variation of
was computed as the ratio of the standard deviation of
to the . Similarly, the coefficient of variation
of was computed as the ratio of the standard devia-
tion of to the . In order to describe the properties
of the neuronal culture to learn and discriminate patterns, the
integrals respectively of , , in a time
window between 1 and 50 ms have been calculated and defined
as, , , . and were
used to compare the average response evoked by an identical
stimulation before and after the tetanization, at a single elec-
trode and when all the MEA electrodes were considered [see
Figs. 4(a), 7, respectively]. was used to compare at the
level of a single-trial the response evoked by different patterns
of stimulation, detected by all the MEA electrodes (see Fig. 6).
The different quantities used to characterize the firing of the neu-
ronal culture are reported in Table I.

H. Pattern of Stimulation and Image Processing

The input to the device is the set of extracellular voltage stim-
ulations, delivered at time , applied to the neuronal culture
through the MEA electrodes. If is an electrode of the MEA,
the input is the matrix of voltage stimulations applied to the
electrode . A binary image or pattern of pixels
[Fig. 1(a)] is coded into the input of a MEA with elec-
trodes [Fig. 1(b)], so that the gray level of pixel of is
converted into the appropriate voltage stimulation of elec-
trode . The matrix of voltage signals recorded with
the MEA [Fig. 1(c)], composed of action potentials or spikes
produced by the neurons in the culture [Fig. 1(b)] is analyzed.
The output of the device is the matrix . MEAs with
at least 54 electrodes providing electrical recordings of clear
spikes were used for image processing. For each pattern of elec-
trodes used for stimulation, let be the voltage stimulation
evoking half of the maximal in the time window be-
tween 1 and 11 ms after the onset of the voltage pulse. If is
the corresponding binary image or the pattern to be processed
and its gray levels are either 0 or 1, then will be
if is 1, 0 otherwise.

Filling Silent Electrodes and Smoothing: The procedure
here described has been applied only for image processing
[Figs. 2(b), (c), 3(d), and 8]. MEAs with at least 54 electrodes

providing electrical recordings of clear spikes were used. When
one electrode is silent, i.e., no spikes can be recorded,
the corresponding hole in the processed image is filled in by
assigning to the value obtained by averaging the firing
rate from neighboring electrodes – i.e., electrodes at a distance
of 500 . of stimulated electrodes was determined by
extrapolation from the neighboring active electrodes using (1).
All processed images had at most 3 silent electrodes, including
the one used as ground. The value of was smoothed
over the neighboring electrodes ,
and .

Processing of 8 Bit Images: The 8-bit image was de-
scribed by

where is a 1-bit image. The 8 1-bit images are pro-
cessed as described below and their output was summed as de-
scribed in (4) and (5).

Scaling of , and Output Color-Coding: In
order to display processed images using a standard color-
coding, the values of , or their combination
(for bandpass filtering) were rescaled. The scaling procedures
described in this section refer to the factors and of (2),
(4) and (5) (see Results). For low-pass filtered images, the
values of [Fig. 3(d)] or [Fig. 2(b), upper row]
were scaled between 0 and 1 by dividing for the corresponding
maximal value among all electrodes in the time-window
1–30 ms. Digitally low-pass filtered images [Fig. 2(b) lower
row] were scaled between 0 and 1 dividing by their maximal
value. Bandpass filtered image [Fig. 2(c) top panel] was ob-
tained as the difference of calculated in time bins
1–6 ms and 4–9 ms and the resulting matrix was scaled be-
tween and , dividing by its maximum absolute value.
For digitally bandpass filtered images [Fig. 2(c) lower panel],
obtained as the difference of digitally low-pass filtered images,
the resulting output was scaled between and , dividing
for its maximum absolute value. The color map (of 256 colors)
was always scaled between and 1. For 8-bit processed
images [Fig. 8(a)], the values of were scaled as
described above, and were added according to (4). When it was
necessary to compare 8-bit image processing before and after
tetanization [see Fig. 8(b)], the values of obtained
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Fig. 1. Mapping an image into the stimulation of a neuronal culture. (A) 10� 6 binary image of a b used as the stimulation pattern of a neuronal culture grown
over a 10� 6 MEA manufactured by MCS. (B) Photo of dissociated hippocampal neurons grown on the MEA. Magnification of the neuronal culture on the area
marked by the letters B and C (white rectangle) shown in the inset. (C) Electrical recordings of electrical activity evoked by the electrodes stimulation with bipolar
voltage pulses of 0.9 V. The silent electrode indicated by the arrow was used as the ground. (D) Three voltage recordings evoked by voltage pulses of 0.3, 0.6, and
0.9 V when the 6 electrodes of the upper row were stimulated. (E) AFR (t) (see Section II) recorded by a representative electrode in response to five different
voltage stimulations, as indicated in the panel. (F) AFR (t) recorded by a representative electrode at different repetition rates as indicated in the panel Data in
(E) and (F) are averaged from 50 different trials of the same stimulation. Time 0 ms corresponds to the voltage stimulation.

after tetanization were scaled dividing by the maximal value of
measured before tetanization. In this case the scaled

values of before tetanization varied between 0 and 1,
but, after tetanization, they could be larger than 1. The scaled
values of were added according to (5). The color map
(of 256 colors) was scaled between 0 and 256. Therefore, with
this coding, the processing of images at 1 or 8-bit has the same
map, i.e., the output has 256 different colors.

III. RESULTS

A. The Device

The great majority of MEAs presently available and charge-
coupled device (CCD) arrays share the same geometry of a
square grid. Therefore, CCD pixels and MEA electrodes can
be put in a simple one-to-one correspondence preserving their
neighborhood [see Fig. 1]. This observation inspired the design
of a new device for processing images and patterns, using a
MEA and a neuronal culture grown on its surface. The image
is mapped to the voltage stimulation of the neuronal culture and

the evoked electrical activity is taken as the output of the de-
vice. The computing elements of the device are the neurons of
the culture.

The input to the device is the set of extracellular voltage stim-
ulations, delivered at time , applied to the neuronal culture
through the MEA electrodes, coding for the image to be pro-
cessed. The output of the device is the matrix , counting
the number of times in which the extracellular voltage recorded
at electrode exceeds a given threshold in the time window
between and . Several average quantities – in space,
time and over different trials – were computed from (see
Section II for further details).

B. Dynamic Range and Cycle Time

In order to explore the dynamic range and cycle time of the
proposed device, a row of electrodes, was repeatedly used for
stimulation. Brief (200 ) bipolar voltages with amplitude
varying from 0.3 V to 0.9 V were used. When the voltage
stimulation was increased, the frequency of evoked spikes
increased and often spikes with a novel shape, produced by
a different neuron, appeared [Fig. 1(d)]. The average firing
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Fig. 2. Spread of excitation through the neuronal culture. (A) AFR (t) averaged by row (AFR(t)) and calculated in the time windows of 1–6, 4–9, 7–12 and
12–17 ms after the stimulation of the uppermost row of electrodes with a voltage pulse of 0.6 V. Different symbols indicate experimental data from 6 different
neuronal cultures. Thick curves are theoretical fits calculated from (1). Data obtained in the time windows 1–6 and 4–9 ms were fitted by setting � equal to 0 and
� respectively, to 890 and 1240 �m. Data in the time windows 7–12 and 12–17 ms were obtained with � equal to 920 and 1750 and � equal to 980 and 1130 �m
respectively. (B) Comparison between neuronal and digital filtering. (Upper row) images obtained from the processing performed by the neuronal culture in the
corresponding time windows. (Lower row) digital Gaussian filtering of the original binary image with the uppermost row of pixels equal to 1 and 0 elsewhere.
(C) (Upper panel) bandpass filtering of the neuronal culture obtained by subtracting the AFRs in the time windows 1–6 and 4–9 ms; (lower panel) digital filtering
obtained by convolving the original binary image with the difference of two Gaussians fitting the experimental data in the first and second panel of Fig. 2(a).
The thin bars indicate the stimulated electrodes. Color-coding is reproduced at the right side of panel A.

increased with the voltage stimulation [Fig. 1(e)], but
its dynamic range was rather narrow: usually no spikes were
evoked by voltage pulses below 0.2 V and a saturating maximal
response was evoked with voltage stimulation of about 1 V.
In the vast majority of the experiments, it was possible to
distinguish reliably 4 levels of evoked activity.

In order to determine the cycle time of the device, the same
stimulation was repeated at intervals from 0.1 s to 10 s. With
a repetition interval higher than 1 or 2 s the had two
components: one which was evoked with a delay of very few ms
and lasting for about 15 ms, followed by a second lasting around
0.1 s. The amplitude of the first component was not significantly
affected by decreasing the repetition time from 4 to 0.1 s [see
Fig. 1(f)]. The amplitude of the second component was clearly
depressed at short repetition times and it was stable for repeti-
tion times greater than 4 s (data not shown).

C. Filtering Properties of the Neuronal Culture

The neuronal culture grown on the MEA constitutes a two-di-
mensional (2-D) network. Given a homogenous culture, its fil-

tering properties can be simply analyzed by using a long bar as
a spatial stimulus, thus reducing a 2-D problem to a much sim-
pler one-dimensional. In these experiments the six electrodes of
the upper row were used for stimulation and the average firing
rate evoked in each electrode was measured (see Section II)
and averaged by row ( ). At early times, i.e., in the time
window between 1 and 6 ms [Fig. 2(a)] the decayed as a
Gaussian function with a standard deviation of about 900
corresponding to 1.8 pixels (solid line). In the time window be-
tween 4 and 9 ms the electrical activity decayed similarly as a
Gaussian function but with a larger of about 1200 cor-
responding to 2.5 pixels (solid line). A very similar decay and
spread of electrical excitation was consistently observed in all
the 24 analyzed neuronal cultures. Data collected from 6 dif-
ferent dishes are shown in Fig. 2 as different symbols.

After about 10 ms from the stimulus, the peak of the
moved away from the stimulated electrodes and the spread of
the electrical activity could be described by a Gaussian function
centered at a distance from the stimulated electrodes [Fig. 2(a),
time interval of 7–12 ms]. After 15 ms the evoked electrical ac-
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tivity decayed even further, maintaining a Gaussian-like profile
[Fig. 2(a), time interval of 12–17 ms]. While the same quali-
tative behavior was observed in all neuronal cultures, after at
least 25 days of cultivation, the speed at which the electrical ac-
tivity moved from the stimulating electrodes varied between 70
to 250 . The electrical activity in young cultures, i.e.,
with less than 20 days, did not propagate well throughout the
culture.

A comparison between the spatio-temporal filtering per-
formed by the neuronal culture and a digital gaussian filtering
is shown in Fig. 2(b). The processing of the bar-stimulus by the
neuronal culture represented by the color-coding of the evoked

is shown in the upper row of Fig. 2(b) in the four
time windows. The corresponding digital convolution of the
binary image correspondent to the bar-stimulus (see Section II)
is shown in the lower panels of Fig. 2(b). Between 1 and 9 ms
the neuronal filtering is a good approximation of a Gaussian
digital filtering which used the extracted from the fit of
Fig. 2(a). Between 7 and 12 ms (and 12–17 ms), the Gaussian
filtering with the values of and (and

and ) shows the same features of
the neuronal filtering. Therefore, at later times, is a
noisy displaced low-pass filtering of the original image.

When an horizontal bar in a different location or a vertical
bar of electrodes was used to stimulate the neuronal culture,
the electrical activity propagated from the stimulation site with
almost the same properties of the horizontal bar in the upper
part shown in Fig. 2(a) and (b). Experiments where a row (or a
column) of electrodes or individual electrodes were stimulated
indicate that the spatial-temporal processing of the neuronal cul-
ture is – to a first approximation – spatially invariant and can be
described by a radial impulse response with a Gaussian function
or kernel, centered on and with a time varying variance

(1)

and is the polar coordinate of the electrode.
Therefore, given a 1-bit image the output of the proposed

device varies in time according to

(2)

indicates a 2-D convolution and is a scaling factor
(see Section II). As shown in Fig. 2(b), in the time window
1–6 ms, the impulse response of the neuronal culture is a
Gaussian function with a of about 900 , but 2 or 3 ms
later with a larger value of of about 1200 . The neuronal
filters obtained in the time windows 1–6 ms and 4–9 ms are low
pass, and their difference is bandpass (see Section II). Bandpass
filtering of the binary image corresponding to the bar-stimulus
obtained with the neuronal culture, is shown in the upper panel
panels of Fig. 2(c). This neuronal filtering is rather similar
to that obtained by a digital band-pass filtering, shown in the
lower panel of Fig. 2(c) (see Section II).

D. Reproducibility of Neuronal Firing and Filtering

Unlike silicon devices, biological neurons are affected by a
significant noise and their reliability is variable. In our neuronal
cultures, during repetitions of the same stimulations, the number

of evoked spikes measured by a single electrode was variable,
but often the first evoked spike was rather reliable with a jitter
varying from just a few hundreds to some ms.

The reproducibility of neuronal firing measured by a single
electrode was evaluated computing the coefficient of variation

of (see Section II). When the value of CV is
less than 0.4, the firing is considered reproducible. Fig. 3(a)
shows the of the evoked response recorded by the elec-
trodes in the 2nd (left panel, open symbols) and in the 7th (right
panel, open symbols) rows of the array [Fig. 3(c)]. For the elec-
trodes in the 2nd row, in the time window between 1 and 11 ms,
the was for most electrodes smaller than 0.5 and could
approach 0.2. For the electrodes in the 7th row, in the time
window between 11 and 16 ms, the was always smaller
than 0.75 and could approach 0.3. The value of the was
slightly higher at increasing distances of the recording electrode
from the stimulation site. These results indicate that there is a
“ reliability window “ soon after the stimulation in which the

of the evoked activity at most electrodes is less than 0.5
and often around 0.3.

The of the evoked response was further decreased by
considering all the spikes recorded from a row of electrodes,
as shown in Fig. 3(a) (thick line). The was between 0.1
and 0.2 for both the electrode rows and the remains less
than 0.5 for at least 20 ms. When all the spikes recorded from
all electrodes on the MEA were pooled together, the of
the evoked response was transiently lower than 0.1 (in the time
window between 11 and 21 ms) and remained less than 0.3 for at
least 45 ms [see Fig. 3(b)]. Therefore, considering larger pools
of neurons, the reliability of the response is improved and ex-
tended to larger time windows.

Fig. 3(d) illustrates images obtained from three single trials
when the uppermost row of electrodes was stimulated with the
same voltage pulse of 0.6 V. While at early times, during the so
called “reliability window,” the spread of the evoked activity in
different trials was rather similar, at later times, the spread dif-
fered from trial to trial consistently with the high of the
electrical recordings [see Fig. 3(a)]. Neuronal cultures obtained
from different rats and cultivated in different dishes had a vari-
able number of active electrodes, i.e., providing good electrical
recordings, ranging from 30 to 58. All neuronal cultures, with
a sufficient number of electrically active electrodes to allow a
quantitative characterization of the filtering of the neuronal net-
work, i.e., larger than 40, had the same behavior illustrated in
Fig. 2(a). A very similar decay and spread of electrical excitation
was consistently observed in all the analyzed neuronal cultures.
At early times the spread of electrical excitation was character-
ized by a Gaussian function with a standard deviation increasing
from 800 to 1200 in about 3 ms. At later times the be-
havior of different neuronal cultures [Fig. 2(a)] was more vari-
able than the response of an individual culture [see Fig. 3(a)].
These data show that immediately after the voltage stimulation
there is a “good” time window during which the processing of
the neuronal culture is reproducible leading to a reliable com-
putation. This reproducibility is observed among trials from the
same neuronal culture [see Fig. 3] and in different cultures [see
Fig. 2(a)]. Since neuronal cultures could be maintained up to
six months, it was possible to repeat several times the same ex-
periment in the same culture and to verify that the spread of
electrical excitation in the same culture had identical properties
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Fig. 3. Reproducibility of the neuronal firing and reproducibility of the spread of the excitation. Data obtained stimulating the uppermost row of electrodes (shown
as black squares in panel C). (A) CV(t) of the evoked response considering the spikes recorded from each single electrode (open symbols) and from the row of
electrodes (thick line), in the second (left panel) and the seventh (right panel) rows of the array. (B)AFR(t) andCV(t) of the spikes recorded from the entire array
of active recording electrodes (excluding the 1st row used for stimulation). (C) Map of the MEA electrodes analyzed in (A) and (B). (D) Spread of the excitation
in different trials of stimulation. Each row reproduces images obtained from a single sweep or trial, in the four time windows after stimulation indicated at the top
of each column. The FR (t) in each image is represented according to the color map reproduced at the right side of the figure.

when analyzed in different days (in a time window of approxi-
mately two weeks).

E. Learning

Having characterized the filtering properties of the neuronal
cultures, we investigated whether it was possible to induce
learning in the neuronal culture [20]–[23] in a consistent and
controlled way. If so, is it possible to train the neuronal culture
to recognize a specific spatial pattern?

Learning in neurons is associated with changes in synaptic
efficacy, leading to a persistent increase in amplitude of the
response to the “learnt” stimulus. This is usually referred to
long-term potentiation (LTP) and can be induced by delivering a
tetanus (usually trains of stimuli at 100 Hz or more) to the neu-
ronal culture. We refer to a -stimulus ( -stimulus) when the
stimulation was applied to two perpendicular bars of electrodes
forming an and to a -tetanus when the tetanus had the same
spatial profile of the -stimulus.

To test the ability of hippocampal cultures to learn, the elec-
trical response to a -stimulus before and after the application of
a -tetanus was compared. The -stimulus was delivered to the
neuronal culture every 2 s. The evoked electrical activity was
monitored by computing (see Section II). After the
-tetanus, the [Fig. 4(a)] and the electrical activity in

individual traces [Fig. 4(b)] evoked by the -stimulus were sig-
nificantly increased for at least 1 hour.

The firing rate averaged over different trials and over all
MEA electrodes, , is a global indicator of the changes
induced by LTP. The evoked by the -stimulus clearly

increased after -tetanus in the time window between 10 and
90 ms after the stimulation. Fig. 4(c) shows the averaged data
from 4 neuronal cultures before (left panel) and after (right
panel) -tetanus.

As LTP can be induced in the neuronal cultures, it is necessary
to establish its spatial structure. Therefore, the electrical activity
evoked by stimuli with different spatial profiles was compared.
Neuronal cultures were stimulated every 2 s with -stimulus and
-stimulus. Prior to -tetanus, the -stimulus and the -stimulus

evoked a similarly diffused response [see in left and
right panel of Fig. 5(a)]. This was also evident when the firing
rate was averaged over different trials and over all recording
electrodes ( ) [see left and right panels in Fig. 5(c)]. After
the - tetanus, only the response to the -stimulus significantly
increased [Fig. 5(b)] being more than twice the response evoked
by the - stimulus [compare left and right panels in Fig. 5(d)].

In Figs. 4 and 5, learning and pattern discrimination was
examined by averaging responses over different trials. A useful
device, however, must be able to discriminate between patterns
on the basis of a single trial, and its learning capabilities should
be evident by inspection of a single trial. The single response
was evaluated computing (see Section II). Fig. 6(a)
shows single-trial responses for a -stimulus (open symbols)
and a -stimulus (filled symbols). Prior the application of the
-tetanus, single-trial responses to the two stimuli could not be

distinguished reliably. After -tetanus the single-trial response
to the -stimulus was consistently larger than the single-trial
response evoked by the -stimulus.

Fig. 6(b) reproduces the distribution of single-trial responses
for the -stimulus (white bars) and the - stimulus (black
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Fig. 4. Induction of LTP in a neuronal culture from hippocampal neurons. (A) Time-dependence of IntAFR prior to and after b-tetanus for the electrodes (6,3),
(7,3), (7,5), and (9,2), with tetanus indicated by an arrow. Each point was obtained by averaging 20 responses to the same stimulation repeated every 2 s. b-tetanus
was performed as described in Section II. (B) Single extracellular voltage response obtained before (left) and after tetanization (right) from the electrodes shown
in A. Time zero, indicated by the arrow, corresponds to the delivery of the stimulation. The large transient at time zero is the residual artifact after its subtraction
(see Section II). (C) AFR(t) and standard deviation of an b- stimulus calculated averaging 4 different experiments before and after the b-tetanus. AFR(t) was
obtained averaging single sweeps measured in a time window of 30 min.

bars) before (left panel) and after (right panel) -tetanus. The
experimental distributions were fitted with Gaussian functions
of unitary area and the superimposed area of the two curves
was calculated. Before -tetanus the average value of the
single-trial responses for the – and the - stimulus was

and respectively. In 58% of cases
the presented stimulus could not be recognized on the basis
of the single-trial response (superimposed area). After tetanus
the average value of single-trial responses for the and -
stimuli was and respectively.
Now, the superimposed area of the two Gaussian functions
fitting the experimental distributions was reduced to 5.5%.
As a consequence, after tetanus, it was possible to recognize
the presented stimulus from its single-trial response with an
accuracy of about 94.5%.

Results of similar experiments from 4 neuronal cultures are
presented in Fig. 6(c). The distribution of single-trial responses
( ) before (left panels) and after (right panels) -tetanus for
the and -stimulus are shown as black and white bars respec-
tively. Before -tetanus, the distributions of the for the
2 patterns were almost completely overlapping. After -tetanus
in all 4 neuronal cultures, single-trial responses were modified
so that it was possible to discriminate the stimulating pattern

from the great majority of single-trial responses. In fact, after
tetanus, single-trial responses for the two stimuli were distin-
guishable for 80%, 98%, 78% and 95% in the 4 neuronal cul-
tures. In general, when the tetanus was applied to two perpen-
dicular bars of electrodes meeting in a corner, the response to
the stimulation applied to the same bars of electrodes increased,
while the response to the stimulation applied to distinct perpen-
dicular bars of electrodes meeting in the opposite corner was
never potentiated.

If the neuronal culture can be trained to discriminate between
a -stimulus and a –stimulus it is important to analyze the selec-
tivity of this recognition and verify whether it degrades “grace-
fully” with the corruption of the stimulus. Therefore, the evoked
responses to stimuli with different spatial profiles prior to and
after -tetanus were compared.

Prior to -tetanus, the response of the neuronal culture was
not specific to the spatial profile of the stimulus [Fig. 7(a) open
circles]. On the contrary, after -tetanus, the neuronal culture
preferentially responded to stimuli resembling to an [Fig. 7(a)
filled circles]: in fact, after -tetanus, the was signif-
icantly larger for stimuli with a spatial profile similar to (for
the five stimuli from the left of the -axis, -test ).
The relative change of the after -tetanus was clearly
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Fig. 5. Neuronal cultures can learn to distinguish between two different spatial
profiles. (A)AFR (t) evoked by the e-stimulus (left) and the b-stimulus (right)
recorded from 24 electrodes (Y-axis limits: 0 to 10 spikes/bin; X-axis limits:
�50 to 200 ms). During the experiment the b-stimulus and a e-stimulus were
alternated every 2 s. AFR (t) in (A) were obtained averaging the individual
responses recorded in a time window of 30 min before tetanus. (B) As in (A)
but in the time window of 30 min after the b-tetanus. (C) AFR(t) obtained by
averaging theAFR (t) over all the active recording electrodes. The 2AFR(t)
shown refer to the responses to the e-stimulus (left) and the b-stimulus (right)
before b-tetanus. (D) AFR(t) obtained by averaging the AFR (t) over all the
active recording electrodes. The 2 AFR(t) shown refer to the responses to the
e-stimulus (left) and the b-stimulus (right) after b- tetanus.

selective [Fig. 7(b)] and showed positive value for similar spa-
tial profiles.

F. Image Processing of 8-Bit Images and Feature Extraction

The neuronal culture can be used also for processing digital
images at 8 bits. Let be an image with 8 bit gray levels at
location . Then can be represented by the decomposition

(3)

where is a 1-bit image.

Fig. 6. Discrimination at single-trial level before and after b-tetanus
for a neuronal culture. b-stimulus and e-stimulus have been analyzed.
(A) Time-evolution of the IntFR evoked by a e-stimulus (open symbols) and
an b- stimulus (black symbols) prior and after a b- tetanus (indicated by a
black vertical line). (B) Distribution of the IntFR before (left panel) and after
(right panel) L-tetanus for the b-stimulus (black bars) and the e-stimulus (white
bars). (C) Distribution of the IntFR before (left panel) and after (right panel)
L-tetanus for the b-stimulus (black bars) and the e-stimulus (white bars) for 4
different neuronal cultures. In the left panels the distributions of IntFR for the
2 stimuli are almost entirely overlapping. In the right panels, as consequence of
LTP induction, the overlap of the distributions for the b-stimulus and e-stimulus
is enormously decreased.

Given this decomposition, according to (2), the processing of
an 8-bit image is obtained as

(4)
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Fig. 7. Spatial selectivity of LTP. (A) IntAFR before (open symbols) and
after (filled symbols) b-tetanus for stimuli shown with the shape indicated in
the abscissa. IntAFR before and after tetanus was obtained as an average
during 30 min before and after tetanus respectively. The voltage intensity of
the stimulation was 0.6 V. Stars indicate the response to the b-stimulus and
e-stimulus. (B) Relative change of the IntAFR produced by the b-tetanus.
Data obtained from those shown in A before and after b-tetanus.

where is a scaling factor (see Section II). By processing in-
dependently the 8 1-bit images with the neuronal culture, a low
or a bandpass filtering of an 8-bit image is obtained. A low-pass
filtering of the original 8 bit images [Fig. 8(a) left panels], ob-
tained by the neuronal culture in the time bin 1–6 ms and by
a digital filtering with a Gaussian function, are shown in the
central and right panels respectively of Fig. 8(a). The high simi-
larity of images in the central and right panel shows that the pro-
posed hybrid device can process efficiently 8 bit images. After
a neuronal culture has learned, its temporal-spatial filtering is
different. First of all, it is not anymore spatially invariant and,
therefore, cannot be described by a temporal and spatial convo-
lution as in (4). In fact, the firing rate evoked by a given
image cannot be predicted from (1) and (2) but must be mea-
sured. The processing of an 8-bit image is, therefore, obtained
as

(5)

where is the measured response to after tetaniza-
tion and is a scaling factor (see Section II). Having lost spa-
tial invariance, the device is now able to extract a specific pattern
from a complex image. When the neuronal culture has learned
to recognize an [see Fig. 8(b)], the processing of original im-
ages [Fig. 8(b) left column] is modified [see central column of
Fig. 8(b)] and becomes tuned and selective to -stimulus [right
column of Fig. 8(b)]. It is evident that after learning, the neu-

Fig. 8. Image processing of 8-bit images. (A) Low-pass filtering of two
different 8-bit images. (Left panels) The original 8 bit images. (Central panels)
Low-pass filtering of the images obtained with the neuronal culture. (Right
panels) Low-pass filtering of the images, obtained by digital convolution of
the original 8-bit image, with the Gaussian profile shown in 2A in the time
window between 1 and 6 ms. Color-coding is reproduced at the right side
of the figure. (B) Features extraction obtained by low-pass filtering of two
different 8-bit images before and after learning. (Left columns) The original 8
bit images. (Central columns) Low-pass filtering of the images obtained with
the neuronal culture before the tetanization. (Right columns) Low-pass filtering
of the images obtained with the neuronal culture after b-tetanus. Color-coding
is reproduced at the right side of the figure. Original 8-bit images are obtained
according to (3). For 1-bit processed images, the values of the AFR (t) were
scaled between 0 and 1 by dividing for the corresponding maximal value among
all electrodes in the time-window of 1–30 ms. 8-bit processed images are then
obtained by (4). For features extraction, the values of AFR (t) obtained after
the tetanization were scaled by dividing for the same maximal value calculated
before the tetanization. 8-bit processed images are then obtained by (5) (see
Section II).

ronal culture is able to extract the from the rest of the image,
in both processed images. The upper image shows clearly that,
before learning, the neuronal filtering is symmetric and becomes
asymmetric after learning, allowing, in this way, the extraction
of the learned feature.

G. Consistency of Potentiation and Learning

Neural plasticity is certainly a major advantage for Neuro-
computers if LTP or LTD can be evoked in a neuronal culture
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consistently and in a repeated way. As shown by Jimbo et al.
[23] when a tetanizing train of pulses is applied through a single
electrode of a MEA both LTP and LTD can be observed. The in-
duction of LTP occurred when neurons before tetanus fired in a
correlated way; while LTD occurred when the firing of neurons
were poorly correlated. Therefore, when a single electrode was
used the induction of LTP or LTD could not be controlled but
depended from the intrinsic connectivity of the network. This
situation is not satisfactory if neuronal cultures have to be used
for information processing and learning. Therefore, we looked
for experimental conditions in which LTP could be induced con-
sistently. LTP described in previous sections was always evoked
when the same tetanizing pulse was applied to many electrodes,
more than 10, with a spatial profile of two perpendicular bars.
With this pattern of stimulation, LTP was successfully induced
in 10 (over 12 tested) neuronal cultures. LTP could be evoked in
the same neuronal culture on different days over a period of 6
weeks. When the tetanus was applied through a smaller number
of electrodes, i.e., less than 7, LTP was not consistently induced
and both LTP and LTD was observed. When a bar-tetanus was
delivered, LTP was never induced in 6 experiments. In 3 ex-
periments performed with young (less than 20 days) neuronal
cultures, stimulation applied to a bar of electrodes, either hor-
izontal or vertical, produced an electrical excitation confined
around the electrodes used for stimulation, and LTP could not
be induced by an - tetanus. In one dish the two tetanization pro-
tocols were combined: a bar-tetanus was first applied and, after
2 hours, an - tetanus was applied. The response to the - stim-
ulus after the bar-tetanus was unchanged, while the - tetanus
clearly induced LTP. LTP could be evoked in the same neuronal
culture, on different days over a period of 6 weeks. When 50 mi-
cromolar DL-2-amino-5-phosphonovaleric acid (APV), a well
known blocker of NMDA channels, was added to the extracel-
lular medium bathing the neuronal culture, the evoked electrical
activity did not spread significantly from the electrodes used for
stimulation, as in cortical neuronal cultures [24]. Under these
conditions LTP could not be induced in the neuronal cultures.

IV. DISCUSSION

The work described here demonstrates that, by growing neu-
ronal cultures over multi electrode arrays (MEA), a new hybrid-
computing device, composed of biological neurons and metal
electrodes, can be foreseen. The biophysical mechanisms un-
derlying the low-pass and band-pass filtering of digital images,
here described, originate from membrane properties of culti-
vated neurons and their mode of interaction. Synaptic proper-
ties limit and shape the propagation of action potentials in the
culture. The combination of these biophysical mechanisms de-
termines the exact parameters of the filtering. The consistency
of the experimental set up was discussed in the two sections
on the reproducibility of neuronal filtering and consistency of
potentiation and learning. The major difference with previous
work on neuronal culture grown on MEA [23]–[25] is the con-
trolled induction of LTP and its use for pattern recognition. The
presented results, show, in our opinion, that neuronal cultures
grown on MEA can constitute the basis for the development of
Neurocomputers, possibly new computing devices.

A. Comparison With Previous Work

The present work is a continuation of previous analysis of the
behavior of neuronal cultures grown on MEAs [23]–[25] and
confirms several previous observations on how the evoked elec-
trical activity spreads throughout the neuronal culture. Jimbo
et al. [23] have shown that when a tetanizing train of pulses is
applied through a single electrode of a MEA, both LTP and LTD
can be observed and that the induction of LTP or LTP depended
from the intrinsic connectivity of the network. The present work
shows that, when many electrodes are used for tetanizing, LTP
is preferentially induced and, therefore, the induction of LTP
can be controlled. The controlled induction of LTP allows the
use of neuronal cultures for pattern recognition (see Figs. 5 and
6) and opens the way for using neuronal cultures as new com-
puting devices, i.e., Neurocomputers. Although the molecular
mechanisms controlling the induction of LTP and/or LTD have
not yet been fully revealed [26], it is well established that a
moderate elevation of intracellular favors the induction
of LTD, while a larger increase is more likely to induce LTP. As
neuronal firing leads to an elevation of intracellular , it is
not surprising that a massive electrical excitation preferably in-
duces LTP instead of LTD. As stated in the Results section, LTP
was induced in 10 over 12 tested neuronal cultures. However,
in all neuronal cultures, after an -tetanus, the discriminability
between an and -stimulus increased. Therefore, in all tested
cultures learning was observed, provided that the tetanus was
applied through a sufficiently large number of electrodes. LTP
was not observed when the frequency of tetanization was lower
than 100 Hz.

B. Reproducibility and Reliability of Neuronal Firing

The reliability of the evoked response increases by pooling
the electrical activity recorded from a larger number of neu-
rons, as shown by the decrease of the calculated for a
single electrode, a row of electrodes or the 60 electrodes of the
MEA. These conclusions, drawn from an investigation in a dis-
sociated culture of hippocampal neurons, are remarkably sim-
ilar to those obtained in an isolated leech ganglion (5) and in
a semi-intact leech [27]. In the leech nervous system, motoneu-
rons coactivated during the same behavioral reaction, fire spikes
in an almost statistically independent way. As a consequence of
statistical independence pooling, the electrical activity over all
co-activated motoneurons makes highly variable spike trains un-
derlying reproducible motor reactions.

These results suggest that, analogously to nervous systems,
reliability and reproducibility of neurocomputers can be ob-
tained by pooling the neuronal electrical activity over popula-
tions of neurons, as already shown by several previous inves-
tigations with intelligent prostheses [28]–[31]. The extent of
pooling depends on the task to be solved: in fact, when it is nec-
essary to discriminate between patterns, it is convenient to av-
erage the neuronal activity over a very large number of neurons
(of the order of 100) in order to obtain a successful discrimina-
tion over a single trial, as shown in Fig. 6. When the MEA is
used to filter images, averaging is restricted to neurons recorded
from the same electrode, i.e., less than 6 or so different neurons.
In this case the resulting computation is noisier. In a population
of neurons firing spikes in an almost unrelated way, the CV
decreases as the square root of [32]. Therefore, if each neuron
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has a CV between 0.5 and 1 [27], a good reproducibility – with
a CV of less than 0.1 – can be obtained by pooling the electrical
activity of 100–1000 neurons, i.e., the same order of magnitude
of neurons thought to be present in a column in the cortex [33].
This requirement may pose severe constraints on the construc-
tion of MEA and on the development of future Neurocomputers.

C. Limitations of the Tested Device

The tested device, based on the MEA supplied by MultiChan-
nelSystem, has several limitations, which may be overcome by
future technological improvements. First of all, in the present
release it is not possible to stimulate and record simultaneously
from the same electrode, contrary to the MEA developed by
Jimbo and coworkers [25]. As a consequence, the electrical ac-
tivity evoked in the stimulated electrode cannot be measured
but has to be interpolated (see Section II) from the neighboring
recording electrodes. In addition, switching between recording
and stimulation cannot be obtained via software and has to be
performed manually, reducing the possible experimentation and
the analysis of parallel processing with the neuronal culture. Re-
cently new circuits for distributing stimuli to all electrodes elec-
tronically (from Multichannel Systems, MEA1060-BC) and for
stimulating and recording on the same electrode [34] have been
developed. These circuits will allow to overcome the limitations
discussed above. The implementation of on-line analysis [21],
[35] allows the exploration of alternative parallel processing and
learning with the neuronal culture.

Another disadvantage of the present device, possibly shared
by a large variety of Neurocomputers, is the presence of silent
electrodes or of electrodes making good electrical contacts with
a limited number of neurons. The ideal device is composed
of electrodes all making good electrical contact with a large
number of healthy neurons. Since it is necessary to measure in-
dividual spikes and not field potentials, the number of neurons in
good electrical contact with each electrode cannot be too high.
Therefore, it is necessary to develop standard protocols in order
to have MEA with almost all electrodes making good electrical
contact with approximately the same number of neurons.

The training procedure, by which a neurocomputer learns to
recognize a spatial feature, is simply an appropriate tetanus, i.e.,
a relatively simple procedure, representing, therefore, an ob-
vious advantage of the Neurocomputer. On the other side the
Neurocomputer – at least in its present form – seems to be pri-
marily a coprocessor, which cannot be easily programmed for a
different tasks, as usual digital processor can. After the decline
of LTP, the neurocomputer can be trained to learn a new pat-
tern and, therefore, can be reprogrammed and becomes reusable.
Several issues, however, must be addressed such as the dura-
tion of induced LTP, the possibility of encoding new inputs and
to erase stored information – possibly by inducing LTD. Once
these issues will be properly addressed, the exploitation of LTP,
as here demonstrated, and of LTD [18], [36], may provide a
natural implementation of algorithms based on artificial neural
networks (ANN).

D. Future of Neurocomputers

The use of biological neurons as computing devices opens a
new avenue in which computer science can capitalize on the ex-
pertise and technology of cell biology and genetic engineering.

Taking advantage of stem cell technology [37]–[39] we are
trying to obtain a standard source of neurons in order to elimi-
nate the variability intrinsic to individual rats, possibly leading
to computing devices with a much higher reproducibility. Stem
cell technology could provide also populations of neurons
with specific properties, for example neurons that release
selected neurotransmitters. In this way neuronal cultures with
controlled ratios of inhibitory and excitatory neurons could be
constructed. The possibility of guiding neuronal growth along
specific spatial directions [40]–[43] will allow the fabrication
of large variety of spatial filters, imitating the receptive field
properties of neurons in early visual area [44]. Neurocomputers
can become promising new computing devices if their relia-
bility can be increased. In order to do so, besides using stem
cell technology for obtaining a standardized source of neurons,
it will be necessary to automate with appropriate robots all the
subsequent procedures necessary for preparing and maintaining
neuronal cultures. It will be very important to standardize the
handling of MEAs, neuron deposition on the MEAs and their
maintenance.
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