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Abstract

Previous simulation studies have stressed the importance of the use of fMRI priors in the estimation of cortical current density. However,
no systematic variations of signal-to-noise ratio (SNR) and number of electrodes were explicitly taken into account in the estimation process.
In this simulation study we considered the utility of including information as estimated from fMRI. This was done by using as the dependent
variable both the correlation coefficient and the relative error between the imposed and the estimated waveforms at the level of cortical
region of interests (ROI). A realistic head and cortical surface model was used. Factors used in the simulations were the different values
of SNR of the scalp-generated data, the different inverse operators used to estimated the cortical source activity, the strengths of the fMRI
priors in the fMRI-based inverse operators, and the number of scalp electrodes used in the analysis. Analysis of variance results suggested
that all the considered factors significantly afflict the correlation and the relative error between the estimated and the simulated cortical
activity. For the ROIs analyzed with simulated fMRI hot spots, it was observed that the best estimation of cortical source currents was
performed with the inverse operators that used fMRI information. When the ROIs analyzed do not present fMRI hot spots, both standard
(i.e., minimum norm) and fMRI-based inverse operators returned statistically equivalent correlation and relative error values.
© 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Electroencephalography (EEG) is a useful technique for
the study of brain dynamics and functional cortical connec-
tivity, because of its high temporal resolution (milliseconds;
Nunez, 1995, 1981). EEG reflects the activity of cortical
generators oriented both tangentially and radially with re-
spect to the scalp surface. However, the different electrical

conductivity of brain, skull, and scalp markedly blurs the
EEG potential distributions and makes the localization of
the underlying cortical generators problematic. Neural
sources of EEG can be localized by making on a priori
hypothesis on their number and extension. When the EEG
activity is mainly generated by a known number of cortical
sources (i.e., short-latency evoked potentials), the location
and strength of these sources can be reliably estimated by
the dipole localization technique (Scherg et al., 1984). How-
ever, with the exception of the early processing of sensory
responses, event-related cortical responses include a distrib-
uted network of several and unknown areas. When the
distributed cortical network is supposed to be active, corti-
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cal sources of EEG data should be modeled by linear in-
verse estimation (Dale and Sereno, 1993; Dale et al., 2000).
This approach implies the use both of thousands of equiv-
alent current dipoles as a source model and of realistic head
models, reconstructed from magnetic resonance images, as
a volume conductor medium. The use of geometrical con-
stants can generally reduce the solution space (i.e., the set of
all possible combinations of the cortical dipoles strengths).
For example, the dipoles can be disposed along the recon-
struction of cortical surface with a direction perpendicular
to the local surface. An additional constraint is to force the
dipoles to explain the recorded data with a minimum or a
low amount of energy (minimum-norm solutions; Dale and
Sereno, 1993; Hämäläinen and Ilmoniemi, 1984). The so-
lution space can be further reduced by using information
deriving from hemodynamic measures (i.e., functional mag-
netic resonance imaging (fMRI)–BOLD phenomenon) re-
corded during the same task. The rationale of a multimodal
approach is that neural activity, modulating neuronal firing
and generating EEG potentials, increases glucose and oxy-
gen demands (Magistretti et al., 1999; Liu et al., 1998; Dale
et al. 2000). This results in an increase in the local hemo-
dynamic response that can be measured by fMRI (Grinvald
et al., 1986; Puce et al., 1997). Hence, fMRI responses and
cortical sources of EEG data can be spatially related (Logo-
thetis et al., 2001).

Determination of the priors in the resolution of the linear
inverse problem was performed with the use of information
from the hemodynamic responses of the cortical areas (Liu
et al., 1998; Dale et al., 2000). In using the block-design
fMRI priors for the estimation of current strengths we failed
to take into account information about the coupling of the
neural sources. Previous approaches of the cortical current
density estimation used only the diagonal elements of the
matrix that describes the prior estimates of the dipole
strength variance as a function of the corresponding fMRI
activation (Liu et al., 1998; Liu 2000). However, it is also
possible to insert the information of the coupling of the
hemodynamic activity between different cortical sources by
means of the off-diagonal terms of such matrix (Liu, 2000;
Cincotti et al., 2001; Babiloni et al., 2002). Technically, this
information was coded through the off-diagonal elements of
the source metric of the inverse problem, while the diagonal
elements of this metric were equal to those already used by
the standard fMRI-based inverse operators. To estimate the
hemodynamic correlation of the neural sources, we used the
hemodynamic responses of the event-related fMRI and the
time course of the source responses. This estimate was
evaluated computing the cross-correlation on the hemody-
namic waveforms obtained by the averaged fMRI activity in
the analyzed region of interest. Namely, the amount of
information stored for the solution of the inverse problem
by using also the off-diagonal terms of the source-metric
matrix is superior to those encoded by using the standard
fMRI-based inverse operators (Liu, 2000). However, it still
must be proved, through appropriate simulations whether

this increased amount of information could be useful for the
estimation of cortical current density.

Previous simulation studies (Liu et al., 1998; Liu, 2000)
have focused on the efficacy of the estimation of cortical
current density by using fMRI priors under a particular level
of the signal-to-noise ratio (SNR;10) and a particular num-
ber of MEG sensors (122). On the other hand, commonly
encountered event-related potentials/fields showed values of
SNR equal to 5, 3, or even 1 (Regan, 1989). Either 29 or 61
electrodes, placed on the scalp in agreement with the stan-
dard of the extension of the old International 10/20 system
(Regan, 1989), are also commonly used in the EEG litera-
ture. For these reasons, we would like to investigate the
effects of the inclusion of different kinds of fMRI priors for
the estimation of the cortical current density under different
numbers of sensors and different levels of SNR of the used
data. Simulations were performed with the aid of realistic
head volume-conductor model and a realistic cortical sur-
face, derived from magnetic resonance imaging of an ex-
perimental subject. On the cortical reconstruction we con-
sidered seven region of interest (ROI), in which simulated
cortical waveforms were generated. The estimation process
retrieved the cortical waveforms at the ROI level. First, the
estimation of current density for each one of the 3000
current dipoles used was performed. Second, the average of
cortical waveforms within each particular ROI considered
was computed. The dependent variables used for the statis-
tical analysis were the relative errors and the correlation
coefficient values between the estimated and the generated
waveforms at the cortical level in each ROI analyzed.

The specific questions at the base of the present experi-
mental design are:

1. What is the influence of the variable SNRs and the
number of electrodes used on the estimation of the
cortical current density by using (or not) fMRI priors?

2. Does the use of fMRI priors increase the efficacy of
the cortical current density estimation in the ROIs in
which fMRI hotspots are present?

3. Does the use of fMRI priors decrease the efficacy of
the cortical current density estimation in the ROIs in
which there are no fMRI hotspots?

Methods

Head and cortical models

For the stimulation purposes, we used a subject’s realis-
tic head model reconstructed from TI-weighted MRIs (256
images; 256 � 256 pixels; voxel size 1.0 � 1.0 � 1.0).
Scalp, skull, and dura mater compartments were segmented
from MRIs and triangulated with about 1000 triangles for
each surface. Sources model was built with the following
procedure: the cortex compartment was segmented from
MRIs and triangulated obtaining a fine mesh with about
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100,000 triangles; a coarser mesh was obtained by resam-
pling the fine mesh previously described to about 3000
triangles (this was done by preserving the general features
of the neocortical envelope, especially in correspondence of
pre- and postcentral gyri and frontal mesial area); and an
orthogonal unitary equivalent current dipole was placed in
each node of the triangulated surface, with direction parallel
to the vector sum of the normals to the surrounding trian-
gles.

Estimation of cortical source current density

The solution of the following linear system:

Ax � b � n (1)

provides an estimation of the dipole source configuration x
that generated the measured EEG potential distribution b.
The system includes also the measurement noise n, sup-
posed normally distributed.

Also, in Eq. (1) A is the lead field matrix, in which each
jth column describes the potential distribution generated on
the scalp electrodes by the jth unitary dipole. In the EEG
case the electrical lead field matrix A and the data vector b
must be referenced consistently. Among the several equiv-
alent solutions for the underdetermined system (1), the
current density solution vector � was chosen by solving the
following variational problem for the sources x (Grave de
Peralta and Gonzalez Andino, 1998):

� � arg min ��Ax � b�M
2 � �2� x�N

2 �, (2)

where M and N are the matrices associated with the metrics
of the data and of the source space, respectively, � is the
regularization parameter, and xM represents the M norm of
the vector x. The solution of the variational problem de-
pends on the adequacy of the data and source space metrics.
Under the hypothesis of M and N positive definite, the
solution of Eq. (2) is given by computing the pseudoinverse
matrix G (often called inverse operator) according to the
following expressions:

� � Gb, G � N�1A� �AN�1 A� � �M�1��1 (3)

An optimal regularization of this linear system was ob-
tained by the L-curve approach (Hansen, 1992a). This
curve, which plots the residual norm versus the solution
norm at different � values, was used to choose the optimal
amount of regularization in the solution of the linear inverse
problem. Computation of the L-curves and optimal � cor-
rection values was performed with the original routines of
(Hansen 1992b). The metric M characterizes the idea of the
closeness in the data space. It can be particularized taking
into account the sensors noise level, using either the Ma-
halanobis distance (Grave de Peralta and Gonzalez Andino,
1998) or the identity matrix (Hämäläinen and Ilmoniemi,
1984). On the other side, the source metric N, as shown in
the next section, can be particularized by means of the a

priori information of the hemodynamic responses of the
single voxels, as derived from the fMRIs.

Electrical source constraints

For the solution of the linear inverse problem two char-
acterizations of the inverse source metric N are very popular
in literature. The first one is the so-called minimum-norm
source metric (Hämäläinen and Ilmoniemi, 1984), in which
no a priori information on the sources is available. In this
case, the inverse of the source metric is represented by the
equation

N�1 � I, (4)

where I is the identity matrix and N�1 is the inverse of the
source metric matrix.

The second characterization of the source metric N takes
into account all the cortical voxels on the basis of their
electrical “closeness” to the EEG sensors. This allows us to
remove the voxels inverse dependence on the sensor-to-
dipole distance (column norm normalization; Pascual-Mar-
qui, 1995). In this case, the inverse of the resulting source
metric N is

�N�1�ii � �A �i��2, (5)

where (N�1)ii is the ith element of the inverse of the diag-
onal matrix N and all the other matrix elements Nii are set
to 0. The L2 norm of the ith column of the lead field matrix
A is denoted by �A�i�. The inverse operators characterized
by the choice of the source metric described by Eqs. (4) and
(5) are referred in this paper as minimum norm (MN) and
column-normalized minimum norm (MNC), respectively.

Functional hemodynamic coupling constraints

The information related to the statistical hemodynamic
activation of ith cortical voxels can be included into the
linear inverse estimation. We will now present two different
ways in which this can be implemented.

The introduction of fMRI priors into the linear inverse
estimation produces a bias in the estimated solution vector.
Statistically significantly activated fMRI voxels, returned
for instance by the so-called percentage change approach
(Kim et al., 1993), are taken into account as weights for the
EEG-measured potentials. The inverse of the resulting
source metric N is now

�N�1�ii � g���2 (6)

�N�1�ii � g���2�A �i��2, (7)

where (N�1)ii and �A�i� have the same meaning described
above for the ith cortical voxel examined. The g(�i) is a
function of the statistically significant percentage increase
of the fMRI signal during the task, compared to the rest
state. This function g(�i) is assigned to the ith dipole of the
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modeled source space. A possible way to express such
function is.

g��i�
2 � 1 � �K � 1���i/max��i��,

K � 1, �i � 0, (8)

where �i is the statistically significant percentage increase
of the fMRI signal during the task state for the ith voxel. It
must be noted that different choices of g(�i) function are
possible for the ith cortical voxel examined. For instance,
setting g(�i) � �i only if �i is statistically significantly
increased compared to the rest state, and zero elsewhere
(George et al., 1995). Another possible way to set the g(�i)
function is g(�i) � �, (with � � [0 1]), for each ith brain
voxel in which the �i is statistically significantly increased
during the task with respect to the rest state and 1 elsewhere
(a typical choice is � � 0.1; Liu et al., 1998; Liu, 2000). In
Eq. (8), the value of the parameter K tunes the strength of
the inclusion of the fMRI constraints in the source space.
Setting K � 1 let us disregard fMRI priors, thus returning to
a purely electrical solution (equals to the MN and MNC
inverse operators). Instead, a value of K � 1 allows only the
sources associated with fMRI active voxels to participate in
the solution of the linear inverse problem. The inverse
operators for the estimation of the cortical activity obtained
with the use of the source metric expressed by Eqs. (6) and
(7) will be denoted in the following as diag-fMRI and
diag-fMRINC, respectively.

Both the previous definitions of the source metric N
(Eqs. (6) and (7) result in a matrix with the off-diagonal
elements equal to zero. Now, using the off-diagonal ele-
ments of the matrix N we are able to insert the information
about the functional hemodynamic coupling of the cortical
sources. In particular, we set the generic ij entry of the
inverse of matrix N as

�N�1�ij � g��i� g��j� · corrij (9)

�N�1�ij � g��i� g��j��A �i��1�A �j��1 · corrij, (10)

where �A�i� and g(�i) have the same meaning described
above for the ith cortical voxel examined. corrij is the degree
of functional coupling between the ith source and the jth
source j during the particular task analyzed, as revealed by
computing the correlation of their hemodynamic responses
from the event-related fMRI data. The inverse operators
obtained with the use of the source metric presented in Eqs.
(9) and (10) will be denoted as corr-fMRI and corr-fM-
RINC, respectively. It is worth noticing that in the case of
uncorrelated sources (corrij � 0, i 	 j; corrii � 1), the
corr-fMRI formulation leads back to the diag-fMRI one.

Regions of interest and electrode arrays

Seven cortical ROIs were drawn by two independent and
expert neuroradiologists on the computer-based cortical re-
construction of the head model used for simulations. These

ROIs were those related to the primary right and left sen-
sorimotor (S1 and M1) and to the supplementary motor area
(SMA). In particular, the ROIs representing the left and
right S1 areas included Brodmann areas (BA) 3, 2, 1, while
the ROIs representing the left and right M1 included BA 4.
The ROIs representing the SMA region were obtained from
the cortical voxels belonging to BA 6. There were no at-
tempts to separate the proper and anterior SMA. Further-
more, ROIs from the right and the left posterior parietal
areas (denoted in the following as PP; including at large the
BA 5, 7, 39, 40, 43) were considered. These last two cortical
regions were used to model cortical areas that are larger
than conventional BA used for the other ROIs.

Three electrodes arrays were considered. The first one
had 128 electrodes regularly disposed on the scalp sur-
face. The others had 61 and 29 electrodes, resulted from
a regular downsampling of the full electrode configura-
tion. This subsampling aimed to simulate both standard
(29) and high-resolution EEG recordings (61 and 128), in
agreement with the standard of the extension of the
International 10/20 system (Sharbrough et al., 1991). Fig.
1 shows the different electrode arrays used in the simu-
lation on the realistic head model and the ROIs used in
the simulation process.

Source reference waveforms

Seven source waveforms estimated from a high-reso-
lution movement-Related potentials (MRP) recording
(128 electrodes) were used as reference for the simula-
tion. The EEG was recorded in a healthy subject who
executed a set of unaimed, self-paced, and brisk move-
ments of the right middle finger. The original MRP data
were sampled at 300 Hz, from 3S before to 2 after the
EMG onset (1500 data points). To reduce the dimension
of the data set, this was downsampled to 128 data points
after proper low-pass, finite impulse response and zero
phase filtering. The collapsed source waveforms were
estimated by means of the minimum-norm inverse oper-
ator (Hämäläinen and Ilmoniemi, 1984; Dale and Sereno,
1993), with the head volume conductor, cortical models,
and the ROIs described above (thus the same used for the
simulations)

Distribution of fMRI activated dipoles along the ROIs

Three of the seven ROIs considered in this study were
chosen as site for the fMRI activations: specifically, the
ROIs modeling the left S1, the left M1, and the SMA. In the
cortical regions with fMRI hot spots, in different simula-
tions different percentages of coverage of the cortical ROI
voxels were used (25, 50, and 100%). Moreover, for each
simulation, the same percentage of coverage was used for
all the ROIs with fMRI hot spots. Each jth value of the
inverse of the source metric (N) of a jth dipole belonging to
a particular ROI was associated with a prefixed g(�j) value,
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according to Eq. (7) or Eq. (10). These values were esti-
mated from standard fMRI recordings at 1.5 T, performed
on the same experimental subject used for EEG recordings.
Block-design and event-related fMRI acquisitions during
the same voluntary right-middle finger extensions were per-
formed. Max values of � at 1.2% were found in the ana-
lyzed movement task using the statistically significant brain
voxels detected by MEDEX software.

Using the event-related fMRI data acquired, we com-
puted the average correlation coefficient between the hemo-
dynamic waveforms of each voxel that belongs to a ROIs
similar to those used in the simulation study (primary so-
matosensory and motor area, supplementary motor area).
This average value of correlation (corrij � 0.85) was hence
used to characterize the off-diagonal terms described in Eqs.
(9) and (10) for all the current dipoles belonging to the same
ROI. Also, from the event-related fMRI recording we esti-
mated the average correlation values between the hemody-
namic waveforms of brain voxels belonging to the different
ROIs. We used this average value (corrZij � 0.7) in Eqs. (9)
and (10) for all the off-diagonal terms of the fMRI inverse
operator related to current dipoles belonging to different
ROIs.

The dependent variables used

In the different experimental conditions, the accuracy of
the estimated cortical current strengths array (Es) from the
generated one (Gs) was evaluated by computing two in-
dexes, to be used in the simulations as dependent variables.
The first one was the correlation coefficient (CC) between
the generated and the estimated average source waveforms,
according to the formula

CC �
Gs • Es

��Gs�2
2 · �Es�2

2
, (11)

where ● stands for the usual inner products between the Gs
and the Es vectors. The second one was the relative error
(RE), computed according to the formula

RE �
�Gs � Es�2

�Gs�2
, (12)

where �x�2 is the standard L2 norm of a vector x.

Experimental design

The experimental design, also represented in Fig. 2, was
drawn as follows:

1. By means of the electric lead field matrix the source
reference waveforms were propagated, through the
realistic volume conductor, in the direction of the
simulated electric sensor arrays. The arrays had vari-
able numbers of electrodes (128, 61, 29). Depending
on this numbers, three separate HREEG data sets
were produced.

2. Variable coverage of fMRI hot spots of left S1, left
M1, and SMA areas was performed at three different
percentages (25, 50, and 100%) (point 2 of Fig. 2).

3. White noise was added to these three data sets, to
reach seven different levels of signal-to-noise ratios
(SNRs; infinite, 30, 20, 10, 5, 3, 1). This recalls the
typical range of SNR commonly encountered in
evoked, motor-related, and cognitive-related EEG re-
cordings, respectively (points 3 and 4 of Fig. 2).

4. The inverse electric operators described above were
applied to these EEG data sets and the consequent
cortical activity was estimated in each ROI. Six types
of weights for the inverse operators have been used:
the minimum norm estimate (MN, Eq. (4)), the col-
umn normalized minimum norm estimate (MNC, Eq.
(5)), the block-design fMRI constraint both with and
without the column normalization (diag-fMRI and
diag-fMRI NC, Eqs. (6) and (7), respectively), and the
event-related fMRI constraint both with and without
column normalization (corr-fMRI and corr-fMRI NC,
Eqs. (9) and (10), respectively) (point 5 of Fig. 2).

5. For each ROI the estimated current source density
was the average of the current estimates of all the
dipoles belonging to the ROI (point 6 of Fig. 2).

6. The adequacy of the reconstructed cortical activity
was analyzed by computing the CC and the RE at ROI
level between the generated and the estimated activ-
ities, along all the simulated trials.

For each level of SNR adopted, 32 occurrences of white
noise data were considered on the simulated EEG scalp
waveforms. This resulted in 32 values of CC and RE vari-
ables for each level of the independent variables considered.
These computations were performed to increase the reliabil-
ity of the statistical results obtained. The average values of

Fig. 1. The head model with the region of interests (ROI) used in this study. The ROIs representing the supplementary motor area, the primary somatosensory
area and the motor area. (Top row) Different electrode arrays used in this simulation study. Right, full array with 128 electrodes; center, array with 61
electrodes; and left, downsampling at 29 electrodes.
Fig. 2. Different steps involved in this simulation study. (1) Generation of the signal at the cortical level; (2) fMRI hot spots coverage of the ROI at 25, 50,
and 100%; (3) generation of the EEG signal by means of the realistic head model and the different EEG electrodes arrays (29, 61, and 128 electrodes); (4)
simulated EEG signal plus white noise at different levels of SNR (infinite, 30, 20, 10, 5, 3, 1); (5 and 6) estimation of current density at the ROI level with
the different inverse operators; (7) comparisons between the estimated and the generated cortical waveforms by means of correlation coefficient (CC) and
relative error (RE) indexes.
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CC and RE were then used in the successive statistical
analysis.

Statistical analysis

The obtained results were subjected to separate analysis
of variance (ANOVA). The main factors of the ANOVAs
were the SNR (with seven levels: infinite, 30, 20, 10, 5, 3,
1), the type of inverse operator used (with and without fMRI
constraints, with six levels) denoted as INVERSE; the value
of K parameter for the fMRI-based inverse operator (with
four levels: 3, 5, 7, and 10), denoted as fMRISTRENGTH;
and the number of electrodes of the recording array (ELEC-
TRODES, with three levels: 128, 61, and 29). Separate
ANOVAs were performed on CC and RE data obtained for
the full array of 128 electrodes to understand the effect of
the number of fMRI hot spots for each analyzed ROI
(fMRICOVERAGE, with three levels: 25, 50, and 100%).
Table 1 reports the independent variables and their relative
levels of variations used.

In all the evaluated ANOVAs, the correction of Green-
house–Gasser for the violation of the spherical hypothesis
was used. The post hoc analysis with the Scheffe’s test at
the P � 0.05 statistical significance level was then per-
formed.

Results

Effects of the intensity of fMRI priors on the current
density estimation

For each ROI the analysis of the simulation results was
performed separately. All the performed ANOVAs included

the following main factors: fMRISTRENGTH, SNR, and
INVERSE. Simulations were performed using data from the
128 electrodes and fMRI coverage of 100% of left S1, left
M1, and SMA ROIs. Both CC and RE indexes were used.

All the seven ANOVAs performed (one for each ROI
analyzed) returned a coherent and similar pattern of results
depending or not on the inclusion of fMRI hot spots in the
ROI analyzed. In the following we present data for the SMA
as representative of the ROIs with fMRI hot spots included
and data from the right PP as representative of the ROIs
without fMRI hot spots included. This can be done without
loss of generality.

ROI with the presence of fMRI hotspots
For all the main factors analyzed and their interactions

with P 
 0.0001, the three-way ANOVA returned statisti-
cally significant values for both CC and RE indexes, eval-
uated on the ROI representing the SMA. Similar results to
those obtained for the ROI representing the SMA were
found in all the other ROIs with the fMRI hot spots in-
cluded, that is, the left primary somatosensory and left
motor area. In particular, the results were only different in
the absolute values of the F scores. Also, for the left S1 and
the left M1 all the main factors investigated as well as all
their interactions resulted statistically significant with P 

0.001. The analysis of the post hoc tests performed for all
the ROIs covered with fMRI hot spots revealed that fMRI-
based inverse operators (diag-fMRI, diag-fMRINC, corr-
fMRI, corr-fMRINC) reached statistically significant higher
values of CC with respect to the inverse operators that do
not use fMRI constraints (MN and MNC). Among the
fMRI-based inverse operators, the value of fMRIS-
TRENGTH of K � 3 returned the best CC results for a large
set of SNR levels when compared with all the others (K �

Fig. 3. Seven panels are shown, one for each particular value of SNR used in simulations. In each panel the vertical axes reports the average of the relative
error (RE) index computed after the current density estimation. Also, the horizontal axis reports the different inverse operators used for the estimation of
current density. Each data point represents an averaged value of the RE index, corresponding to a particular SNR and a particular inverse operator in the
simulations performed. Three different symbols are used to characterize the estimation performed with data from 29 electrodes (circles), 61 electrodes
(squares), and 128 electrodes (diamonds). Significant reductions of RE values were noted for the fMRI-based inverse operators with respect to the other
inverse methods with SNR values between 5 and 1. Simulations performed with an fMRI hot spots percentage coverage of the ROI equal to 100%, and a
level of fMRI strength equal to 3.
Fig. 4. Average data for correlation coefficient (CC) in the right posterior parietal (PP) ROI at the different levels of the main factors considered
(ELECTRODES, INVERSE, and SNR). Simulations performed at 100% of fMRI coverage for the ROIs SMA, left S1, and left M1. Same conventions used
for Fig. 3. Simulations performed with an fMRI hot spots percentage coverage of the ROI equal to 100%, and a level of fMRI strength equal to 3. Same
conventions are used for Fig. 3.

Table 1
Independent variables used for the statistical analysis of the estimated current densities and their relative levels of variation

Variable Description Levels

FMRISTRENGTH Values of the K factor in the fMRI-based inverse operators 3, 5, 7, 10
FMRICOVERAGE Percentage of the ROI covered by fMRI hot spots 25, 50, 100
SNR Signal-to-noise ratio generated at the EEG sensors �, 30, 20, 10, 5, 3, 1
INVERSE Type of inverse operator, described by Eqs. (4)–(10) MN, MNC, diag-fMRI, diag-fMRINC,

corr-fMRI, corr-fMRINC
ELECTRODES Number of simulated scalp electrodes 29, 61, 128
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5, 7, and 10) with the post hoc tests. This holds true in all
the post hoc comparisons in which the SNR moves from
infinite to 5 at a statistical significance level of P 
 0.001.
Comparisons at low SNR values (3 and 1) returned less but
still statistical significant differences in CC (P 
 0.01)
between the estimation obtained for K � 3 and the other
conditions analyzed (K � 5, 7, and 10).

The simulations illustrated above were also evaluated by
computing the RE index. The results of the ANOVA
showed that all the main factors and their interaction were
significant at P 
 0.0001. In this case there were also
statistical significant interactions of the main factors used in
the ANOVA. For all the ROIs analyzed, at different SNR
levels, the values of the RE obtained with the fMRI-based
inverse operators (diag-fMRI and corr-fMRI) were statisti-
cally significant lower compared to the minimum-norm and
weighted-minimum-norm inverse operators. However, for
all the inverse methods and the different conditions of SNR
used in the simulations, the Scheffe’s post hoc tests reported
no significant statistical differences between the lower RE
values obtained with either K � 3 or K � 10 as fMRI
strengths. For both levels of fMRI strengths (K � 3 and K
� 10) we obtained RE values that are statistically signifi-
cantly lower than those obtained with other K values (P 

0.001). Hence, in the following the fMRI strength of K � 3
will be used for both CC and RE variables with variable
number of electrodes, inverse operators, and SNR levels.
The post hoc tests between RE and CC indexes obtained by
using diag-fMRI- and corr-fMRI-based inverse operators
reported no significant differences under almost the totality
of the SNRs used. The post hoc tests were generated be-
tween the fMRI-based inverse operators that used the same
fMRISTRENGTH factor (K � 3 or K � 10) chosen on the
basis of previous analysis. Furthermore, no differences were
observed between the depth-weighted fMRI-based inverse
operators (diag-fMRINC, corr-fMRINC) and their un-
weighted counterpart (diag-fMRI, corr-fMRI) under the
same range of SNRs analyzed. The only differences in
accuracy, for the estimation of cortical current density be-
tween the inverse operators, were present for the RE index
in the condition of SNR � 1. In this case, the corr-fMRI
inverse operator performs current estimations characterized
by lower values of RE index compared to the other fMRI-
based methods (at a significance level of P 
 0.01). These
lower values of RE were observed for both the best K values
used (3 and 10). The effects described for the fMRI-based
inverse operators hold in all the ROIs characterized with the
presence of fMRI hot spots.

ROI without the presence of fMRI hotspots
The results obtained for the ROIs without the fMRI hot

spots, namely the right M1, the right S1, and the left and
right PP area, showed a statistical equivalence of the CC and
RE indexes with respect to the different levels of the main
factors fMRISTRENGTH and INVERSE. The fMRI-
STRENGTH factor was investigated for this type of ROI

without fMRI priors, while the current density estimation
was simultaneously performed also for the other ROIs with
fMRI priors. The main factor SNR was instead significant in
reducing the variance of CC and RE data. We reported the
statistical results for the ROI right PP, as example for the
other ROIs without fMRI hot spots that were analyzed.
More specifically, no significant reduction in variances of
CC index occurred when the main factors fMRI-
STRENGTH (F(3,93) � 1.84; P 
 0.14) and INVERSE
(F(5,155) � 1.64; P 
 0.15) were considered. The main
factor SNR was instead useful to reduce the data variance
(F(6,186) � 2.22; P 
 0.05). No significant interactions
between the main factors were found. The RE index re-
turned for the right PP ROI a similar picture of that obtained
with the analysis of CC index. In fact, no statistical signif-
icant reduction of RE data variance for the main factors
fMRISTRENGTH (F(3,93) � 1.44; P 
 0.23) and IN-
VERSE (F(5,155) � 1.95; P 
 0.09) was observed, while
the main factor SNR was instead found significant
(F(6,186) � 2.3; P 
 0.036). No other statistically signif-
icant interactions between the main factors were found for
the ROIs without the presence of fMRI hot spots.

Effects of inverse methods, number of electrodes, and
SNR levels on the cortical current density estimation

Evaluation at constant fMRI hot spot percentage coverage
(100%) and at constant level of strength of the fMRI
priors

The following explains an analysis of the accuracy of the
estimation of cortical current density as obtained by using a
constant fMRI hot spots percentage coverage of the SMA,
left S1, and left M1 (equal to 100%) and a constant level of
fMRI strength (equal to K � 3) for the fMRI-based inverse
operators. As in the previous case, separate analyses were
performed for each ROI. All the performed ANOVAs in-
cluded the main factors ELECTRODES (with three levels:
29, 61, and 128), INVERSE (six levels: MN, MNC, diag-
MN, diag-MNC, corr-MN, corr-MNC), and SNR (with
seven levels: infinite, 30, 20, 10, 5, 3, and 1).

ROIs with presence of fMRI hot spots
Because of the similarity of the statistical results ob-

tained in each one of the ROIs that have fMRI hot spots (left
S1, left M1, and SMA), only the results for the ROI corre-
sponding to the SMA are reported. A three-way ANOVA
was performed for both CC and RE as dependent variables,
including the main factors ELECTRODES, INVERSE, and
SNR. All the main factors used as well as their interactions
reduced the variance of CC and RE indexes in a statistical
significant way (all tests returned significant levels of P 

0.0001).

Regarding to the CC index, the inverse operators that
used fMRI priors for the estimation of cortical current
densities significantly improved the reconstruction of the
cortical activity with respect to the standard inverse opera-
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tors used here (MN, MNC). This occurs when the simulated
EEG data showed a SNR variable from 10 to 1 (as stated by
Scheffe’s tests performed at P 
 0.05). No statistical im-
provements in CC index were observed increasing the SNR
of simulated EEG data from 20 to infinite and estimating
cortical current density with the use of inverse methods with
fMRI priors. No statistically significant difference in the CC
index was reported among diag-fMRI- and corr-fMRI-based
inverse operators under the whole range of the SNRs values
used in the simulations. It was also observed that an increase
of the number of simulated electrodes from 29 to 61 or 128
was useful to improve in a statistically significant way the
estimation of the cortical activity (Scheffe’s tests, P 

0.01).

A statistically significant decrease of values of RE by
using fMRI-based inverse operators with respect to the
other was obtained when the SNR of the simulated EEG
data decreases from 5 to 1 (Scheffe’s test, P 
 0.05). In this
context, statistically significant lower values of RE index
were obtained for the corr-fMRI-based inverse operators
with respect the diag-fMRI ones for a level of SNR � 1 (P


 0.01), when 128 electrodes were used. However, such
effect was absent for the other combinations of SNR values
and number of electrodes investigated. In Fig. 3 are pre-
sented the average data of RE for the ROI representing the
SMA, for the main factors analyzed (ELECTRODES, SNR
and INVERSE). It is worth noting that the higher the SNR,
the lower the RE index in the current density estimation for
all the inverse operators and all the number of electrodes
used.

ROIs without the presence of fMRI hotspots
Results are reported for the ROI right PP area to assure

that the inclusion of the fMRI priors on left S1, left M1, and
SMA did not simultaneously disturb the correct estimation
of the cortical activity in the ROIs without fMRI hot spots
(namely the right M1, right S1, and both the left and the
right PP areas). The simulations were the same considered
before for the ROIs with fMRI hot spots included. The
three-way ANOVA was computed with the three main fac-
tors ELECTRODES, SNR, and INVERSE. The F values
returned by the ANOVA for both the CC and the RE

Fig. 6. Average data for relative error (RE) index in the ROI representing the SMA, at the different levels of the main factors considered (fMRICOVERAGE,
INVERSE, and SNR). Simulations performed at 128 electrodes and with a level of fMRI strength of K � 3. Same conventions used as in the Fig. 3.

Fig. 5. Current density estimates performed by the different inverse operators. The generated pattern is shown in the first top left map (Original). The estimates
obtained with the MN, diag-fMRI, diag-fMRINC, corr-fMRI, and corr-fMRINC are presented in the successive maps. Estimations performed with 128
electrodes at SNR � 3. The level of fMRI strengths was set to 3 for the fMRI-based inverse operators.
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indexes reported that only the main factors SNR and ELEC-
TRODE significantly decrease the variances of the RE and
CC indexes (P 
 0.0001). The main factor INVERSE does
not play a role in the improvement of the accuracy of the
current density reconstruction in the ROIs without fMRI hot
spots (P 
 0.18; ns). A dependence of the CC and RE
indexes for the variance reduction was observed on the
number of ELECTRODES. In fact, the Scheffe’s post hoc
tests (performed at P 
 0.05) report statistically significant
differences between values of the RE and CC values when
computed from 128 or 61 electrodes with respect to 29
electrodes. Instead, no relevant differences between the re-
constructions of current density from 128 or 61 electrodes in
the ROIs without fMRI hot spots were observed from anal-
ysis of post hoc tests. A slight influence of the SNR levels
on the values of CC is visible in Fig. 4. A decrement of the
correlation between the estimated and the generated wave-
forms were observed by decreasing the SNR from infinite to
1 when 61 or 128 electrodes were used.

Fig. 5 shows the spatial distributions of the estimated
current density strengths obtained by the different inverse
methods with the fMRI coverage of 100% and the value of
K � 3. In particular, the two instantaneous activated cortical
areas were shown together with the reconstruction of the
cortical current density performed with the MN, the diag-
fMRI, the diag-fMRINC, the corr-fMRI, and the corr-
fMRINC inverse operators. The reconstruction performed
with the fMRI-based inverse operators attempt to recover
the current density activation in both the two active cortical
areas (namely the SMA and the left M1). The current
density activity recovered by the conventional MN inverse
operator suffered by a smoothness that makes it difficult to
determine the cortical areas involved.

Evaluation of variable fMRI hot spot coverage at constant
levels of the number of electrodes used (128) and strength
of fMRI priors (k � 3)

ROIs with presence of fMRI hot spots
As described previously, the presented results are rela-

tive to simulation setup in which the coverage of fMRI hot
spots on the ROI analyzed was complete (100%). We also
studied the effects of the variations of this independent
variable, which is called fMRICOVERAGE. This was done
by performing separate three-way ANOVAs for the CC and
RE indexes under the condition of 128 electrodes used and
fMRISTRENGTH at K � 3. Each ANOVA was performed
by using the main factors fMRICOVERAGE (with three
levels: 25, 50, 100%), INVERSE (six levels: MN, MNC,
diag-MN, diag-MNC, corr-MN, and corr-MNC), and SNR
(with seven levels: infinite, 30, 20, 10, 5, 3, and 1). At the
P 
 0.0001 level of significance, for the indexes CC and
RE, statistically significant reductions of variances were
obtained with all the main factors used and for their inter-
actions.

In the case of the fMRI-based inverses, with SNR values

between 5 and 1, post hoc tests revealed that the quality of
reconstruction was increased using a 100% percentage of
fMRI coverage in the ROI analyzed compared to the use of
50 or 25%. Furthermore, with SNR values between 5 and 1,
the quality of the estimation performed by fMRI-based
inverse operator improved compared to the no-fMRI ones.
This consideration holds for both the indexes used (CC and
RE). For 25 or 50% the quality of the estimate at average or
moderate SNR (20 to 1) is substantially equivalent to those
returned by no-fMRI methods. In Fig. 6 are presented the
average data of RE for the ROI representing the SMA, for
the main factors analyzed (fMRICOVERAGE, SNR, and
INVERSE). It is worth noting that the higher the fMRI-
COVERAGE, the lower the RE index in the current density
estimation for all the inverse methods used.

ROIs without the presence of fMRI hot spots
The effects of the variation of the fMRI hot spots per-

centage coverage have been investigated also in the ROI
without the presence of fMRI hot spots. The following
shows the results for the right PP area. Equivalent results
were found in all the ROIs investigated. The three-way
ANOVA was performed for the right PP ROI with the main
factors fMRICOVERAGE, INVERSE and SNR and with
CC or RE as the dependent variable. A statistically signif-
icant decrease in variance for CC and RE indexes was found
only for the SNR main effect (F(6,186) ) � 22.1; P 

0,0001). Hence, the effect of the increase of the percentage
of fMRI coverage from 25 to 100% was not statistically
relevant in cortical areas in which no-fMRI priors were
used. A substantial equivalence of the effects of fMRI
coverage was observed among the different inversion pro-
cedures.

Discussion

The results of the present simulation study stated the
general efficacy of the inverse operators used in the recov-
ery of the generated cortical activity at the level of ROI. The
recovery of the generated waveforms could be performed at
different SNR levels and number of electrodes used. In
particular, the indexes used stressed the capability of the
inverse operators to estimate at least the 90% of the gener-
ated waveforms, using a set of at least 61 scalp electrodes.

It may be argued whether the results presented here are
valid only for the particular experimental task used to gen-
erate the source waveforms used in simulations (right finger
movements) or they can be generalized for any activation
pattern among the selected ROIs. To address this problem
we performed simulations with a different series of cortical
generated waveforms, in which binary levels of activation in
each ROI were illustrated. Any possible activation pattern
for the analysed ROIs was considered. The results were
absolutely consistent with those provided by the source
reference waveforms used in the present study. The statis-
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tical significance of the interactions among main factors in
the different experimental conditions had the same level of
significance of in the simulations presented here. This
clearly indicates that the presented results were independent
by the particular reference waveforms used.

As expected, there is a relevant effect of the noise levels
on the estimation of current density. However, for any level
of SNR, the higher the spatial sampling of the EEG distri-
butions, the higher the quality obtained of the current re-
construction. Current density estimates improved signifi-
cantly using 61 or 128 scalp electrodes instead of 29
electrodes. Comparing the use of both 128 electrodes and 61
electrodes for the different SNR levels, the 128 electrodes
returned improved but not statistically significant values of
CC and RE. Consequently, at least for the SNR normally
encountered in literature (from 10 to 3), the estimation of
cortical activity can be performed accurately by using real-
istic head and cortical models and recording the EEG with
61 electrodes.

The simulations results suggest that, under different ex-
perimental conditions, there is a substantial equivalence of
the accuracy of current density estimation produced by
inverse operators with and without column norm normal-
ization (MN and MNC). However, it should be noted that
the presented simulations were performed by constraining
the neural sources to the cortical mantle. Column norm
normalization has been introduced mainly for linear inverse
systems dealing with a tomographic model of the brain, in
which the cerebral source space for the solution was coin-
cident with the whole head model (Pascual-Marqui, 1995;
Grave de Peralta and Gonzalez Andino, 1998). It can be
hypothesized that these results are due to the relative subtle
differences in depth between the modeled sources in sulci
and gyri of the built cortical surface and the electrodes scalp
position.

For the inverse operators, the use of fMRI information in
ROIs uniformly covered by fMRI hot spots (100% cover-
age) was compared to a scarce fMRI coverage (25%). A
statistically significant improvement of the estimation of
current density was observed in the case of 100% coverage.
The 100% fMRI coverage of the ROI simulates ROIs lo-
cated exactly at the fMRI hot spots. This procedure is often
used in the recent published works on multimodal EEG/
MEG and fMRI integration (Liu et al., 1998; Dale et al.,
2000). The improvement in current estimates performed by
corr-fMRI- and diag-fMRI-based inverse operators, com-
pared to the MN and MNC inverse ones, is statistically
significant in presence of moderate SNR values (5, 3, or 1).
These SNR values are typically encountered in the analysis
of EEG recordings obtained during motor and cognitive
tasks. A substantial equivalence for all the inverse methods
at high SNR values (from 20 to infinite) was observed when
the percentage of the fMRI hot spots in the analyzed ROI
moved down to 50 and 25%. The current density estima-
tions performed by the fMRI-based inverse operators in
ROIs without fMRI hot spots returned statistically similar

performance indexes compared to the standard inverse
methods (MN, MNC). Hence, fMRI-based inverse opera-
tors can be used to retrieve estimates of current density
activity at the cortical level in ROIs with and without the
presence of fMRI hot spots.

The results obtained by the application of the post hoc
tests on the RE and CC indexes suggested that all the
fMRI-based inverse operators here used return similar cur-
rent density estimates under a large variety of SNRs levels
and number of electrodes. However, for SNR � 1, the
corr-fMRI inverse method, compared to the diag-fMRI
methods, presented statistically significantly improved val-
ues of the RE and CC indexes. Simulations have been
performed also by changing the tuning factor K for the
fMRI-based inverse methods (diag-fMRI, corr-fMRI). The
results stated that the optimal values for K are 3 and 10.
Dale, Liu, and colleagues, by using the Bayesian formula-
tion for the inclusion of the fMRI priors during MEG
simulations, found that the optimal level of fMRI weighting
for their inverse operator was of the order of 90% (Dale et
al., 2000; Liu et al., 1998, 2002). It can be demonstrated that
the Bayesian formulation of the fMRI-based inverse oper-
ators is closely equivalent to the deterministic one, pre-
sented here with the name of diag-fMRI. A formal proof of
this equivalence can be found in Liu (2000). The optimal
level of 90% for the fMRI weighting in the Bayesian for-
mulation of Dale and colleagues was closely equivalent to
the value of K � 10 for the diag-fMRI inverse operator here
presented. Hence, there is a general level of agreement
between the results here obtained for diag-fMRI inverse
operators and those already presented for the multimodal
integration of MEG and fMRI data (Liu et al., 1998; Liu,
2000; Dale et al., 2000). However, these results were in-
creased in this article by taking into account several SNR
levels, sensors numbers, and different computational
schemes for fMRI priors.

Conclusions

There is a large consensus about the need and usefulness
of the multimodal integration of metabolic, neurovascular,
and electrophysiological data of neuronal activation. Re-
sults presented in the literature (reviewed in Dale and Hal-
gren, 2001) and those presented here suggest that it is
possible to improve the spatial details of the estimated
neural sources by performing a multimodal integration of
EEG and/or MEG with fMRI.

On the basis of the simulations performed we are able to
answer to the questions posed in the Introduction:

1. There is a significant influence of the SNR and the
number of electrodes on the estimation of cortical
current density. This influence is similar because it
uses a current estimation either with or without fMRI
priors.
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2. The use of fMRI priors increases the efficacy of the
cortical current density estimation in the ROIs in
which fMRI hot spots are present.

3. Simultaneously, the use of fMRI priors does not de-
crease the efficacy of the cortical current density es-
timation in the ROIs in which there are no fMRI hot
spots.

In the multimodal integration of EEG and MEG data a
precise electromagnetic theory and methodology exists
(Baillet and Garnero, 1997; Baillet et al., 1999; Fuchs et
al., 1998; Babiloni et al., 2001; Liu et al., 2002). How-
ever, it is still lacking a clear mathematical and physio-
logic link between metabolic demands and firing rates
and characteristics (i.e., synchronicity, coherence) of the
neurons (Nunez and Silberstein, 2000; also reviewed in
Arthurs and Boniface, 2002). This physiological link is
necessary since each neuroimaging technique (EEG,
MEG, or fMRI) has its own visible and invisible sources.
The visible sources for a particular neuroimaging tech-
nique are those neuronal pools whose spatiotemporal
activity can be partly detected. In contrast, invisible
sources are those neural assemblies that produce a pattern
of the spatiotemporal activity not detectable by the ana-
lyzed neuroimaging technique. This can provide exam-
ples of neural activities that can be detected by fMRI
measurements and not by EEG. For instance, because of
their spatial arrangements, the stellate cells at the cortical
level have a sustained metabolic demand (Braitenberg
and Schuz, 1991) and they produced virtually no record-
able electrical potential on the scalp surface. The oppo-
site behavior can be found in cortical assemblies. They
are active for a very short amount of time; therefore, they
are insufficient to illustrate a detectable hemodynamic
neurovascular coupling. However, the results presented
here are referred to a more common situation in which
neural sources are active for a sufficient period of time to
illustrate a detectable hemodynamic signature. These re-
sults suggested that when using the fMRI priors the
accuracy estimation of the cortical current density is
increased.
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