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Abstract Recent experiments on frogs and rats, have led to
the hypothesis that sensory-motor systems are organized into
a finite number of linearly combinable modules; each mod-
ule generates a motor command that drives the system to a
predefined equilibrium. Surprisingly, in spite of the infinite-
ness of different movements that can be realized, there seems
to be only a handful of these modules. The structure can be
thought of as a vocabulary of “elementary control actions”.
Admissible controls, which in principle belong to an infinite
dimensional space, are reduced to the linear vector space
spanned by these elementary controls. In the present paper
we address some theoretical questions that arise naturally
once a similar structure is applied to the control of nonlin-
ear kinematic chains. First of all, we show how to choose
the modules so that the system does not loose its capability
of generating a “complete” set of movements. Secondly, we
realize a “complete” vocabulary with a minimal number of
elementary control actions. Subsequently, we show how to
modify the control scheme so as to compensate for paramet-
ric changes in the system to be controlled. Remarkably, we
construct a set of modules with the property of being invari-
ant with respect to the parameters that model the growth of an
individual. Robustness against uncertainties is also consid-
ered showing how to optimally choose the modules equilibria
so as to compensate for errors affecting the system. Finally,
the motion primitive paradigm is extended to locomotion and
a related formalization of internal (proprioceptive) and exter-
nal (exteroceptive) variables is given.

1 Introduction

Each time that a living creature performs a task, its cen-
tral nervous system (CNS) has to solve a nontrivial control
problem formulated as follows: control the activation of the
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muscles so that the whole body accomplishes the given task.
The solution of this problem is a hard challenge, especially
because of the system nonlinearities and the need of coordi-
nating a high number of degrees of freedom. Nevertheless,
living creatures solve complicated tasks efficiently, display-
ing robustness against external disturbances and compensat-
ing modifications of the system dynamics.

Many studies focus on investigating the way the CNS
controls the limbs and achieves the observed robustness and
adaptability. Interestingly, there is evidence for the hypoth-
esis that the CNS possesses and updates an internal model
that approximates the limb dynamics; the model transforms
a desired movement into the corresponding motor command.

One striking feature of this internal model is its adapt-
ability to new contingencies. As a simple example, consider
the changes to which a skeleton of an individual is subject
during his growth. Because of these changes, the motor com-
mands that control the body of an adult differ from the com-
mands of a young child. Nevertheless, adults do not need to
relearn the movements learnt during childhood. This proves
that human sensory-motor system adapts the internal model
to compensate for changes in the system dynamics.

Moreover, there’s evidence (Shadmehr and Mussa-Ivaldi
1994) supporting the hypothesis that the internal model com-
pensates for external disturbances and generalizes their
effects. Specifically, in a well known experiment, subjects
were asked to perform reaching movements while holding
a robotic handle that could exert unexpected forces during
the movement. Initially, trajectories were strongly distorted.
With practice subjects learned the motor command neces-
sary to compensate the disturbances and were able to repro-
duce the trajectories followed in absence of the perturbing
forces. Interestingly, subjects were consistently able to gen-
eralize training experience to movements around the area in
which they were trained. When the forces were unexpect-
edly removed, subjects produced again distorted trajectories,
which were mirror images of the trajectories initially pro-
duced when the forces were first applied. All findings justify
the idea that movements are planned on the basis of an internal
model and that, with experience, this model can be adapted to
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reject disturbances and accommodate changes in the system
dynamics.

All these observations motivate a number of interesting
questions which are, at present, the focus of many research
activities. Our interest, in particular, is focused on the fol-
lowing fundamental questions:
(1) Which information is contained in the internal model?
(2) How does the internal model generate different instances

of the same action?
(3) How does the CNS adapt the internal model in response

to internal and external disturbances?
Question (1) and (2) assume that the CNS exploits an internal
model of the system dynamics or, better, of the task dynam-
ics. Here, the task has to be identified with the objective of the
action. Therefore, the first two questions are concerned with
the representation of the system and task dynamics. Question
(3), instead, concerns the way this representation is adapted
to disturbances and changes in the system dynamics.

Recent experiments developed by (E. Bizzi, F. A. Mussa-
Ivaldi and S. F. Giszter Giszter et al. 1993); (Mussa-Ivaldi
and Bizzi 2000); (Mussa-Ivaldi et al. 1994) seem to indicate
that the sensory-motor systems of frogs and rats are organized
into a finite number of linearly combinable modules. These
modules, called spinal fields, are located on the spinal cord
and, when activated, generate force fields acting on the limbs.
Mathematically, it is as if admissible controls were restricted
to the vector space spanned by a handful of elementary con-
trol actions. Within this framework, the above questions can
be reformulated as follows.
(1) Which information about the system dynamics can be

represented in a spinal field and how can it be used to
perform a given action?

(2) How does the CNS combine the elementary modules to
generate different instances of the same action?

(3) How are the modules activated and modified to reject
external disturbances and adapt to changes in the system
dynamics?

In this paper we focus on these questions and propose a new
perspective on their answers, adopting the fundamental tools
of control systems theory. Specifically, question (1) is an-
swered in terms of modules that combine a feedforward plus a
feedback control action. Each module is “task oriented” in the
sense that it contains the information to perform a specific in-
stance of a given task. Question number (2) will be answered
in terms of the linear superposition of the individual modules,
with the sum of the linear combinators constrained to be one.
Finally, question (3) will be answered in terms of a paradigm
which accommodates changes in the system dynamics with-
out modifying the elementary modules; furthermore, random
disturbances will be accommodated with an optimal choice
of the task instances realized by the modules.

1.1 Modularity and complexity

The idea of decomposing complex systems into elementary
modules has been widely applied in the scientific literature.

In particular, modularity has always been seen as a way to
handle complexity and to simplify learning procedures.

In the field of action recognition, for instance, (D. Del
Vecchio, R. Murray and P. Perona Del Vecchio et al. 2003)
have interpreted human movements as the result of switch-
ing between different causal linear dynamic systems, thought
of as elementary building blocks. Similarly, modularity has
been applied to the study of planar reaching movements by
(T. Sanger Sanger 2000), who has proposed a decomposition
of human hand trajectories into a set of elementary move-
ments, learned applying the Karhunen-Loeve decomposition.
Interestingly, there seems to be only a handful of components
relevant to the description of planar reaching trajectories.

A special attention deserves the application of modularity
to learning. It has been pointed out (T.Poggio and S.Smale
2003) that modularity is the core element for learning simpli-
fied models of complex systems. These models can be used
for generating intelligent behaviors such as data analysis and
information extraction. Specifically, in the study of cognition
and mental representations, compositionality leads to inter-
esting interpretations in terms of disambiguation, invariance
and computation (Bienenstock and Geman 1993).

In this paper our main focus is on the application of
modularity to motor control. The results may have impor-
tant implications on learning motion control, but this issue is
not addressed here.

1.2 Outline of the Paper

The paper is organized as follows. Section 2.1 recalls the
biological experiment that justifies the idea of decomposing
control actions into primitives. Section 2.2 gives a mathemat-
ical formulation of the biological experiment; a definition for
the fundamental concept of motion primitive is also given.
Section 3 defines the problem of synthesizing motion primi-
tives for controlling a given dynamical system to an arbitrary
state. Section 4 solves the problem in the case of linear sys-
tems. Section 5.1 extends the solution to the case of nonlinear
kinematic chains; section 5.2 shows that elementary control
actions can be chosen so as to perform a movement in an arbi-
trary amount of time; section 5.3 demonstrates how to obtain
primitives that are invariant with respect to the parameters
that we use to model the growth of an individual. Section 6
is inspired by the observation that biological movements dis-
play more variability in directions irrelevant to the task than
in those relevant. This suggest the problem of synthesizing
“task oriented” motion primitives; the problem is solved in
section 6.1.2. Section 7 shows how to optimally choose the
convergence points realized by each primitive; optimality is
intended in terms of disturbance rejection. In section 8 we
exemplify our ideas applying our findings to the control of a
simple limb model. Finally, section 9 gives a mathematical
formulation to the problem of synthesizing motion primitives
for locomotion.

The paper follows a standard notation. Given a column
vector v in the n-dimensional Euclidean space R

n, vk ∈ R
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indicates its k-th component. The superscript, instead, will be
used to denote different vectors v1, v2, etc. . Matrices are indi-
cated with capital letters. Finally, given a dynamical system
and a control action u defined on the time interval [0, T ], the
notation x0

u−→ xf indicates that u drives the system state x
from x(0) = x0 to x(T ) = xf .

2 Spinal Fields and their Model

This section is divided into three subsections. We first de-
scribe the experiments that justify our control paradigm (sec-
tion 2.1). Then we give a model of the experiments (section
2.2). Finally we discuss some related previous works (section
2.3).

2.1 Spinal Fields

(E. Bizzi, F. Mussa-Ivaldi and S. Giszter Giszter et al. 1993);
(Mussa-Ivaldi and Bizzi 2000; Mussa-Ivaldi et al. 1994) have
proposed some experiments suggesting the existence of mo-
tion primitives hardwired in the central nervous system of
frogs and rats. These primitives act on limbs in terms of mus-
cle synergies, called spinal fields. These synergies have been
characterized in terms of the isometric force fields elicited at
the limb extremity. The main features observed in the exper-
iments are the following:

(a) each spinal field recruits a specific pattern of muscles that
direct the limb towards a given configuration, regardless
of the initial condition;

(b) simultaneous activation of multiple spinal fields leads to
the vectorial summation of the corresponding force fields.

There is therefore evidence that the complex nonlinearities
that characterize the limbs of living creatures are somehow
eliminated, since the central nervous system acts linearly,
applying the superposition principle.

2.2 Motion Primitives as a Model of the Spinal Fields

In this section we present the concept of motion primitive
which we use to model the experimentally observed spinal
fields. We propose a model which differs from the one given
by (Mussa-Ivaldi and Bizzi in Mussa-Ivaldi and Bizzi 2000).

2.2.1 Limb Dynamics

A limb is modelled here as a fully actuated kinematic chain
with m degrees of freedom, corresponding to m revolute
joints. The dynamics take the form Murray et al. (1994):

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = u, (1)

where q ∈ R
m are the generalized coordinates describing the

pose of the kinematic chain, x = [q�, q̇�]� ∈ R
n is the state

of the dynamic system, n = 2m is the state space dimension
and u ∈ R

m is the generalized force vector. To fix the ideas,
let q be the vector of joint angles and u be the joint torques.

2.2.2 Previous Model of the Spinal Fields

In (Mussa-Ivaldi and Bizzi 2000) the experimentally ob-
served spinal fields are proposed as the evidence of a mod-
ular structure at the level of joint torques. Each module is a
time-varying nonlinear control action which depends on the
current position q and velocity q̇:

u = �k(x(t), t) �k : R
2m × R

+ → R
m. (2)

In consideration of the experiments, each�k has a unique con-
vergence point. Moreover, admissible control actions are the
linear combination of the elementary modules �1, . . . ,�K :

u =
K∑

k=1

λk�
k(x(t), t). (3)

This model presents some limitations. Specifically, the choice
of a time-varying feedback on the current state does not pres-
ent any drawback if the execution time is left free. However,
if the action has to be completed in finite time T , the feedback
control would necessarily diverge as t reaches T , unless we
reduce ourselves to reach approximatively the final position
up to a ball of radius ε determined by the resolution of the
sensors. In this case, the final time T would correspond to
the entry time in the ball and it would be finite even in the
case of asymptotic convergence.

In this paper we focus instead on actions which concern
reaching an exact target in a predetermined execution time.

2.2.3 A New Model of the Spinal Fields

We propose a different model where a spinal field corre-
sponds to a control action that combines a feedforward plus
a feedback term. The feedback stabilizes about the nominal
open-loop trajectory generated by the application of the feed-
forward part. Interestingly, there is evidence for this structure.
Experiments on deafferented monkeys revealed that during
reaching “the muscular activation does not specify a force or
a torque [...] nor a final target position. Instead, [...] the acti-
vation of muscles produces a gradual shift of the limb’s equi-
librium from start to end position” (Mussa-Ivaldi and Bizzi
2000), i.e. a nominal or virtual trajectory (Hogan 1985b).

We achieve this structure with a control action which de-
pends on the initial state x(0), on the current state x(t) and
on the time elapsed from the action beginning. The formal-
ization of the model leads to the following definitions. It is
worth noting that the proposed model, as well as the previ-
ous one, agrees with the experimental evidence outlined in
section 2.1. Details are given in the appendix A.

Definition 1 (motion primitive) Consider a dynamical sys-
tem; let its state belong to the set X and let its initial condition
belong toX0 .We say that the function� :X0×X×[0, T ]→R

m

is a motion primitive with convergence point xf , if the con-
trol u = �(x(0), x(t), t) drives the system toward the state
x(T ) = xf , regardless of the initial condition.

Definition 2 (control with motion primitives) We say that
a given system is controlled with the set of motion primitives
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{�1, . . . , �K}, if the input of the system belongs to the space
spanned by the motion primitives, i.e.:

u =
K∑

k=1

λk�
k(x(0), x(t), t). (4)

Note 1 In order to be more general, we initially consider
a generic initial time t0. At the same time, to simplify the
notation, motion primitives will be denoted�k(x0, x, t − t0)
instead of �k(x(t0), x(t), t − t0).

2.3 Previous works on Motion Primitives

A fundamental problem concerns the existence of a set of
motion primitives which can generate the wide repertoire of
control patterns displayed by biological systems.

This problem was first faced by (Mussa-Ivaldi Mussa-
Ivaldi 1997), who reformulated it as an approximation of
the vector fields of generalized forces necessary to realize
a set of desired movements. The approximation is achieved
with a finite number of basis fields chosen to be gradients
of Gaussian potential functions centered at different posi-
tions in the generalized coordinates space; other basis fields
are obtained as the result of an antisymmetric transformation
of the previous fields. The combinations of these basis fields
(Mussa-Ivaldi and Giszter 1992) is locally capable of approx-
imating different vector fields which correspond to a ‘wide’
repertoire of control patterns. The coefficients λk which com-
bine the basis fields in order to follow a given trajectory are
computed via a standard least-squares algorithm. Learning
and adapting the motion primitives amount, in this setup, to
finding the optimal approximating choice of the Gaussian
means and variances.

In the present paper, we instead face the problem of find-
ing motion primitives that generate a ‘complete’ repertoire of
motion patterns; completeness will be characterized in terms
of the capability of reaching an arbitrary state in an arbitrary
amount of time. Notice that we use the adjective ‘complete’
rather than the previously used adjective ‘wide’. The motiva-
tion behind this choice resides in that the formalism of force
fields turned out to be insufficient to predict the trajectory
that the state will follow (Mussa-Ivaldi et al. 1994); in fact,
movements generally result from the interaction of forces
with the inertias and the dynamical properties of the system.
Our formulation differ substantially in that modules do not
take the form of force vector fields but rather of elemen-
tary control actions. Using the tools given by system control
theory, this alternative formulation predicts which configura-
tions and trajectories are achievable and replaces the previous
approximation approach with a direct synthesis which cov-
ers a complete set of tasks. Moreover, the new formalism
will lead to primitives that operate over a large region of the
state space, i.e. over a broad receptive field; this is a new fea-
ture since previous approaches, based on learning, result in
narrow receptive fields (Mussa-Ivaldi 1999).

Other important theoretical questions will be faced in this
paper. To our knowledge, these questions have never been

discussed in literature before. First, we will consider the prob-
lem of determining a lower bound for the minimum number of
motion primitives needed to perform a given action. Then, we
will give some preliminary results on the adaptability of the
motion primitives paradigm to parametric changes of the sys-
tem. During the life of an individual, his skeleton is subject to
changes which are naturally compensated by modifying the
control strategy so as to restore the original trajectories. In our
model we achieve this compensation by changing the time-
invariant combinators, while primitives are left unchanged.
A similar solution will be given to the problem of performing
actions in an arbitrary amount of time. Finally, we will con-
sider the problem of optimally placing the convergence points
for achieving robustness against disturbances.

3 Completeness of a Set of Motion Primitives

In this section we formalize the problem of finding a set of
primitives that generate a ‘complete’ repertoire of motion
patterns. The formalization is inspired by the concept of con-
trollability as defined in control systems theory. With this
formalization, we are able to fix a lower bound on the min-
imum number of primitives necessary to cover a ‘complete’
set of tasks.

In control systems theory the input of a dynamical system
is usually assumed to belong to an infinite dimensional space,
e.g. the set of all piecewise continuous functions. Under this
assumption, the system (1) can be proven to be controllable,
in the sense that for any desired initial and final state x0, xf
there exists an input u : [0, T ] → R

m driving the system
state from x(0) = x0 to x(T ) = xf .

In our framework, the structure (4) may corrupt control-
lability since it reduces the set of admissible inputs from an
infinite dimensional space to the linear space spanned by the
elementary control actions �1, . . . , �K . This reduction to a
smaller set of admissible inputs corresponds to a reduction
of the movements that the system is capable of performing.
Obviously, motion primitives should be chosen so as to pre-
serve the system controllability. This issue is captured in the
statement of the following problem. Here the execution time
is constant and equals to T .

Problem 1 (Synthesis of Motion Primitives for Reach-
ing.) Consider a dynamic system and let its state x belong to
the open set X ⊆ R

n. Find a set of motion primitives {�1, . . . ,
�K}and a continuously differentiable functionλ : X → R

K ,
such that for every desired final state xf ∈ X the input:

u =
K∑

k=1

λk(xf )�k(x0, x, t − t0) (5)

steers the system state to x(T ) = xf regardless of the initial
condition.

Note 2 The problem above requires that, for all admissible
xf , the input u defined in (5) has to be a motion primitive
with convergence point xf .

Note 3 From now on, let us assume t0 = 0.
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3.1 Lower Bound on K

In this section we prove that for any given solution the num-
ber of primitivesK is grater than or equal to n. Before giving
the main result, we prove the following lemma, claiming the
injectivity of the function λ.

Lemma 1 Let {�1, . . . ,�K} and λ : X → R
K be a solution

to problem 1. Then λ is injective.

Proof Suppose by contradiction thatλ is not injective. Equiv-
alently, ∃x1

f , x2
f such that x1

f �= x2
f but λ(x1

f ) = λ(x2
f ).

Define:

u1 �
K∑

k=1

λk(x1
f )�

k(x0, x, t), (6)

u2 �
K∑

k=1

λk(x2
f )�

k(x0, x, t). (7)

Under the given assumption u1 = u2 but this contradicts the
fact that u1 drives the system to x1

f while u2 drives the system
to x2

f �= x1
f . By contradiction, this proves that λ is injective.

��
Proposition 1 Let {�1, . . . , �K} and λ : X → R

K be a
solution to problem 1. Then K ≥ n, i.e. the control of (1)
requires at least n motion primitives.

Proof Using lemma 1, we have that λ is an injective function
from an open subset of R

n to R
K . It can be proven that this

implies K ≥ n (see Boothby (2002) for details). ��

4 Primitives for Linear Systems

This section solves a particularization of problem 1 to the
case of linear dynamical systems. The linear case is crucial
in our formulation, since the motion primitives for nonlinear
systems will be constructed combining a feedback lineariza-
tion with a set of primitives for linear systems. The section is
divided into two subsections. Section 4.1 presents a solution
solely based on a feedforward control action. This solution
is made more robust in section 4.2, by adding a feedback
on the nominal trajectory generated by the application of the
feedforward part.

We consider a controllable linear system:

ż = Az + Bv, (8)

where z is the system state (belonging to the state space
Z = R

n) and v ∈ R
m is the input. The particularization

of problem 1 to the case of linear dynamics consists in find-
ing a set of motion primitives {φ1, . . . , φK} and a function
λ : Z → R

K such that ∀zf the input:

v =
K∑

k=1

λk(zf )φk(z0, z, t), (9)

drives the system to z(T ) = zf regardless of the initial
condition.

Note 4 For linear systems we use the letters z and v instead
of the letters x and u to indicate the state and the input respec-
tively. Moreover, motion primitives are indicated φk instead
of �k . The reason for this notation will be clear later on.

Note 5 The well known superposition principle suggests how
primitives for linear systems can be chosen and combined.
Since the state space is a linear vector space, it is intuitive
to take each primitive to be a control that drives the system
towards an element of a state space basis. These ideas lead
to an instructive solution. Details are given in appendix B.

4.1 Feedforward Primitives

In this section we introduce the feedforward component of
our control scheme. Within this context, motion primitives
take the form of feedforward motion primitives ζ k(z(0), t)
where ζ k : Z0 × [0, T ] → R

m and Z0 is the set of admissi-
ble initial conditions. Again, we assume that each primitive
drives the system toward a unique state zkf regardless of the
initial condition, that is:

z0
ζ k−→ zkf , ∀z0 ∈ Z0. (10)

Using the tools given by linear systems theory, we first con-
struct and characterize these primitives. Then, we show how
feedforward primitives have to be combined so that their
sum is again a motion primitive. Finally, all these consid-
erations are used to characterize and construct the solutions
of problem 1.

Proposition 2 The control action ζ : Z0 × [0, T ] → R
m is

a feedforward motion primitive with convergence point zf if
and only if:

ζ(z0, t) = B�eA
�(T−t)W−1

T

[
zf − eAT z0

]+ w(z0, t), (11)

where w : Z0 × [0, T ] → R
m is such that 0

w−→ 0, ∀z0.

Proof The hypothesis of controllability on the linear system
guarantees the existence of an input which drives the sys-
tem between two arbitrary states. More precisely, it can be
proven Fornasini (1994) that any v such that z0

v−→ zf can
be written as:

v(t) = B�eA
�(T−t)W−1

T

[
zf − eAT z0

]+ w(t), (12)

where WT is the system controllability Gramian and where
w : [0, T ] → R

m is any input such that 0
w−→ 0. To obtain

(11) we need only to observe that in our case w can itself be
a function of the initial condition. ��

The following proposition describes how feedforward
motion primitives can be combined. Its proof is given in the
appendix.

Proposition 3 Let ζ 1 : Z0 × [0, T ] → R
m and ζ 2 : Z0 ×

[0, T ] → R
m be a couple of feedforward motion primitives

for the linear system (8); let z1
f and z2

f be their convergence
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points. Consider two scalars λ1 and λ2. Then, the sum λ1ζ
1 +

λ2ζ
2 is itself a feedforward motion primitive if and only if

λ1 + λ2 = 1. In this case we have:

z0
λ1ζ

1+λ2ζ
2

−→ λ1z1
f + λ2z2

f . (13)

Moreover, the application of the input u = λ1ζ
1+λ2ζ

2 forces
the system to follow:

z(t) = λ1z1(t)+ λ2z2(t) t ∈ [0, T ], (14)

where z1 and z2 are the state trajectories followed when ζ 1

and ζ 2 are applied alone.

Proposition 3 and its trivial generalization (to the case
of finite sums) are crucial for characterizing the solutions
of problem 1 based on feedforward motion primitives. Spe-
cifically, in the following proposition the generalization is
used to give necessary and sufficient conditions for a given
set of feedforward motion primitives to be a solution of the
reaching problem.

Proposition 4 Consider the controllable linear system (8)
with Z0 = Z = R

n. Let {ζ 1(z0, t), . . . , ζK(z0, t)} be a set
of feedforward motion primitives with convergence points
z1
f , . . . , zKf . There exists a function λ : R

n → R
K that,

together with the given primitives, solves problem 1 if and
only if the linear system:

K∑

k=1

λkzkf = zf (15a)

K∑

k=1

λk = 1. (15b)

is solvable in the unknowns λ1, . . . , λK for all zf ∈ R
n.

Moreover, any solution to problem 1 based on the given prim-
itives has combinators λ(zf ) that satisfy (15). Viceversa, if
the combinator function λ(zf ) satisfies (15), then (together
with the given primitives) it solves problem 1.

Proof (⇐) Let {ζ 1(z0, t), . . . , ζK(z0, t)} be a set of motion
primitives and assume that (15) is solvable. We want to show
that the given primitives solve problem 1 together with λ :
R
n → R

K obtained as any function which associates to each
zf ∈ R

n one of the solutions of (15). Keeping in mind the
generalization of proposition 3 together with (15b), we have
that:

v =
K∑

k=1

λk(zf )ζ k(z0, t), (16)

is itself a motion primitive for all zf ∈ R
n. Then, using (15a)

together with a generalization of (13) we conclude that this
motion primitive has zf as its convergence point. This con-
cludes the first part of the proof.
(⇒) Consider a generic solution

{
ζ 1(z0, t) , [4] . . . , ζK(z0, t)

}

and λ : R
n → R

K ; we have to prove that (15) is solved
by λ(zf ). According to note 2, any linear combination with
combinators λ(zf ) has to be itself a motion primitive with

convergence point zf . Using the generalization of proposi-
tion 3, we conclude that λk(zf )must sum up to one, i.e. (15b)
is satisfied; moreover, using a generalization of (13) we get
(15a). This proves that (15) is solvable and that λ(zf ) is one
of its solutions for all zf . ��

Proposition 4 suggests a way to solve problem 1. The
first step consists in using (11) to construct K motion prim-
itives. The second step consists in choosing a combinator
function λ(zf ) that satisfies (15). Obviously, the convergence
points have to be chosen so that (15) is solvable. The follow-
ing proposition gives a necessary and sufficient condition on
z1
f , . . . , zKf for the solvability of (15).

Proposition 5 The linear system (15) is solvable for all zf
in R

n if and only if:

Span(z1
f − zKf , . . . , zK−1

f − zKf ) = R
n. (17)

Proof Easy substitutions allow to write (15) as follows:

K−1∑

k=1

λk(zkf − zKf ) = zf − zKf , (18)

whose solution exists for all zf if and only if condition (17)
is satisfied. ��

Trivially, (17) can be satisfied only if K ≥ n+ 1; there-
fore, if primitives depend only on the initial condition, the
lower bound given by proposition 1 is not achievable. A solu-
tion with K = n + 1 primitives can instead be easily found
requiring z1

f − zn+1
f , . . . , znf − zn+1

f to be a basis of R
n. From

now on, we will consider solutions with a minimum number
of motion primitives, i.e. K = n + 1. In this case there’s a
unique solution of (15) given by:

λ(zf ) = �−1

[
zf
1

]
, � =

[
z1
f . . . zn+1

f

1 . . . 1

]
, (19)

where the invertibility of the matrix is guaranteed by (17).

Note 6 In some approaches combinators are required to be
positive. Different considerations suggest to impose such a
constraint on the combinators. First of all, at the actuator
level, muscles cannot push and this constraint can be enforced
with a positivity constraint on the combinators. In fact, if each
individual primitive (thought of as a muscle synergy) does not
push, then the same holds true for the linear combination of
primitives if combinators are chosen positive. Secondly, the
positivity of combinators is a sufficient (but not necessary)
condition for the stability of the superposition of stabilizing
force fields (see Slotine 2003 for details).

In our formulation, (15) is solvable by positive combin-
ators if zf belongs to the convex hull defined by z1

f , . . . , zKf .
Therefore, our approach can be easily generalized to positive
combinators if the set to be reached, Z or X , is convex.

4.1.1 Generalization to LQ Optimal Motion Primitives

In this section we show that the feedforward motion primi-
tives ζ k(z0, t) introduced in section 4.1 can be chosen to be
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optimal in a linear quadratic (LQ) sense. Other choices are
feasible using (11) but LQ optimality presents some good
control qualities which we want to take advantage of. More-
over, “the use of optimization to model natural behavior is
appealing because of the analogy it bears to the optimization
presumed to occur as a result of natural selection” (quoting
T. Flash in Flash and Hogan 1985).

Consider the LQ optimal control problem with fixed final
state Lewis and Syrmos (1995):

min
u

1

2

∫ T

0

[
z�(t)Qz(t)+ v�(t)Rv(t)

]
dt, (20)

subject to:
{

ż = Az + Bv
z(0) = z0 ∈ R

n, z(T ) = zf ∈ R
p

(21)

with (A,B) controllable. The solution v∗ is known to be com-
posed of two time-varying terms, the first depending linearly
on z0, the second depending linearly on the final condition
zf (see Lewis and Syrmos (1995) for details):

v∗(t; z0, zf ) = H 1(t)z0 +H 2(t)zf . (22)

Coming back to our problem, define:

ζ k(z0, t) = H 1(t)z0 +H 2(t)zkf , (23)

and choose z1
f , . . . , zn+1

f so as to satisfy (17). Then, a solution
to the reaching problem, is obtained choosing a combinator
function λ(zf ) that solves (15). SinceK = n+1, the solution
is unique and is given by (19).

4.2 Feedback on the Nominal Trajectory

The solution proposed in section 4.1 is not robust. The pres-
ence of disturbances and errors in the system dynamics may
preclude the achievement of the goal. Robustness can be ob-
tained adding a feedback on the error between the nominal
trajectory zd and the actual trajectory:

v = G[z(t)− zd(z0, t)] +
n+1∑

k=1

λk(zf )ζ k(z0, t), (24)

where G ∈ R
m×n is the gain matrix. The trajectory zd is the

trajectory that the system would follow in absence of errors;
therefore, a generalization of (14) leads to:

zd(z0, t) =
n+1∑

k=1

λkzkd(z0, t) t ∈ [0, T ], (25)

where zkd is the nominal trajectory followed when v =
φk(z0, t). Substituting this expression into (24) and using the
fact that combinators sum up to one (15b), we finally get:

v =
n+1∑

k=1

λk(zf )
{
ζ k(z0, t)+G

[
z(t)− zkd(z0, t)

]}
︸ ︷︷ ︸

=φk(z0,z,t)

. (26)

Obviously, each φk inherits from ζ k the property of being a
motion primitive. Therefore, from the solution {ζ 1(z0, t), . . . ,
ζ n+1(z0, t)}, we have obtained a robust solution
{φ1(z0, z, t), . . . , φn+1(z0, z, t)} with the same combinator
function λ(zf ) given by (19).

Note 7 The proposed solution is similar to an impedance con-
trol Hogan 1985a. Let η be the error between the nominal and
the actual trajectories, i.e. η = z − zd . If there’s no error on
the system dynamics, we have:

η̇ = (A+ BG)η, (27)

where the gain matrixG ∈ R
m×n is chosen so as to obtain the

desired dynamic behavior for η. Usually G is assumed to be
time-invariant and chosen so as to make the matrix A+BG
stable. However, while performing point to point movements,
one is mainly interested in annihilating the error at the end of
the movement duration (Todorov and Jordan 2002). In these
situations a time-varying gain is preferable and an optimal
choice of this gain can be obtained solving a fixed-final-state
LQ optimal control problem with a time-varying cost func-
tion (see Lewis and Syrmos 1995 for details).

5 Primitives for Nonlinear Kinematic Chains

In the previous section we have proposed a solution to prob-
lem 1 in the case of linear dynamics. In this section we extend
the above solution to the nonlinear dynamic model of a limb.
Having in mind the application to biological motor control,
we also study two related problems. Section 5.2 considers
the problem of performing an action in an arbitrary execu-
tion time. Section 5.3 deals with the problem of compensating
the changes to which the skeleton of an individual is subject
during his growth.

5.1 Input to State Feedback Linearization

Consider the model (1) with x ∈ X = R
n and u ∈ R

m with
n = 2m. It can be easily shown that this model is input to state
feedback linearizable (see Slotine and Li 1991 for details),
i.e. there exists a feedback that makes the state dynamics
linear. In fact, take:

u = M(q)v + C(q, q̇)q̇ +N(q, q̇), (28)

and use the invertibility ofM(q) to obtain q̈ = v whose state
space realization is:

ż = Az + Bv, A =
[

0 I
0 0

]
, B =

[
0
I

]
, (29)

where the state of the linear system z has been chosen equal
to the state of the kinematic chain x = [q�, q̇�]�. Clearly,
results in Section 4.2 can now be directly applied to the lin-
earized dynamics and the new input v can be written as the
linear combination of few motion primitives φk . These prim-
itives must be modified to obtain the primitives �k for the
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original input u. Specifically, the input that drives the sys-
tem to xf regardless of the initial condition can be obtained
combining (28) with (26):

u = M(q)
n+1∑

k=1

λk(zf )φk(z0, z, t)+ C(q, q̇)q̇ +N(q, q̇)

=
n+1∑

k=1

λk(zf )
[
M(q)φk(z0, z, t)+ C(q, q̇)q̇ +N(q, q̇)

]

=
n+1∑

k=1

λk(xf )�k(x0, x, t),

where we used the fact that the λk sum up to one and we have
defined:

�k(x0, x, t) = M(q)φk(x0, x, t)+ C(q, q̇)q̇ +N(q, q̇).

Notice that �k inherits from φk the property of driving the
system to zkf and thus the set {�1, . . . , �n+1} is effectively
a set of motion primitives that solves problem 1 for the non-
linear system (1). Despite the nonlinearity of the dynamics,
the number of primitives turns out to be n+ 1 as in the linear
case. Interestingly, the fact that the combinators sum up to
one (see (15)) has been fundamental to obtain this result.

5.2 Time Scaled Motion Primitives

In the previous section we have shown how to synthesize
primitives for a nonlinear kinematic chain; the execution time
was assumed to be constant and equal to T . In this section
we extend previous results to the case of arbitrary execution
times1.

We consider the case of synthesizing primitives that per-
forms reaching in the time interval [0, T

α
]. If we repeat the

above procedure with T
α

in place of T , we obtain different
primitives for different values of the parameter α, i.e.:

u =
n+1∑

k=1

λk(xf )�k,α(x0, x, t).

The following proposition shows that a much more desir-
able decomposition can be obtained with kinematic chains;
the fundamental step consists in taking advantage of the
double integrator structure (29) that results from the applica-
tion of the feedback linearization. The proof of the proposi-
tion, being irrelevant to the main stream, will be given in the
appendix.

Proposition 6 Consider the nonlinear system (1). There ex-
ists a set of motion primitives {�1, . . . , �K} and a function
λ : R

n × R
+ → R

K such that the decomposition:
1 Here the problem of adjusting the execution time is considered from

a purely theoretical point of view. In real world situations, the control
action should account for limits on how rapidly movements can be exe-
cuted. Within the proposed framework, taking this into account in the
model will only be a matter of imposing bounds on the magnitude of
the combinators.

u =
K∑

k=1

λk(xf , α)�k(x0, x, αt), (30)

solves the problem 1 with execution time T
α

.

The above proposition presents an interesting decompo-
sition for accomplishing the reaching task in an arbitrary exe-
cution time. The coefficients λk depend on the desired task
and on the desired execution time. Conversely, motion prim-
itives are almost invariant to these quantities, except for the
necessary time scaling.

5.3 Dependence of Motion Primitives on Kinematic
Parameters

In this section we want to understand how primitives should
change in order to accommodate modifications of the link
masses, inertias, centers of mass and positions of the joints;
with these parameters we intend to model the growth of an
individual. We will not model changes in the direction of the
rotational axes that describe the joints of the kinematic chain.
Using the Danavit-Hartenberg notation to describe the chain,
the assumption implies that the rotation matrices among the
chain frames do not change, but the translation do. The moti-
vation of such a choice resides in that these quantities are
intuitively invariant in the skeletal structure of a growing up
individual.

Consider a kinematic chain, composed of m link joined
bym revolute joints; the assumption that the number of links
equals the number of joints is nonrestrictive and is made for
purposes of simplicity. We number the joints from 1 to m,
starting at the base. Let mi and I i be the mass and inertia
tensor of the ith link. Joint positions and centers of mass are
specified with respect to an inertial reference frame	0 when
all the joints are held fixed at the reference configuration
qj = 0, ∀j (see Murray et al. 1994). Specifically, let li be
a point on the joint axis of rotation; let ci be the center of
mass. Both are specified in the reference configuration. Let’s
put all the parameters together in a vector p ∈ R

P :

p =
[
mi I

i
1 . . . I

i
6 li� ci�

]�
, (31)

where I i1, . . . , I i6 represent the entries of the symmetric iner-
tia tensor I i . The following proposition claims the existence
of a set of motion primitives that do not depend on the con-
sidered parameters: parametric changes are accommodated
by simply modifying the time-invariant combinators with no
need of recomputing the motion primitives.

Proposition 7 Consider the nonlinear system (1). There ex-
ists a set of control actions �k,h(x, t), a function λ : R

n →
R
K and a function µ : R

P → R
H such that for any p and

any xf the input:

u =
∑

k,h

λk(xf )µh(p)�k,h(x0, x, t), (32)
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steers the system with parameters p to xf regardless of the
initial condition. Moreover, each�k,h is a motion primitive in
the sense that it drives a system with parameters ph towards
a state xkf regardless of the initial condition.

Note 8 The proposed paradigm compensates parametric
changes so as to maintain the resulting system trajectories un-
changed. This solution is reasonable since similar behaviors
are observed in living organisms: perturbations are compen-
sated trying to modify the control action so as to obtain the
same trajectories of the unperturbed system (Mussa-Ivaldi
and Bizzi 2000).

6 Task Oriented Motion Primitives

In the statement of problem 1 we implicitly made the assump-
tion that the task of our control is to drive the kinematic chain
to a desired configuration. However, in many actions, we are
not interested in controlling the kinematic chain configura-
tion but rather a function of its configuration. This distinc-
tion is crucial because if the objective is the achievement of
a given task, then, accordingly, the control action should be
expressed in the task space as proposed by (C. Samson in
Samson et al. 1991).

Interestingly, experiments tell us that even humans ex-
press their control actions in the task space while perform-
ing certain kind of movements2. There is indeed evidence
(Todorov and Jordan 2002) that redundant tasks are achieved
with much more variability in individual degrees of freedom
than in task relevant movement parameters. As an example,
humans, when performing hand movements, display much
more variability in the joint angles of the arm than in trajec-
tory followed by the hand.

In this section we restate problem 1 in terms of an arbi-
trary task function. The above considerations lead to a set
of motion primitives defined in the task space. The given
formulation will reduce the minimum number of primitives.

6.1 Motion Primitives for Output Reaching

Consider the dynamic system (1). Suppose that our task is
the control of z = [y�, ẏ�]� where y is a generic func-
tion of the system configuration i.e. y = h(q) ∈ R

p, with
h : R

m → R
p. Reasonably, we can assume that p ≤ m. The

above considerations imply that a task oriented control action
should care only for the achievement of the task. Therefore,
we have the following definition.

Definition 3 (task oriented motion primitive) Consider a
dynamical system; let its output z belong to the set Y . We
say that the function � : X0 × X × [0, T ] → R

m is a
2 Reaching in absence of obstacles is a movement that humans seem

to plan in the task space. However, in presence of obstacles, humans
are also concerned about avoiding obstacles with the rest of the arm. In
this situation a configuration space planning seems to be more suitable
than the task space planning.

task oriented motion primitive with convergence point zf , if
the control u = �(x0, x, t) drives the system output toward
z(T ) = zf , regardless of the initial condition.

Problem 2 (Synthesis of Motion Primitives for Output
Reaching Tasks.) Consider the dynamic system (1) and let
z ∈ Y . Find a set of task oriented motion primitives {�1, . . . ,
�K} and a continuously differentiable function λ : Y → R

K

such that for every zf ∈ Y , the input:

u =
K∑

k=1

λk(zf )�k(x0, x, t) (33)

steers the output to zf regardless of the initial condition.

A trivial solution to problem 2 can be obtained with a
reformulation in terms of problem 1. The key step is the solu-
tion of an inverse kinematic problem that consists in finding
a state xf whose corresponding output position and velocity
are exactly yf and ẏf . After this preliminary step, the output
reaching is reformulated in terms of state reaching and can be
solved as proposed in section 5.1. Therefore, the trivial solu-
tion is composed of K = n + 1 primitives. However these
primitives are not task oriented. Moreover, it seems like the
trivial solution uses more primitives than necessary. Consid-
ering what we have shown in sections 4.1 and 5.1, we might
expect to be able to solve problem 2 with 2p + 1 motion
primitives. Section 6.1.2 will indeed show how this can be
achieved. The proposed solution has a number of primitives
(K = 2p + 1) generally smaller then the trivial solution,
since 2p ≤ 2m = n.

6.1.1 Lower Bound on K

In this section we extend the result in section 3.1 in order
to fix a lower bound on the number of primitives that solve
problem 2.

Proposition 8 Let {�1, . . . ,�K}, λ : Y → R
K be a solution

to problem 2. Then K ≥ 2p.

Proof The proof follows the same line of the proof in section
3.1, starting with proving that the function λ : Y → R

K is
injective. ��

6.1.2 Input to Output Feedback Linearization

In this section we synthesize a set of task oriented motion
primitives. The fundamental observation is that the system
(1) with output y = h(q) is input to output feedback lineariz-
able (see Isidori 1995 for the definitions and Nori and Frezza
2004b for details). Practically, the linearization constructs a
feedback that makes the input to output relation linear. This
feedback is defined in every nonsingular configuration of the
kinematic chain. The linearizing feedback has the form:

u = α(x)v + β(x). (34)
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The corresponding input to output linear relation with its state
space realization are given by:

ÿ = v −→ ż = Az + Bv. (35)

In this case the state of the linear system can be chosen to be
exactly z = [y�, ẏ�]�. Once again, results in Section 4.2 can
be directly applied to the linear dynamics and the new input
v can be rewritten as the linear combination of K = 2p + 1
motion primitives φk(z0, z, t). The input that drives the sys-
tem to zf regardless of the initial condition can be obtained
combining (34) with (26):

u = α(x)

[
2p+1∑

k=1

λk(zf )φk(z0, z, t)

]
+ β(x)

=
2p+1∑

k=1

λk(zf )
[
α(x)φk(z0, z, t)+ β(x)

]

=
2p+1∑

k=1

λk(zf )�k(x0, x, t),

where, using the fact that z can be expressed as a function of
x, we have defined:

�k(x0, x, t) = α(x)φk(z0, z, t)+ β(x). (36)

Once again the fact that λk sum up to one plays a funda-
mental role. Notice that �k inherits from φk the property of
driving the system to zkf and thus the set {�1, . . . , �2p+1} is
effectively a set of task oriented motion primitives that solves
problem 2 for the nonlinear system (1).

Note 9 Since the input to output feedback linearization leads
to a double integrator, results in section 5.2 can be applied to
solve problem 2 with arbitrary execution time.

Note 10 The above procedure is valid for redundant (p < n)
and non-redundant tasks (n = p). In the redundant case, the
control of the degrees of freedom irrelevant to the task can be
formalized as in (Samson et al. 1991) and (Nori and Frezza
2004b). The basic idea consists in augmenting y ∈ R

p with
an additional task ŷ ∈ R

n−p that has to be driven to zero.

7 Optimal Positioning of the Convergence Points

In previous sections we have proposed solutions to problem 1
and 2. The motion primitives and the corresponding conver-
gence points xkf (or more generally zkf ) can be chosen quite
arbitrarily as long as condition (17) is satisfied. In this sec-
tion we propose a technique for optimally configuring these
convergence points. The choice criterion will be disturbance
rejection.

Suppose we want to drive the system to zf . As already
observed, sinceK = n+ 1, combinators are uniquely deter-
mined by (19). Before going on, we make and justify a crucial
assumption.

Note 11 We will assume | det(�−1)| = 1. This choice is
motivated by the fact that we want the combinators λ to have
the same variability as zf ∈ Z; mathematically this condi-
tion corresponds to requiring the two sets Z and L to have
the same hypervolume, being L the set spanned by the comb-
inators λ when zf spans Z . This last condition is guaranteed
requiring | det(�−1)| = 1.

Let’s now suppose that the convergence points realized
by the motion primitives are affected by errors in the sense
that they differ from the zkf ’s used to compute the combin-
ators. In particular, let z̃kf = zkf + �zkf be the state towards
which the system is driven by�k . Because of errors, the sys-
tem is driven to z̃f = zf + e where e can be computed with
the following expression:

e =
K∑

k=1

λk(zf )�zkf . (37)

Obviously, we are interested in keeping this error as small
as possible choosing suitable values for z1

f , . . . , zn+1
f . The

following proposition (whose proof is given in the appendix)
formalizes the problem and gives a solution. It can be applied
to all the motion primitives proposed in this paper.

Proposition 9 Suppose that zf is a random vector, uniformly
distributed on a unitary sphere centered in the origin, i.e.
zf ∼ U(S1

0 ); moreover, assume zf independent of the errors
�zkf . Finally, suppose that the errors �zkf are independent
and identically distributed random vectors with zero mean
and variance 	�. Then:

E[e] = 0, E[ee�] = 	�E[λ(zf )�λ(zf )]. (38)

Moreover, the error e with minimum variance is obtained
choosing z1

f , . . . , zn+1
f as follows:

zkf = 1
2n
√
n+ 1

L−� (Mvk − v
)

(39)

where v1, . . . , vn is the canonical basis of R
n, vn+1 = 0,

v = [1 . . . 1]�, M = I + vv� ∈ R
n×n and L is any square

matrix satisfying the following: L�L = M .

Note 12 It can be proven that M = M� > 0. Therefore its
square factorization L�L = M is not unique. Specifically,
it is well known that L�

1 L1 = M = L�
2 L2 if and only if

there exists an orthogonal matrix Q such that L1 = QL2.
Accordingly (see the proof for details), if z1

f , . . . , zn+1
f is a

minimum variance solution, then so is Qz1
f , . . . , Qzn+1

f for
any orthogonal change of basis Q.

Note 13 The sphere where zf is distributed may be centered
in any position other than the origin. If the center is zc the
minimal variance solution can be easily proven to be the
translation of the solution above, i.e. zc + z1

f , . . . , zc + zn+1
f .
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Fig. 1 Two degrees of freedom kinematic chain model of a limb for
simulating planar reaching movements

8 Qualitative Comparison with Human Reaching
Experiments

In this section we apply the proposed spinal field paradigm to
control a 2DOF (two degrees of freedom) planar chain (see
Fig. 1); this system has been used as a simplified model of the
human arm in (Morasso 1981) and (Mussa-Ivaldi and Bizzi
2000). The dynamics of this model can be expressed in the
form (1) with m = 2 and q = [θ1 θ2]�; the inputs are the
torques applied at the joints, u = [u1 u2]�, and the task is
the control of the cartesian position of the extremity P , i.e.
y = [xP yP ]�. Table 1 gives the kinematic and dynamic
parameters that we used in the simulations. Table 2 gives the
expressions of the matrices M and C (see Mussa-Ivaldi and
Bizzi 2000 for details).

Following the ideas in section 6 we synthesized a set of
task oriented motion primitives. Specifically, we used results
in Section 4.1.1 and Section 4.2 to construct a set of robust
and LQ-optimal motion primitives.

In a first simulation, the weighting matrices Q and R of
the LQ cost (20) were chosen on the basis of the minimum
energy paradigm (Uno et al. 1989): thus Q = 0 and R = I .
In a second simulation, we slightly modified the procedure
in 4.1.1 in order to obtain a set of motion primitives that real-
ize a minimum jerk control for y (Flash and Hogan 1985).

Table 1 Parameters of the simulated human arm of Figure 1. This val-
ues are the same used in (Mussa-Ivaldi & Bizzi, 2000) and (Shadmehr
& Mussa-Ivaldi, 1994)

Parameter Upper arm Forearm

mass 1.93 [kg] 1.52 [kg]
center of mass 0.165 [m] 0.19 [m]

inertia 0.0141 [kg· m2] 0.0188 [kg· m2]
length 0.33 [m] 0.34 [m]

Table 2 Explicit expressions for the matrices M and C (2 degrees of
freedom planar arm). Parameters values are given in Table 1. The matrix
N is in this case identically null since we are not considering external
forces; even gravity does not affect the system since we are considering
planar movements

Quantity Expression

M(q)
[
.0953 cos(q2)+ .1529 .0477 cos(q2)+ .0368
.0477 cos(q2)+ .0368 .0368

]

C(q, q̇)
[−.0477 sin(q2)q̇2 −.0477 sin(q2)q̇1 − .0477 sin(q2)q̇2
.0477 sin(q2)q̇1 0

]

In both cases, the number of primitives was K = 5. Con-
sidering movements with null final velocity, the number of
primitives was reduced to K = 3 (see below for details).

Derivation of (minimum jerk) motion primitives: Ta-
ble 3 and Table 4 give a full derivation of a complete set of
primitives for performing planar reaching with null initial and
final velecity. The first step consists in computing the linear-
izing feedback, whose expression is given in Table 3 in terms
ofα(x) andβ(x). The second step consists in choosing a set of
feedforward motion primitives ζ k for the linearized system,
ÿ = v. The expressions for these primitives are given in Table

Table 3 Explicit expressions for the input to output feedback lin-
earization (see (Nori & Frezza, 2004b) for a complete derivation).
The function h gives the output as a function of the pose, i.e. y =
[xP yP ]� = h(q). The matrix J (the Jacobian) gives ẏ as a function
of q̇, i.e. ẏ = J (q)q̇. We have, z = [h(q) J (q)q̇]� which gives z as
a function of x = [q q̇]�

Quantity Expression

h(q)
[

0.33 sin(q1)+ 0.34 sin(q1 + q2)
0.33 cos(q1)+ 0.34 cos(q1 + q2)

]

J (q)
[

0.33 cos(q1)+ 0.34 cos(q1 + q2) 0.34 cos(q1 + q2)−0.33 sin(q1)− 0.34 sin(q1 + q2) −0.34 sin(q1 + q2)

]

α(x) M(q)J−1(q)

β(x)

[
−C(q, q̇)+M(q)J (q)

dJ

dt

]
q̇

Table 4 Quantities for the derivation of a complete set of motion prim-
itives (planar arm movements with null initial and final velocity). Prim-
itives are chosen so as to obtain minimum jerk trajectories. The gain
matrix G is chosen as in (Shadmehr & Mussa-Ivaldi, 1994)

Quantity Expression

z
[
xP yP ẋP ẏP

]�

z0

[
xP,0 yP,0 0 0

]�

zkf
k = 1, 2, 3

[
xkP,f y

k
P,f 0 0

]�

z1
f

[
1 0 0 0

]�

z2
f

[
0 1 0 0

]�

z3
f

[
1 1 0 0

]�

ζ k(z0, t)
k = 1, 2, 3




(xP,0 − xk

P,f
)

[
180( t

2

T 4 )− 120( t
3

T 5 )− 60( t
T 3 )

]

(yP,0 − yk
P,f

)

[
180( t

2

T 4 )− 120( t
3

T 5 )− 60( t
T 3 )

]





zkd (z0, t)
k = 1, 2, 3





xP,0 + (xP,0 − xk
P,f

)
[
15( t

T
)4 − 6( t

T
)5 − 10( t

T
)3
]

yP,0 + (yP,0 − yk
P,f

)
[
15( t

T
)4 − 6( t

T
)5 − 10( t

T
)3
]

(xP,0 − xk
P,f

)

[
60( t

3

T 4 )− 30( t
4

T 5 )− 30( t
2

T 3 )

]

(yP,0 − yk
P,f

)

[
60( t

3

T 4 )− 30( t
4

T 5 )− 30( t
2

T 3 )

]





φk(z0, z, t)
k = 1, 2, 3

ζ k(z0, t)+G
[
z − zkd (z0, t)

]

G

[−15 −6 −2.3 −0.9
−6 −16 −0.9 −2.4

]

�k(x0, x, t)
k = 1, 2, 3

α(x)φk(z0, z, t)+ β(x)
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Fig. 2 Row 1: data obtained by Morasso with human subjects (taken from (Morasso, 1981)). Row 2: simulated results obtained using the super-
position of motion primitives and the minimum energy paradigm. Row 3: simulated results using the superposition of motion primitives and the
minimum jerk paradigm. Col. 1: trajectory; Col. 2: tangential velocity profile; Col. 3: angles; Col. 4: angle velocities; Col. 5: angles accelerations

4. They have been computed as follows: a set of convergence
points z1

f , z2
f , z3

f satisfying (17) has been first chosen; then,
the feedforward motion primitives ζ k(z0, t) together with the
corresponding nominal trajectory zkd(z0, t) have been com-
puted solving the following (minimum jerk) optimal control
problems:

[ζ k, zkd ] = arg min
v,z

∫ T

0

[(
d3xP

dt3

)2

+
(
d3yP

dt3

)2
]

dt,

subject to:



ż =

[
0 I
0 0

]
z +

[
0
I

]
v

z(0) = z0, z(T ) = zkf

, (40)

where z = [
xP yP ẋP ẏP

]�
. Interestingly, the solution of

this problem can be analytically computed Flash and Hogan
(1985). Finally, the expressions for φk and �k have been
computed using (26) and (36), respectively.

Simulation of Reaching Tasks: We simulated some
reaching experiments, i.e movements of the output to a de-
sired final position yf with null initial and final velocity.
Simulations consist in applying the following torques to the
planar chain:

u =
3∑

k=1

λk(yf )�k(x0, x, t). (41)

Choosing z1
f , z2

f , z3
f as in Table 4 we obtain the following

generalization of (19):

λ(yf ) = �−1yf , � =



1 0 1
0 1 1
1 1 1



 . (42)

The input (41) has been used to simulate reaching movements
to yf = [xP yP ]�.

We compared our results (row 2 and 3 in Fig. 2) with
those obtained by (Morasso Morasso 1981) with human sub-
jects (row 1). Simulated and real data have many features in
common: (a) reaching tasks are performed following a linear
trajectory from the start to the end positions; (b) the tangential
velocity profile is single peaked and displays a strong sym-
metry. These similarities, achieved with the minimum energy
and the minimum jerk paradigm, were already observed in
the eighties (see Flash and Hogan 1985 and Uno et al. 1989).
The innovative contribution of our work consists in showing
that these paradigms can be obtained as the result of superim-
posing a reduced number of task-oriented motion primitives.

Simulation of Spinal Fields: We compared our
(minimum jerk) motion primitives�k with the force fields in-
duced by microstimulation of the spinal cord in frogs (Giszter
et al. 1993). The comparison is obtained representing each
spinal field by the vector field of the equivalent force F at
the limb extremity. Specifically, consider a steady configura-
tion q0 = [θ1 θ2]�, q̇0 = [0, 0]�, x0 = [q0 q̇0]� and the
associated output: [xP yP ]� = h(q0); then the force field
associated to �k is (appendix A):

F(xP , yP ; t) = J (q0)
−��k(x0, x0, t). (43)

where the expressions of J and �k are given in Table 3 and
Table 4. The force field F(xP , yP ; t) can be represented in the
(xP , yP )−plane and qualitatively compared with the force
field induced by microstimulation of the spinal chord in frogs
(see Figure 3).

Simulated and measured fields share many features: (a)
they present a single convergence point (black dot in the
picture); (b) the orientation of the field is almost constant



Analysis and synthesis of the experimentally observed motion primitives

t = t1 t = t2

x
P

y P

y P

x
P

Fig. 3 Temporal evolution of the force field F around its convergence point. Top row: field generated by microstimulation of the spinal cord
in frogs (from (Giszter et al., 1993)); bottom row: field generated by a synthesized (minimum jerk) motion primitive (see text for details). Left
column: fields at t = t1; right column: fields at t = t2 > t1

(as time goes by) while the magnitude varies: choosing a
time-invariant gain G (see section 4.2) the field magnitude
increases monotonically; instead, with a time-variant gain
(see note 7) the magnitude increases, reaches a peak and
then smoothly decreases.

Optimal Positioning of the convergence points: we
applied results given in Section 7 to optimally place the
convergence points. To simplify the notation, we here as-
sume that the forearm and the upper arm have equal length
(l1 = l2 = 0.5), so that the reachable space is a disk cen-
tered in y = 0. Once again, we focus on driving y to yf with
zero final velocity. With this simplification, zkf = [ykf , 0]
can be represented on a plane. Figure 4 shows an optimal
configuration of the convergence points and Table 5 gives
their numerical values; any other geometry obtained with an
orthogonal transformation would have the same minimum
cost. Interestingly, all these solutions are characterized by
equally spaced convergence points; a similar feature is ob-
served in microstimulated fields (see Giszter et al. 1993 fig. 9,
pag. 477).

9 Motion Primitives for Locomotion

In the previous sections we have shown how the motion prim-
itives can be chosen when the task is defined as a function
of the internal state of the system. Specifically, in section 3
the task consists in reaching a given state, while in section 6
a generic function of the state is considered. In these cases,
the peculiarity of the decomposition into motion primitives

Table 5 Numerical values for the optimally positioned convergence
points

z1
f

1
4
√

3

[
0 −

√
2
3 0 0

]�

z2
f

1
4
√

3

[
− 1√

2
1√
6

0 0
]�

z3
f

1
4
√

3

[
1√
2

1√
6

0 0
]�

is somehow hidden behind the fact that both the tasks and the
primitives are a function of the internal state.

A more illustrative situation is presented in this section,
where we consider an extension of previous results to the
case of locomotion. In this case, the task depends on some
external variables; in fact, the task is defined with respect
to an external reference frame. Primitives, instead, are still a
function of the internal state of the system as observed by Bi-
zzi. Within this framework, we will formalize the distinction
between internal and external variables following the same
approach given in (Bloch et al. 1996).

9.1 Internal and External Configuration Variables

Applying the spinal fields paradigm to locomotion requires a
formalization of the distinction between internal and external
variables. We follow the same approach given in (Bloch et al.
1996) and (Ostrowski 1999), distinguishing the configuration
variables of a locomoting robot into two classes. A first set of
variables, g ∈ G, describes the position of the robot in terms
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Fig. 4 Optimally positioned convergence points within the output space
of a 2DOF manipulator. The points z1

f , z2
f , z3

f are indicated with a dot3.
The superimposed field corresponds to z1

f

Fig. 5 A locomoting robot

of the displacement between a coordinate frame attached to
the robot and an inertial reference frame (Fig. 5). Typically,
the set of displacements is chosen to be SE(m) with m ≤ 3
or one of its subsets. The second class of variables, r ∈ M ,
defines the internal configuration, or shape, of the mechanism
(Fig. 5); M takes the name of shape space and is required
to be a manifold. The total configuration space is therefore
Q = G×M .

3 Notice that some regions of the output space are outside the convex
hull formed by z1

f , z2
f , z3

f . Points outside the convex hull can be reached
only choosing negative combinators. The choice of negative coefficients
does not affect stability: positivity of combinators is a sufficient condi-
tion (see Note 6) for the stability of the linear combination of stabilizing
force fields. However, it is not a necessary condition; therefore, we can
insure stability even with negative coefficients.

Let’s now try to interpret the experiments by Bizzi within
this framework. Here we assume that motion primitives are
functions of the internal state only4. In the formalization
above, the internal state is represented by the shape vector
r and is measured by the so called proprioceptive sensors
(e.g. muscle spindles). On the other hand, we assume that the
combinators are functions of external state only; again, the
external state is represented by the vector g and is measured
by the exteroceptive sensors (e.g. vision). Consequently, the
decomposition into motion primitives corresponds, in our
view, to a decomposition at the level of sensors feedback:

u =
K∑

k=1

λk(g)�k(r, t). (44)

There’s no experimental evidence that justifies the choice of
combinators that depend only on g, i.e. on exteroceptive sen-
sors. However, in actions such as locomotion, where the task
consists in controlling g, this choice is mandatory to achieve
robustness. Theoretically, combinators could depend also on
other signals but, in our view, this choice is nonintuitive and
leads to unnecessary redundancy.

9.2 The Mechanics of Locomotion

The considerations above reveal the importance of separating
the dynamics of the internal variables from those of the exter-
nal ones. Within this framework a fundamental result was
proven by (Bloch et al. Bloch et al. 1996) and particularized
to robot locomotion in (Ostrowski 1999). Essentially, if the
Lagrangian and the nonholonomic constraints of a dynamical
system are G-invariant, then the dynamics can be expressed
as follows:

g−1ġ = ξ = −A(r)ṙ + Ĩ−1(r)p, (45a)

ṗ = 1

2
ṙ�σṙṙ (r)ṙ + p�σpṙ (r)ṙ + 1

2
p�σpp(r)p, (45b)

M̃(r)r̈ + C̃(r, ṙ)ṙ + Ñ(r, ṙ, p) = u, (45c)

wherep is the generalized momentum, ξ is the body represen-
tation of the screw velocity, u is the vector of the forces acting
on the shape variables; the definition of the other quantities
can be found in (Ostrowski 1999). Interestingly, the above
dynamics can be solved separately. In fact, given the tempo-
ral evolution of u, the evolutions of r and p can be obtained
integrating (45b) and (45c) from a suitable initial condition.
Then, the evolution of the group variable g can be obtained
integrating (45a).

4 This assumption is compatible with the framework proposed in
Mussa-Ivaldi and Bizzi (2000), where motion primitives are modelled
as time varying functions of the entire system state q. Specifically,
in that framework q = r (i.e. the internal state corresponds to the
entire system state) and, therefore, primitives are still interpretable as
functions of the internal state only.
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9.3 Future Works on Locomotion

The spinal field paradigm (44) and the dynamics of loco-
motion expressed in the form (45) share the common idea
of separating internal and external variables; therefore, we
believe that the given formulation is ideal for applying the
spinal field structure to locomotion; investigating those ideas
will be the core of our future works.

Interestingly, the problem of controlling (45) with a mod-
ular input structure has already been considered in some re-
cent works (Bullo et al. 1998); (Frazzoli 2004); (Marigo and
Bicchi 1998) not directly inspired by the spinal field structure.
However, in these works, primitives are concatenated rather
than linearly combined. We instead believe that the proposed
linear superposition brings to a complexity reduction that we
should take advantage of.

10 Conclusions

This paper is inspired by the experimentally observed spinal
fields, modelled in terms of motion primitives. The decom-
position into motion primitives is appealing from two points
of view.

– It simplifies the problem of controlling a complex sys-
tem, dividing the input u into two parts: the first, �k ,
depending only on the system internal states (i.e. not
depending on the task or on the environment); the second,
λk , depending only on the task to be executed.

– It is a good model for the process through which new ac-
tions are learnt. Learning can be thought as the complex
problem of choosing an appropriate set of�k for perform-
ing a given action. Once the�k have been learned, differ-
ent instances of the same action are performed choosing
different values for the time-invariant vector of combin-
ators λ = [λ1, λ2, . . . , λK ]�.

Taking advantage of these features, we proposed a control
paradigm based on motion primitives. A number of theoreti-
cal and practical questions have been faced. A first question
regards the existence of a set of motion primitives that cov-
ers a complete set of tasks; in this sense we have proposed
a technique for synthesizing a set of motion primitives that
drive the system output to an arbitrary state in an arbitrary
amount of time. A second question regards the minimum
number of primitives required to perform a given task. We
have proven that we need at least p motion primitives if p is
the dimension of the task space; moreover, we have shown
how to construct a solution withp+1 primitives.A third ques-
tion concerns the problem of adapting a given set of motion
primitives to different systems; remarkably, we have found a
set of primitives that control a continuum of different kine-
matic structures which model the growth of an individual.
Finally, we have solved the problem of disturbance rejection
by optimally placing the convergence points realized by each
motion primitive.

A Accordance between the experiment and the model

The two models described in section 2.2.2 and 2.2.3 clearly
agree with point (a) in section 2.1. In this appendix we prove
that the models agree also with (b). Specifically, we show
that the isometric force fields elicited at the limb extremity
by the elementary control actions �k , satisfy the superpo-
sition principle. Consider a non-redundant kinematic chain
and let Fk be the force field necessary to keep the end-effec-
tor (i.e. the limb extremity) in the configuration q0 when the
generalized forces are given by the control action �k . This
formalization agrees with the experiments on frogs and rats.
Mathematically, the force field Fk (in absence of gravity and
other external forces) is given by (Khatib 1987):

Fk(q0, t) = J (q0)
−��k(x0, t), (46)

where x0 = [q�
0 , 0�]� and J (q) is the Jacobian of the map-

ping between the configuration space and the end-effector
configuration. With this formulation, we observe that the two
models (3) and (4) imply the experimentally observed super-
position of force fields Giszter et al. (1993). Specifically, the
simultaneous activation of the torques �1, . . . , �K leads to
a force field F that is the summation of the fields Fk:

F(q0, t) = J (q0)
−�

K∑

k=1

λk�
k(x0, t) =

K∑

k=1

λkFk(q0, t).

This is not the case when considering redundant kinematic
chains which require different considerations (Mussa-Ivaldi
and Hogan 1991), (Gandolfo and Mussa-Ivaldi 1993).

B How to take advantage of the superposition principle

In this appendix we explore the possibility of solving the lin-
ear version of problem 1 with the superposition of n controls,
each driving the system towards an element of a state space
basis. Mathematically, let:

vk : [0, T ] → R
m such that 0

vk−→ bk, (47)

where k = 1 . . . n and where b1, . . . , bn is a basis for the
state space, i.e. :

Span(b1, . . . ,bn) = R
n.

Proposition 10 With suitable linear combinations of theK =
n controls given by (47) the system (8) can be driven from an
arbitrary initial state z0 to an arbitrary final state zf during
the time interval [0, T ].

Proof We want to show that for suitably chosen combinators
λ(z0, zf ), the input:

v =
n∑

k=1

λk(z0, zf )vk(t) (48)

drives the system from z0 to zf , i.e. z0
v−→ zf . It can be

proven that under the given assumptions Fornasini (1994):

z0
v−→ eAT z0 +

n∑

k=1

λkbk. (49)
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Therefore, if we want the system to be driven to zf , combin-
ators must be chosen so as to satisfy the following:

zf − eAT z0 =
n∑

k=1

λkbk. (50)

Such combinators always exist since b1, . . . , bn is a basis of
R
n. ��

Using proposition 10, we can preserve the controllability
of (8) with an input of the form:

v =
n∑

k=1

λk(z0, zf )vk(t). (51)

However, the structure (51) does not solve problem 1. In fact,
the proposed vk cannot be motion primitives according to the
given definition. Specifically, both the elementary inputs vk

and their linear combinations, drive the system towards a state
which depends on the initial state5. Therefore, the proposed
vk do not fulfill either definition 1 or what required by the
synthesis problem. This fact reflects in that the combinators
depend on both z0 and zf while they should not depend on
the former (compare (9) and (51)).

C Proof of Proposition 3

Proof The state trajectory z(t) followed by the linear system
(8) in response to the open-loop input v : [0, T ] → R

m when
z(0) = z0 is given by:

z(t) = eAtz0 +
∫ t

0
eA(t−τ)Bv(τ )dτ. (52)

If the input is a feedforward motion primitive ζ k(z0, t), we
get:

zk(z0, t) = eAtz0 + Ik(z0, t), (53)

where:

Ik(z0, t) =
∫ t

0
eA(t−τ)Bζ k(z0, τ )dτ. (54)

In particular, if the convergence point of the given primitive
is zkf we have that:

z(z0, T ) = eAT z0 + Ik(z0, T ) = zkf , ∀z0, (55)

so that we have:

Ik(z0, T ) = zkf − eAT z0, ∀z0. (56)
5 This is a direct consequence of having chosen controls vk which

are independent of the system state. Therefore, the application of the
same vk to different initial conditions leads to different final states. To
get a control action capable of driving the system towards the same
convergence point (regardless of the initial condition) we need to resort
to control actions which depend on the system state. In the light of these
observations, Section 4.1 considers controls which depend on the initial
state (feedforward motion primitives) while Section 4.2 generalizes to
feedback on the present state.

Using the linearity of integration, we get that the final state
in response to λ1ζ

1 + λ2ζ
2 is given by:

z(T ) = eAT z0 + λ1I1(z0, T )+ λ2I2(z0, T ) (57)

= λ1z1
f + λ2z2

f + (1 − λ1 − λ2)eAT z0 (58)

Using the invertibility of the exponential matrix, we conclude
that the final state in response to λ1ζ

1 +λ2ζ
2 does not depend

on the initial condition if and only if λ1 +λ2 = 1. If this is the
case, z(T ) = λ1z1

f + λ2z2
f and this proves (13). Moreover,

the trajectory z in response to λ1ζ
1 + λ2ζ

2 is:

z(z0, t) = eAT z0 + λ1I1(z0, t)+ λ2I2(z0, t) (59)

= λ1(eAtz0 + I1(z0, t))

+λ2(eAtz0 + I2(z0, t)) (60)

= λ1z1(z0, t)+ λ2z2(z0, t) (61)

where z1 and z2 are the trajectories in response to ζ 1 and ζ 2

alone. This proves (14) and concludes the proof. ��

D Proof of Proposition 6

Proof Given the particular linear system (double integrator)
that we have obtained with the feedback linearization, we can
easily modify the results of Section 5 to obtain an execution
in arbitrary time T for the system (29). The idea is that an exe-
cution α-times faster can be obtained with an α-times faster
input scaled by α2. Specifically, if the input u(t) t ∈ [0, T ]
drives the system trough the trajectory q(t) from the initial
condition

[ q(0)
q̇(0)

] = [ qi
q̇i

]
, then α2u(αt), t ∈ [0, T

α
] drives the

system trough the trajectory q(αt) from the initial condition[ q(0)
q̇(0)

] = [ qi
αq̇i

]
. This simple observation suggests a way for

finding v in (29) so as to drive the system from
[ qi

q̇i

]
to
[ qf

q̇f

]

in the time interval [0, T
α

]. Let’s apply this idea to (22). We
can write:

v = H 1(t)z0 +H 2(t)zf

= [
H 1

q (t) H
1
q̇ (t)

] [q0
q̇0

]
+ [H 2

q (t) H
2
q̇ (t)

] [qf
q̇f

]
,

where we used z = x = [q�, q̇�]�, zf = [q�
f , q̇�

f ]� and
z0 = [q�

0 , q̇�
0 ]�. Using the observation above, we can easily

prove that the input:

v = [
α2H 1

q (αt) αH
1
q̇ (αt)

] [q0
q̇0

]

+ [α2H 2
q (αt) αH

2
q̇ (αt)

] [qf
q̇f

]
, (62)

drive the system (29) from
[ qi

q̇i

]
to
[ qf

q̇f

]
in the time interval

[0, T
α

]. Moreover, it can be proven that such v can be chosen
optimal for a suitably defined fixed final state optimal con-
trol problem (see Nori and Frezza 2004a). Now, using (62),
we can obtain a set of motion primitives φk that solves the
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reaching task in time T
α

. Specifically, we can give to the input
v (of the linearized system) the same structure of u in (30):

v =
K∑

k=1

λk(zf , α)φk(z0, z, αt). (63)

This structure can be obtained defining:

φk(z0, z, t) = [
α2
kH

1
q (t) αkH

1
q̇ (t)

]
z0

+ [α2
kH

2
q (t)αkH

2
q̇ (t)

]
zkf k = 1 . . . n+ 2.

Combinators are chosen as follows:



λ1
...

λn+2



 =





α2
1 . . . α2

n+2
α1 . . . αn+2

α2
1q1

f . . . α
2
n+2qn+2

f

α1q̇1
f . . . αn+2q̇n+2

f





−1



α2

α

α2qf
αq̇f



 ,

where
[ qf

q̇f

] = zf ,
[ qkf

q̇kf

] = zkf and where the given matrix

should be invertible. A possible choice is:

α1 = · · · = αn = 1, αn+1 = 1, αn+2 = 2,

qn+1
f = q̇n+1 = qn+2

f = q̇n+2
f = 0,

and
[ q1

f

q̇1
f

]
, . . . ,

[ qnf
q̇nf

]
could be any basis for R

n. Notice that

φk(αkt) drives the system to
[ qkf

q̇kf

]
in the time interval [0, T

αk
].

Thus φk can still be considered motion primitives. We are left
with modifying the primitivesφk for v to obtain the primitives
�k for u. This final step consists in adding one primitive so as
to force the sum of the combinators to be one. The procedure
in section 5.1 can then be applied defining:

�k(x0, x, t) = M(q)φk(z0, z, t)+ C(q, q̇)q̇ +N(q, q̇).

��

E Proof of Proposition 7

Proof As a first step, let’s try to understand how the matrices
M ,C andN of the dynamic model (1) change with the vector
of parameters p. To simplify the notation, let’s define a cou-
ple of vectors that depend on p; the first vectorψ contains all
elements of the typemiqk where qk is either an element of lk

or an element of ck; the second vector � contains elements
like miqkqj or I ij . Formally:

ψ = [m1ϕ . . . mmϕ]� ∈ R
nψ , nψ = O(m2),

� =
[
r1�

. . . rm�
]�

∈ R
n� , n� = O(m3),

where:

ϕ =
[
l1�

. . . lm�c1�
. . . cm�

]�
∈ R

nϕ ,

ri =
[
si,1

�
. . . si,nϕ

�
Ii,1 . . . Ii,6

]�
,

si,j = [miϕ2
jmiϕjϕj+1 . . . miϕjϕnϕ

]�
.

In the previous formulas, ϕj indicates the j th element of the
vector ϕ, while I i1, . . . , I i6 are the entries of the inertia tensor:

Ii =



I i1 I

i
2 I

i
3

I i2 I
i
4 I

i
5

I i3 I
i
5 I

i
6



 .

It can be proven (Sciavicco and Siciliano 2000) that the matri-
cesM andC are linearly parameterized by the elements of the
vector�. A similar structure (except for an affine term) holds
for the matrixN when assuming that the only external forces
are gravity and constant frictions at the joints. Specifically,
we have:

M(q) =
n�∑

i=1

�iM
i(q), (64a)

C(q, q̇) =
n�∑

i=1

�iC
i(q, q̇), (64b)

N(q, q̇) =
nψ∑

j=1

ψjN
j (q, q̇)+N0(q, q̇), (64c)

for suitably defined matrices Mi , Ci and Nj that do not de-
pend on li , ci , mi and Ii . Exploiting this structure, we will
show how to obtain primitives �k that solve Problem 1 and
do not depend on the parameters, i.e.:

u =
∑

h,k

λk(xf )µh(ψ,�)�k,h(x0, x, t). (65)

Notice that this structure corresponds to (32) since x =
[q�, q̇�]� and ψ(p), �(p). This decomposition possesses
an interesting property: changes of the parameters � and ψ
(and thus of p) are accommodated modifying the combina-
tors λk , while the motion primitives�k,h are left unchanged.
Practically, such a decomposition can be obtained using the
feedback linearizing equation (28) and one of the proposed
decompositions for linear systems such as (26). Specifically,
we have:

u = M(q)

[
n+1∑

k=1

λk(zf )φk(z0, z, t)

]

+C(q, q̇)q̇ +N(q, q̇).

where as before z = x = [q�, q̇�]�. Then, using (64) we
obtain:

u =
n�∑

i=1

�iM
i(q)

[
n+1∑

k=1

λk(zf )φk(x0, x, t)

]

+


N0(q, q̇)+
n�∑

i=1

�iC
i(q, q̇)q̇ +

nψ∑

j=1

ψjN
j (q, q̇)



 .
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Using the fact that λk sum up to one and zf = xf we get:

u =
n+1∑

k=1

λk(xf )

[
n�∑

i=1

�iM
i(q)φk(x0, x, t)

+
n�∑

i=1

�iC
i(q, q̇)q̇ +

nψ∑

j=1

ψjN
j (q, q̇)+N0(q, q̇)



 .

With easy considerations, the term within the square paren-
thesis can be reformulated as a linear sum with combinators
depending only on � and ψ . We get:

u =
n+1∑

k=1

λk(xf )
H∑

h=1

µh(�,ψ)�
k,h(x0, x, t)

=
∑

k,h

λk(xf )µh(�,ψ)�k,h(x0, x, t),

for a suitably chosen scalarH and a suitably defined function
µh(�,ψ); the function �k,h can be chosen to be a motion
primitive for the system with parameters �h, ψh, i.e.:

�k,h(x, t) =
n�∑

i=1

�h
i M

i(q)φk(x0, x, t)+
n�∑

i=1

�h
i C

i(q, q̇)q̇

+
nψ∑

j=1

ψh
j N

j (q, q̇)+N0(q, q̇).

Therefore, �k,h drives the system with parameters �h, ψh

to the state xkf = zkf . Moreover, it can be proven that �h,
ψh can always be chosen in such a way that there exists a ph

such that ψ(ph) = ψh and �(ph) = �h. This conclude the
proof.

Notice that, even if the number of the primitives was
noticeably increased (from O(n) to O(n4)), the control par-
adigm has gained in terms of flexibility. Many different kine-
matic structures can be controlled to the desired configuration
with simple modifications of the function that computes the
time invariant combinators. ��

F Proof of Proposition 9

Proof Let’s first observe that the random vector λ is indepen-
dent of the errors�zkf ; this property is in fact inherited from
zf , assumed independent of �zkf . Using these independen-
cies together with (37) it can be easily proven that the error
e is zero mean, i.e. E[e] = 0. Considering now the variance
of e, we have:

E[ee�] = E






[
∑

k

λk�zkf

]


∑

j

λj�zjf




�



=
∑

k,j

E
[
λkλj�zkf�zjf

�]

=
∑

k,j

E
[
λkλj

]
E
[
�zkf�zjf

�]

=
∑

k

E
[
λ2
k

]
E
[
�zkf�zkf

�]

= 	�E[λ�λ],

where we used the independence relations between λk and
�zkf .

Now, we are left with choosing zkf so as to minimize the
variance of e under the constraints | det(�)| = 1; to simplify
the proof we assume det(�) = 1. First of all, we observe that
minimizing the variance matrix is equivalent to minimizing
E[λ�λ] = E[λ2

1 + · · · + λ2
n+1]. We have:

E[λ�λ] = c

∫

S1
0

[
λ2

1(zf )+ · · · + λ2
n+1(zf )

]
dzf ,

where c is a suitably defined normalization constant and S1
0

is the sphere centered in the origin. Rearranging (19) and
completing the squares, the above integral can be written:
∫

S1
0

{[
λ̂(zf )− λ0

]�
M
[
λ̂(zf )− λ0

]
+ d

}
dzf ,

where:

λ̂(zf ) = �̂−1
(

zf − zn+1
f

)
, λ0 = M−1v,

�̂ = z1
f − zn+1

f . . . znf − zn+1
f , d = 1 − v�M−1v.

Therefore, we can write the integrand explicitly as a function
of zf :
∫

S1
0

[(
zf − zc

)�
�̂−�M�̂−1

(
zf − zc

)+ d
]

dzf ,

where we have defined zc = zn+1
f + �̂λ0.

Going back to the minimization problem, let’s introduce
a change of variables; define the new optimization variables
to be zc and D, with D = �̂−�M�̂−1; it can be proven that
M = M� > 0 so that D = D� > 0. Details on how to
retrieve the original variables from zc and D will be given
at the end of the proof. For purpose of simplicity, let’s as-
sume D diagonal; this is not restrictive since one can easily
prove that a given minimum can be transformed, using a suit-
able orthogonal matrix, into an equivalent minimum with D
diagonal.

Ignoring the constants that do not play a role in the mini-
mization, we are left with the following minimization problem:

min
D=D�>0

min
zc

∫

S1
0

[
(z − zc)�D (z − zc)

]
dz,

It can be proven that det(�) = det(�̂) and det(M) = 1 + n
so that the constraint det(�) = 1 reflects into the constraints
det(D) = n + 1. The minimization with respect to zc is
obtained with z∗

c = 0. This can be proven observing that the
above integral equals:
∫

S1
0

z�Dz dz +
∫

S1
0

z�
c Dzc dz,
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since:∫

S1
0

z�
c Dz dz =

∫

S1
0

z�Dzc dz = 0 ∀zc.

Consequently, it remains to solve the following optimization:

min
D=D�>0

∫

S1
0

z�Dz dz s.t. det(D) = n+ 1.

Writing D = diag(d2
1 , . . . , d

2
n) we reduce the problem as

follows:

min
d1,...,dn

∫

S1
0

d2
1z

2
1 + . . .+ d2

nz
2
n dz s.t. d2

1 · . . . · d2
n = n+ 1.

Observing that:
∫

S1
0

d2
1z

2
1dz = . . . =

∫

S1
0

d2
nz

2
n dz = cost.

we finally get:

min
d1,...,dn

(
d2

1 + . . .+ d2
n

)
s.t. d2

1 · . . . · d2
n = n+ 1,

whose solution is d2
1 = . . . = d2

n = n
√
n+ 1. Therefore

D∗ = diag( n
√
n+ 1, . . . , n

√
n+ 1). To recover the original

optimization variables let’s write M = L�L (L square) so
that from D∗ = �̂−�M�̂−1 we get:

D∗ = (L�̂−1)�L�̂−1.

We are left with a standard problem of retrieving all the square
factorizations of a positive definite matrix. The solution is
known to be be the product QN , where Q is an arbitrary
orthogonal matrix and N is a particular solution (i.e. D∗ =
NN�). Therefore:

L�̂−1 = QN ⇒ �̂ = N−1QL.

Choosing N = diag( 2n
√
n+ 1, . . . , 2n

√
n+ 1) we get:

�̂ = 1
2n
√
n+ 1

QL.

Theoretically we should multiply the matrix �̂ by another
orthogonal matrix in order to account for having assumedD
diagonal; however, this multiplication can be omitted since
the product of orthogonal matrices is again an orthogonal
matrix. Let’s now construct z1

f , . . . , zn+1
f . From z∗

c = zn+1
f +

�̂λ0 = 0 we get:

zn+1
f = −�̂λ0 = − 1

2n
√
n+ 1

QL−�v,

where we used the definition λ0 = M−1v = L−1L−�v.
Rearranging the definition of �̂ we get:

zkf = �̂vk + zn+1
f = 1

2n
√
n+ 1

QL−�(Mvk − v),

for k = 1, . . . , n. WhenQ spans the entire set of the orthog-
onal matrices we get all the minimum variance solutions; a
particular solution is then obtained choosingQ=I as in (39).

��
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