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Abstract  
The issue of how the Euclidean properties of space are represented in the nervous 

system is a main focus in the study of visual perception, but is equally relevant to motor 

learning.  The goal of our experiments was to investigate how the properties of space 

guide the remapping of motor coordination. Subjects wore an instrumented data glove 

that recorded the finger motions. Signals generated by the glove operated a remotely-

controlled endpoint: a cursor on a computer monitor. The subjects were instructed to 

execute movements of this endpoint with controlled motions of the fingers. This required 

inverting a highly redundant map from fingers to cursor motions. We found that 1) after 

training with visual feedback of the final error (but not of the ongoing cursor motion), 

subjects learned to map cursor locations into configurations of the fingers; 2) extended 

practice of movement led to more rectilinear cursor movement, a trend facilitated by 

training under continuous visual feedback of cursor motions; 3) with practice, subjects 

reduced motion in the degrees of freedom that did not contribute to the movements of the 

cursor; 4) with practice, subjects reduced variability of both cursor and hand movements; 

and 5) the reduction of errors and the increase in linearity generalized beyond the set of 

movements used for training.  These findings suggest that subjects not only learned to 

produce novel coordinated movement to control the placement of the cursor, but they also 

developed a representation of the Euclidean space upon which hand movements were 

remapped.  
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Introduction  

 The defining property of Euclidean spaces is that the length of a segment does not 

depend on the segment’s orientation or position. This property is essential to capture the 

nature and motions of rigid bodies (Goldstein 1980), which are defined by the invariance 

of the distances between their points. The measure of distance (the metric) is of vital 

importance in constructing a map between the visual representation of space and the 

motor commands controlling movements within that space.  

The ability of the visual system to capture the Euclidean nature of space has been 

extensively studied (Hatfield 2003; Shepard 2001) while fewer studies have examined the 

representation of space in the motor system  (Bernstein 1967; Rossetti 1998).  These 

studies emphasize that visual perception and motor action are independent but highly 

interconnected. The visual representation of space from retinal coordinates is believed to 

be transformed into motor commands via dorsal pathways, whereas objects within space 

are thought to be represented via ventral pathways, with multiple interconnections 

between the two pathways (Goodale and Milner 1992; Milner and Goodale 1993).  In 

contrast, little is known about how the fundamental geometrical properties of space are 

represented by the motor system. We easily formulate and execute motor plans such as 

“move the hand 10 cm to the right”, despite the fact that this action requires widely 

varying muscle activations and segmental coordination, depending upon the hand's initial 

position. This clearly demonstrates that the motor system is able to capture the Euclidean 

properties of the space in which actions take place. 

The purpose of our studies was to understand how the motor system learns to 

represent a new space. We asked subjects to move between target locations on a 
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computer screen using an instrumented data glove that converted finger motions into 

cursor motions.  The screen had a well-defined Euclidean metric: the distance between 

any two points is the length of the straight segment that joins them. In contrast, there is 

no obvious or “natural” definition of distance in finger articulation space (i.e. between 

two gestures of the hand).  We observed how two features of motor behavior evolved in 

the course of learning this novel task: a) the shape of the cursor trajectories, and b) the 

variability of both hand and cursor motions.  

Our hypotheses centered on two questions. First, we asked whether subjects learn 

the Euclidean metric of the controlled endpoint by organizing coordination of finger 

motions to generate straighter motions of the cursor (i.e. movements of minimum 

Euclidean length).The second question is whether practice leads to more accurate 

targeting, at the expense of more variable trajectories ((Todorov and Jordan 2002)), or 

alternatively, does the entire movement profile become less variable, suggesting that the 

control system is attempting to become both more accurate in reaching the target and 

more consistent in producing finger and/or cursor trajectories (Flash and Hogan 1985; 

Hogan 1984)? We will show that when subjects learn to control an overabundant set of 

hand signals in the presence of a novel transformation between these signals and the 

controlled endpoint, they become both more accurate in the task and more consistent in 

their finger and cursor motions. This finding is not consistent with model of motor 

control proposing that the motor system increases variability in the redundant degrees of 

freedom in order to improve accuracy of the motor task. 
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Methods  

Twenty seven adult subjects participated in this investigation after providing 

written informed consent approved by Northwestern University’s Institutional Review 

Board. Each subject wore a right or left-handed CyberGlove®   (Immersion Corp, San 

Jose, CA), from which 19 joint angle measurements were recorded from flexion of the 

phalangeal joints (proximal, middle and distal), abduction of the thumb and fingers, and 

wrist flexion/extension and abduction/adduction. CyberGlove® signals were sampled at a 

rate of 20 per second in all procedures with the exception of the generalization 

experiment, where the rate was 50 per second. The 19-dimensional vector of glove 

signals encoding the configuration of the fingers was mapped onto the 2-dimensional 

(x,y) coordinates of a computer screen using a linear transformation:  

hA

h

h

h

aaa
aaa

y
x

yyy

xxx ⋅=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

19

2

1

19,2,1,

19,2,1,

LL

L
       (1) 

where  indicates the point on the monitor, is the “glove 

signal vector” and A is the matrix of mapping coefficients, 
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The mapping was calibrated prior to the start of each experiment session by 

asking the subject to assume four different hand configurations (gestures), and then 

establishing a correspondence between these configurations and the four vertices of a 

rectangular workspace on the computer screen (Figure 1). The mapping coefficients (aij) 

were determined via the following procedure.  Let 

 indicate the 8-dimensional 

vector of screen coordinates at the 4 vertices. Let  indicate the 
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corresponding 19-dimensional glove signal vectors at these postures. Collect the vectors 

in the 8x38 data matrix , and the unknown 

coefficients of A into a 38-dimensional vector, . 

Using this notation, the coefficients are estimated by  where 
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Penrose pseudoinverse of H.  This procedure corresponds to the selection of the 

minimum norm parameter vector, a, consistent with the calibration postures.  

All subjects used the same calibration postures. After calibration, any point within the 

rectangular workspace could be reached by assuming a hand posture that was a linear 

interpolation of the four calibration postures. These postures were chosen empirically, 

based on the requirement that all points inside the workspace be reachable and that while 

each gesture of the hand mapped into a single point on the screen, each screen location 

corresponded to multiple hand gestures.  

After calibration, subjects practiced moving the cursor using finger motions for 

five minutes.  Following this acquaintance phase, they then made either No Vision (NV) 

or Vision (V) movements. NV movements consisted of the following steps: 

1. Subjects positioned the cursor inside the initial target. 

2. Upon presentation of a new target, the cursor vanished. 

3. Subjects were required to place and hold the (invisible) cursor inside the new 

target using a single rapid movement of the fingers.  This reaching was to be 

completed within 2 seconds of target presentation. 
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4. The cursor reappeared when the hand was at rest after this movement. 

5. Errors in final position were to be corrected by moving the cursor to the target 

under visual guidance. 

6. Once inside the target the procedure was repeated starting from step 2.  

V movements followed the same sequence of events as NV movements, except that in 

steps 2 and 3, cursor presentation was maintained throughout the movement. 

Two sets of experiments were conducted to explore: 1) how subjects learn to 

control cursor motion on the computer screen using a highly-redundant actuator system 

(the hand) and 2) if this learning generalizes to new target locations requiring novel 

combinations of hand postures. 

In the first set of experiments, a single trial involved a total of 30 reaching 

movements between six targets (5 movements per target) in pseudorandom order. While 

glove and cursor data were collected throughout the entire experiment, only those 

collected during the rapid initial hand movement (steps 2 and 3) were analyzed and are 

discussed here. 

Each subject participated in one of three protocols: P1, P2 and P3. In protocol P1, 

they repeated 10 NV-trials in a single session that lasted about one hour. Subjects in 

protocols P2 and P3 participated in four experimental sessions on four consecutive days. 

Subjects executed the same total number of movements in  the conditions P2 and P3.  On 

each day, subjects in both protocols performed ten trials during an hour long session. P2 

subjects only engaged NV trials. P3 subjects alternated V and NV trials, in the following 

order: NV-V-V-NV-V-V-NV-V-V-NV. For comparison between both groups, only data 

for the rapid initial movements in the NV trials common to both protocols (trials 1, 4, 7 
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and 10) are analyzed and discussed here. The V and NV movements in the remaining 

trials were only used to provide different training contexts for the two protocols. Subjects 

in both protocols received some amount of training under visual feedback. However, for 

those in P2, visual guidance was limited to corrective movements, which were typically 

shorter and generally slower than the initial target-reaching movements. 

The second set of experiments explored how learning generalizes to new targets 

requiring novel combinations of hand postures. Seven subjects participated in two 

consecutive sessions, six hours apart. Three sets of targets were used (Figure 1): four 

training targets, three “interpolation” targets and three “extrapolation” targets. The 

calibration was performed as in the basic experiment, by asking subjects to execute the 

four hand gestures shown in Figure 1 (top), in correspondence with the four corners of 

the large rectangular workspace. These gestures were the same as for the first experiment. 

However, the training and test workspace was different. Therefore, the calibration 

resulted in a different mapping from glove signals to cursor coordinates. At the beginning 

of the first session, subjects performed 30 NV movements to both the interpolation and 

extrapolation sets. These movements provided a baseline for evaluating learning effects 

induced by practicing over the training targets. Subjects then performed 500 practice 

movements over the training set. This practice period lasted about 1 hour and was 

conducted with continuous cursor feedback. Immediately following this training, subjects 

made 30 NV movements each to the interpolation and extrapolation targets. A second 

session took place after a 6 hour pause following the first session to assess the 

consolidation of learning induced by the first training period. Here again, subjects were 

asked to execute 30 NV movements to the interpolation and extrapolation sets. 
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Data Analysis -  Signals from each of the bend sensors and the coordinates of the cursor 

relative to the origin of the screen were acquired and transferred off-line for analysis. 

Preprocessing of the data was carried out to extract the first, open-loop movement 

component. Movement onset and termination was identified by applying a velocity 

threshold (0.5cm/sec) to the cursor speed profile. Only movements with a simple speed 

profile, preceded and followed by a prolonged period of rest were accepted for further 

analysis. We measured and analyzed four aspects of performance: 

1. Final Endpoint Error:  The Euclidean distance between the cursor position at 

movement's end and the target center. 

2. Aspect Ratio (a measure of linearity):  The ratio of maximum lateral excursion to the 

distance between start and end positions of the cursor. A straight segment has a zero 

aspect ratio. 

3. Redundant Motion.  The vector h of data glove signals is uniquely decomposed into 

two orthogonal vectors: NhThh +=  such that ThAp ⋅= and NhA ⋅=0  

(where ).  The “task” vector Tyxp ],[= Th  has the minimum Euclidean length among 

all possible vectors that map into p. The “null” vector Nh  belongs to the “null space” 

of A.  Task and null vectors are obtained by projection operators derived from the 

Moore-Penrose inverse of A:  .  Specifically, 1)( −+ ⋅⋅= TT AAAA hAThT ⋅= )( , with 

,  AAAT ⋅+=)( hANhN ⋅= )( , while ))(19()( ATIAN −= .   is the 19-

dimensional identity matrix.  This decomposition is analogous to the decomposition into 

controlled and uncontrolled manifolds (Scholz and Schoner 1999) . Here however, the 

19I
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analysis is greatly simplified since the glove-to-screen transformation is linear. Thus, 

the task and null components are defined over proper subspaces of the glove-signal 

space rather than over curved manifolds.  For each reaching movement, we used the 

projection operators N(A) and T(A) to derive the null-space and task-space components 

of the glove signals. We then calculated the movement length in task and null 

subspaces, where the latter is the component of finger motion that does not contribute to 

cursor motion. Both  and Th Nh  are 19D glove vectors within subspaces “embedded” 

in the glove signal space.  The units that we used for the components of these vectors 

(G.S.U. for Glove Signal Units) is the resolution of the numerical values generated by 

the CyberGlove® sensors, each ranging between 0 and 255.  

4. Movement Variability:  To assess the consistency of performance from movement to 

movement, it is desirable to align movements in time in a way that does not require 

scaling of the motion variables themselves.  To do so, we identified the onset of 

movement (OM) by first scanning each cursor speed profile forward in time to identify 

when cursor speed exceeded 10cm/sec, and then scanning backward until reaching a 

speed lower than 0.5 cm/sec.  After aligning (with respect to OM) all of the movements 

to be analyzed, the movement records were truncated to the same total duration (end of 

movement, EM), defined so that the slowest movement was represented in its entirety 

along with a brief period of post-movement rest. We required sufficiently long rest 

periods during data collection to insure that, after truncation, all records contained the 

whole initial movement followed by some amount of samples at zero velocity.  Finally, 

sampling times were normalized for each set of movements by setting OM=0 and 

EM=1.  For each pair of start and end targets and each experimental session, the 
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covariance matrices of the cursor movements and of the glove signals were derived at 

each sample instant using MATLAB® (function: cov). Three signals were considered 

for this analysis: a) the total glove signal, ; b) the null-space )(th projection, ; and 

c) the task-space

)(thN

 projection, . )(thT

 

Statistical Testing - Learning trends were determined by considering how individual and 

group measures evolved within sessions and across multiple days. Prior to statistical 

testing, each of the performance measures described above required correction for non-

normality (skew) in their distributions arising from the fact that these measures are 

strictly non-negative.  A Box-Cox transformation ( ) was used 

to correct for distribution skew within the Minitab v13 computing environment (Box and 

Cox 1964). One- and two-way analysis of variance (ANOVA) was conducted on the 

transformed data to evaluate training effects within a day  and across days for each 

subject group. Post-hoc Tukey t-tests were conducted to identify significant changes in 

performance (p < 0.05) within and across days when ANOVA revealed a significant main 

effect.  

)/()1()( 1−−= λλ
λ λ yyyT

Inclusion Criteria. The vast majority of subjects were able to learn the cursor 

manipulation tasks described above. The mere fact that this learning occurred is not by 

itself surprising.  However, in order to evaluate how learning evolves, it is necessary that 

learning occurs in the first place. Thus, only 23 of 27 subjects (85%) who demonstrated 

consistent error reduction with practice were included in the analyses.  

Handedness. Of the 23 included subjects (15 M, 8F; 20 right-hand dominant, 3 left-hand 

dominant), 14 used their dominant hand and 9 used the nondominant hand. Although 
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hand dominance had an effect on final error, ANOVAs found no main effect of hand 

dominance on the other statistics analyzed, and accounting for hand dominance did not 

affect the results on learning trends which form the primary focus of this report.  

 

Results  

Training without vision 

As subjects practiced controlling cursor movement via hand gestures, cursor trajectories 

became more consistent (Figure 2; training and test movements without vision within a 

single session), indicating that subjects learned the finger coordination patterns required 

of this novel task.  A set of trajectories between two targets and their speed profiles are 

shown in panels A and C for a representative subject. Average motion and speed, 

together with the standard deviation are shown in panels B and D. The markedly curved 

trajectories apparently reflect sequential execution of submovements, one directed toward 

the target below the starting position, followed by a correction toward the final target 

(dark black circles).  The six panels on the right half of Figure 2 show average 

movements by the same subject in three sets of trials early in training (Part 1), and in the 

last three set of trials (Part 2).  While the reduction of final error apparent in the top two 

panels labeled Part 1 and Part 2 does not correspond to a straightening of cursor motion , 

variability is reduced from Part 1 to Part 2.  

Figures 3A and 3E show the learning trend for the whole population  after one 

hour of training without visual feedback on a single day (A),and after four days of 

training (E, dotted line).  Subjects reduced the final error after training and this reduction 

was highly significant both across trials in day one of training, (one-way ANOVA: 
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F(9,90)=3.66, p=0.001) as well as across days and trial order within days (two-way 

ANOVA main effects by day: (F(3,200)=31.64; p<0.0005; by trial order: F(9,200)=2.10; 

p=0.031). Trends for individual subjects were very similar to the plots shown in Figure 3 

A and E (data not shown).  No interaction effects reached statistical significance at the 

p=0.05 level. Subjects clearly learned to make increasingly accurate movements of the 

cursor using hand motions that did not require ongoing visual feedback of cursor 

movement. 

 

Training with vision 

The 6 subjects in protocol P3 performed a set of training trials with continuous vision, 

alternated with test trials with no vision that were identical to those performed by P1 and 

P2 subjects.  The learning results after one day (Figure 3C) and four days (Figure 3E) of 

practice were similar to those of subjects trained without vision.  There was a significant 

and large decrease in final error within day one of training (one-way ANOVA: 

F(3,20)=4.90; p=0.01) and after four days of training and by trial order within days (two-

way ANOVA main effects by day: F(3,80)=26.82; p<0.0005; by trial order: 

F(3,80)=9.86; p<0.0005). No interaction effects reached statistical significance at the 

p=0.05 level. 

It is apparent that subjects in the P2 and P3 protocols showed a remarkably 

similar trend in error reduction (Figure 3E): practicing with or without continuous visual 

feedback led to similar accuracy of the feed-forward movements.   Subjects in the P3 

protocol, however, had a slightly but significantly larger error than subjects in the P2 

protocol for day 1 (P=0.026). This initial lower performance may be due to the fact that 



Remapping in a Novel Geometrical Environment 14

these subjects trained with continuous visual feedback, a condition different from the no-

vision condition of the test trials. Also, note that learning did not appear to be complete at 

the end of the experiment, as both P2 and P3 groups had large residual errors on the last 

day. 

 

Linearity of cursor trajectories 

The finding that subjects learned to bring the cursor closer to the target is not 

surprising and it is reported here merely to show that, albeit difficult, the task was 

learnable. The goal of this study is to observe changes in motor behavior that were not 

explicitly instructed.  

 Subjects in this study were not required to move the cursor along any specified 

trajectory. Earlier studies of planar, goal-directed reaching have shown that straight 

trajectories of the controlled endpoint – either the hand or a displayed cursor - are an 

invariant and spontaneous kinematic property of movements (Flash and Hogan 1985; 

Morasso 1981; Soechting and Laquaniti 1981). This characteristic is robust, being 

resistant to a broad range of physical and visuomotor perturbations (Dingwell et al. 2002; 

Flanagan and Rao 1995; Shadmehr and Mussa-Ivaldi 1994; Wolpert et al. 1995).  Under 

the coordinate transformation used in this study, there was no intrinsic geometrical or 

mechanical constraint that would naturally induce straight-line cursor movements (see 

also Figure 2).  And indeed, after a single session of training without vision of the cursor 

(Figure 3B), subjects did not tend toward straighter motions (ANOVA with trials as a 

factor: F(9,90)=0.21, p=0.99).  However, the linearity of cursor trajectories increased 

(and aspect ratio decreased) across days of training without ongoing visual feedback 
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(Figure 3F).  For P2 subjects trained without visual feedback, two-way ANOVA found a 

significant main effect by day (F(3,200)=9.61; p<0.0005), but no main effect by trial 

order within days (F(9,200)=0.10; p>0.9). 

P3 subjects, on the other hand, appear to show a trend toward more rectilinear 

cursor motions (Figure 3D) after a single day of training, suggested by slightly smaller 

aspect ratio values (compare Figure 3B and 3D). This trend, however, is not statistically 

significant between the beginning and end of a one day session.  Similar to the P2 

subjects, P3 subjects demonstrated increasingly rectilinear cursor motions after four days 

of training (Figure 3F) with no significant effect of trial order within days (two-way 

ANOVA main effects by day (F(3,80)=3.22; p=0.027; by trial order: F(3,80)=0.75; 

p=0.525).   The ensemble averaged linearity measure follows a different trend over the 

four days of training in the two groups (P2 and P3, Figure 3F): the subjects trained under 

the vision condition generate, on the whole, straighter movements. This is particularly 

evident in day 1, although the difference between the two groups is reduced by day 4. 

In summary, extended training led to the generation of straighter and increasingly 

accurate motions in both groups. Furthermore, the presence of continuous visual 

feedback during movements enhanced the tendency toward straighter cursor motions.  In 

contrast, continuous visual feedback of cursor motion did not appear to have an effect on 

learning to translate the desired cursor positions into postures of the hand.  

 

Control of Redundancy 

 Subjects learned to generate finger configurations which positioned the cursor at 

distinct target locations within the 2-dimensional task space. In so doing, they became 
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experts at solving the ill-posed problem (Hadamard 1902) of mapping a desired 2D 

vector into a higher dimensional signal vector. But did they also learn to partition the 

space of hand and finger degrees of freedom into the combinations that are relevant to the 

task and those not relevant?  We addressed this question by projecting the 19-

dimensional vector of glove signals into a 2-dimensional task-relevant subspace (the 

“task” subspace) and its orthogonal (17-dimensional) null space (see methods). We asked 

whether subjects learned with practice to reduce the amount of null and task space 

motions (Fig. 4). In the course of four sessions all P2 and P3 subjects reduced the amount 

of motion both in the null subspace and in the task subspace. For both subspaces, the 

amount of motion was smaller in P3 subjects who trained under continuous visual 

feedback. For null-space motion, two-way ANOVA found significant main effects 

comparing protocols (F(1,92)=6.08; p=0.015) and by comparing day 1 and day 4 within 

each protocol (F(1,92)=17.89; p<0.0005). For task space motion, two-way ANOVA 

again found significant main effects by protocol (F(3,80)=18.30; p<0.0005) and by day 

(F(3,80)=11.95; p=0.001).  No interaction effects reached statistical significance at the 

p=0.05 level for either analysis.  The ratio of null-to-task motion was smaller for the P2 

group. Two-way ANOVA found significant main effects comparing protocols 

(F(1,92)=8.32; p=0.005) as well as days (F(1,92)=6.44; p=0.013).  The larger Null/Task 

ratio in subjects of the P3 group may reflect the stronger tendency of these subjects to 

produce straight movements of the cursor. On day 4, subjects trained with no vision made 

movements that were on average 26.5% longer in task subspace than movements by 

subjects trained with vision. In contrast, null-space motions by subjects training without 

vision on day 4 were only 12.7% longer than the null space motion for P3 subjects. We 
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conclude that continuous vision of cursor motion led to a smaller amount of unnecessary 

null space motion and facilitated the tendency to make more rectilinear cursor 

trajectories, with a stronger influence on the latter effect. 

 

Variability 

Scholz, Schoner, as well as others (Scholz and Schoner 1999), (Latash et al. 2001; 

Todorov and Jordan 2002) have argued that to obtain a more stable performance within a 

controlled manifold, the nervous system may transfer as much variance as possible to 

degrees of freedom orthogonal to that manifold (i.e. the uncontrolled manifold)  In our 

case, the controlled and uncontrolled manifolds correspond to the task and null 

subspaces, respectively.  Todorov and Jordan (Todorov and Jordan 2002) have further 

formalized this concept and proposed that an optimal control law takes advantage of 

redundancy by increasing variability in task-irrelevant dimensions in order to decrease 

variability in the task-relevant dimensions. Optimal feedback control, as proposed by 

these authors, is consistent with a “minimum intervention principle”, according to which 

the “deviations from the average trajectory are corrected only when they interfere with 

task performance” (Todorov and Jordan 2002).  In our case, task performance is, by 

construction, measured by final accuracy.  While one cannot rule out that a subject might 

be following some implicit, self-imposed task, the explicit instructions and “knowledge 

of results” feedback were strictly confined to the accuracy of reaching.  A minimum 

intervention principle predicts that movement variability is maximal at some point 

between the initial and final targets so that accuracy of the final position may be 

achieved.  Our data are only partially consistent, if at all, with such hypotheses.  
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Figure 5 (A panels) shows the average cursor trajectories between two targets 

executed by one subject - S11 of the P2 group - in 4 subsequent days. The shadowed 

areas around the mean trajectories are generated by the standard deviation ellipsoids. The 

two plots in Figure 5C show, for the same movements, the norm of the average standard 

deviation (i.e. the largest eigenvalue of the 2x2 standard deviation matrix) and the 

average velocity profile, vs. normalized time (see methods). Because subjects were 

required to maintain the cursor in a small area around the starting target before a new 

target was presented, the variability is minimal at the beginning of the movement.  It is 

apparent that the standard deviation decreases across subsequent days of training. Perhaps 

consistent with the minimum intervention hypothesis, the variability on days 2 and 4 

peaks midway between onset and termination of movement.  Panels B and D show the 

ensemble averaged trajectories and variability profiles, for the same movement, across 

the entire group of P2 subjects. The group data display the same trend of decreased 

variability on subsequent days.  Similar observations were obtained when all movements 

were considered for both P2 and P3 groups. Multivariate and subsequent one-way 

ANOVA found significant effect across days on the cursor variability (F(3,20)=6.33; 

p<0.003) but not cursor speed (F(3,20)=0.50; p<0.689) for P2 subjects.  P3 subjects 

demonstrated a similar effect of training across days on cursor variability (F(3,20)=4.96; 

p<0.01), with no significant change in cursor speed across days (F(3,20)=0.10; p<0.961). 

We also derived the temporal profiles of standard deviation about the average 

glove signal trajectory through glove, task and null spaces for all movements and all P2 

and P3 subjects (Figure 6).  The trend toward reduction of variability from day 1 to day 4 

is particularly evident for null-space motion, which is not consistent with the hypothesis 



Remapping in a Novel Geometrical Environment 19

that subjects learn to shift the movement variance to degrees of freedom that do not 

contribute to task performance.  On the contrary, all the results of our experiment suggest 

that subjects learn to generate less variable trajectories, with a decreased amount of 

variance as training proceeds.  Note that while the task-space projections of the glove 

signals (which correspond to the cursor motions) have very little variance at the start of 

movement, the glove signals and their null-space projections have significant amount of 

initial variance. Initial task-space variance is only 5 to 10% of initial null-space variance 

compared across days. This initial variance is regularly and almost uniformly decreasing 

from day 1 to day 4.  Multivariate ANOVA found significant effect of both protocol and 

days of training for both final null- and task-space variability.  Subsequent two-way 

analyses found significant effect of both protocol (F(1,40)=17.96; p<0.0005) and days of 

training (F(3,40)=8.43; p<0.0005) for final null-space variance, with variability 

considerably higher when subjects were provided with continuous visual feedback during 

training, and variability decreasing across days of training.  Two-way ANOVA also 

found a similar, significant effect of days of training (F(3,40)=3.05; p<0.039) for final 

task-space variance, but no effect of protocol was observed (F(1,40)=0.61; p<0.440).  

Since the initial variance is associated with hand configuration at the starting target, its 

reduction indicates the tendency to form a consistent inverse map from screen positions 

to hand configurations, thus effectively reducing the degree of redundancy associated 

with the reaching task.  

One finding that appears consistent with the minimum intervention principle is 

that the null-space variability is pronounced about midway through motions made by P2 

subjects.  These movements are "open-loop" in the sense that subjects do not receive 
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feedback of cursor motion during movement.  Any variation in the path and timing of 

movements may be responsible for the increased variability in the middle of movement. 

In contrast, subjects who trained with continuous visual feedback generated a more 

uniform variance along the movement, although a maximum of variability also appears in 

the null space motion of P3 subjects on day 4.   

In summary, subjects showed a tendency to distribute variance of motion in a 

non-uniform way along the movement. In particular, we found evidence that variance in 

some instances reached a peak midway between start and end position, consistent with 

the minimum intervention principle of Todorov and Jordan (2002). However, at the same 

time subjects learned through practice to reduce the amount of variability both in the task 

and in the null subspaces with extended training. Taken together, our data reveal the co-

presence of two trends, which need not to be in reciprocal contrast: on one hand subjects 

learned to produce more regular and rectilinear trajectories, consistent with the 

development of a representation of the space in which the cursor moved. This is 

demonstrated by the general reduction of variability across days. On the other hand, 

subjects- particularly those who trained without visual feedback - also had a tendency to 

allow a somewhat greater variability of movement between initial position and end 

target.  

Generalization 

We explored how learning of a novel geometrical environment generalizes 

beyond the trained task space targets in a fourth set of experiments . Subjects practiced 

movements over a set of four targets and were tested over two different sets of three 

targets (Figure 1).  One set of test trajectories – the “interpolation” set - was included 
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within the region of the training trajectories. The other set – the “extrapolation” set – was 

external to the training region.  Subjects performed a set of baseline (B) trials at the 

beginning of the experiment.  Immediately after training (AT), the average final errors 

were significantly reduced for both the interpolation and the extrapolation targets (Figure 

7) and the learning persisted across a 5 to 6 hour pause (AP).  Multivariate ANOVA 

found significant effect of training period (B, AT, AP) on both final error and aspect ratio 

with no significant difference in performance between interpolation and extrapolation. 

Subsequent ANOVA and Tukey t-tests found significant reduction in endpoint error with 

practice when tested over novel targets (F(2,39)=9.33; p<0.0005) with no significant 

difference between performance immediately after training and after a 6 hour pause. A 

similar reduction in aspect ratio was observed: ANOVA and Tukey t-tests found 

significant reduction in aspect ratio over novel targets (F(2,39)=3.61; p<0.037) with no 

significant difference between performance immediately after training and after a 6 hour 

pause.  Thus, the pattern of learning observed in this study is not limited to the set of 

targets over which subjects were trained, but extends over a wider region of space.  

 

Discussion  

We have developed a novel experimental paradigm in which subjects must 

reorganize finger coordination in order to control the positioning of a cursor on a 

computer screen.  Subjects successfully learned this task by mapping target screen 

locations into  finger postures. This learning generalized within the trained region of the 

task space as well as to targets outside the trained region.  Because of the high degree of 

kinematic redundancy in our task, this is an example of a solution to an ill-posed problem 
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(Hadamard 1902; Tikhonov and Arsenin 1977).  Remarkably, subjects developed more 

rectilinear cursor trajectories with extended practice.  This tendency was clearly enhanced 

by training with continuous visual feedback of cursor motion.  Furthermore, the temporal 

trend of the final error was markedly different from the temporal trend of linearity:  the 

substantial and significant reduction of final error that was observed in the first session 

was not matched by a corresponding straightening of the trajectories, which took place 

only across multiple sessions.  Thus, the adaptive modification of cursor trajectory was 

not guided by the pattern of final errors and of subsequent corrections. 

Studies of reaching arm movements have revealed a consistent tendency of 

subjects to generate straight trajectories of the hand (Flash and Hogan 1985; Morasso 

1981; Soechting and Laquaniti 1981; Viviani and Terzuolo 1980). Other studies 

(Flanagan and Rao 1995; Wolpert et al. 1995) have demonstrated, as shown here, a 

tendency to produce rectilinear movements of a controlled endpoint, in the presence of a 

map that alters the relation between movement of the hand and movement of the 

controlled cursor. In particular, Flanagan and Rao (Flanagan and Rao 1995) considered a 

map in which subjects were presented with a Cartesian display of the shoulder and elbow 

angle. With practice, subjects learned to enforce rectilinear motions in joint space at the 

expense of curvilinear movements of the hand.  Rectilinear endpoint movements may 

reflect a strategy of trajectory planning by the CNS, which has been modeled 

mathematically through the optimization of smoothness (Flash and Hogan 1985; Hogan 

1984). Alternative accounts have also been proposed, based on optimization of dynamical 

criteria (Uno et al. 1989)  and of final error in the presence of signal dependent noise 

(Harris and Wolpert 1998).  But what is the functional value of straightness of the hand 
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path or, more generally, of endpoint motions? To address this question, we observe that 

the physical space in which endpoint movements take place has a fundamental property, 

summarized by the concept of Euclidean symmetry (Goldstein 1980; Weyl 1966). This 

reflects the fact that space is effectively a container of rigid bodies whose size is invariant 

by translations and rotation. The essential primitive of Euclidean symmetry is the straight 

segment (the path with minimum Euclidean length between any two points). The 

tendency to generate straight reaching movements makes sense from a functional 

perspective, because living organisms must ultimately be proficient at operating inside 

the Euclidean geometry of ordinary space.  

The novel and arbitrary linear mapping used to transform glove signals into cursor 

locations allowed us to examine how the CNS learns to represent and control the 

redundant transformation from hand to cursor space, without the confounding effects of 

previously experienced movements.  Other studies have proposed to resolve redundancy 

by decomposing movement variables into null-space and controlled variables, typically 

through some form of the generalized inverse. For example, the concept of controlled and 

uncontrolled manifolds employed by Scholz and Schöner (1999) is, in fact, an application 

of the generalized inverse. Generalized inverses have been familiar for a long time to 

robotic researchers investigating the control of kinematically redundant manipulators 

(Baillieul 1985; Baker and Wampler 1988; Burdick 1989; Klein and Huang 1983). They 

allow one to regularize the inversion of ill-conditioned linear maps by minimizing a 

quadratic form (Ben-Israel and Greville 1980). In particular, for an under-constrained 

linear transformation, the Moore-Penrose pseudoinverse finds a unique inverse map that 

satisfies the additional requirement of minimizing the (Euclidean) norm of the solution 
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vector among infinite alternatives.  It is well known that this type of operation fails to 

produce repeatable (or, more technically, integrable) motions when applied in differential 

form to non-linear kinematic transformations, as for example, in attempting to invert the 

transformation from joint angles to endpoint coordinates of a redundant arm (Klein and 

Huang 1983; Mussa-Ivaldi and Hogan 1991; Shamir and Yomdin 1988). This is a rather 

important issue that has often been overlooked in studies of biological motor control. 

However, this issue does not affect our investigation, as we use a linear transformation 

from glove to screen coordinates. In our case, the pseudoinverse generates a family of 

regular inverse solutions. The map we use has the property of affine transformations in 

that it maps straight lines into straight lines. Since hand configurations and glove signals 

are related by a non-linear isomorphism, rectilinear motions of the cursor on the monitor 

are not compatible with rectilinear motions in the space of finger-joint coordinates. 

However, the generation of well-behaved inverse maps from desired screen coordinates 

to finger configurations circumvents the challenge to derive a repeatable inverse map, 

that would be associated with a nonlinear map from glove signals to screen coordinates. 

The investigation of how more complex maps may be learned is deserving of a separate 

study. 

The null-space generated by our glove-cursor map had effectively 17 dimensions 

(19-2). We observed a marked tendency of subjects to reduce the amount of motion in 

this null-space (Figure 4). The selective reduction of null-space motion is particularly 

important as it may reveal how the Euclidean metric of the task space (the monitor) is 

effectively “imported” into the coordination of hand. The tendency to generate finger 

motions with smaller null-space components suggests that the movements tend to remain 
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confined to subspaces that are minimum-norm images of the cursor space.  This 

observation provides us with further evidence that the motor system is effectively 

capturing the metric structure of the controlled space and that it uses this metric as a basis 

to form coordinated motions of the fingers.  

It is possible that the tendency to produce straighter trajectories arises due to the 

presence of implicit intermediate points, which subjects place between targets when 

training with continuous feedback.  These intermediate positions (akin to a “desired 

trajectory”) might be preserved when movements are executed without continuous visual 

feedback.  This is unlikely, however, since a generic inverse map from cursor positions to 

hand gestures is not sufficient to induce rectilinear motions:  nearby cursor positions can 

map into radically different finger configurations.  Instead, we have observed a general 

tendency of subjects to reduce the amount of finger motion (Figure 4), again suggesting 

that they are learning trajectories, not just final positions or via points. 

Our data also show a strong and progressive decrease of movement variability 

from day to day along the entire motion. This is in sharp contrast with the hypothesis that 

through practice, subjects learn to export increasing amounts of variability into the null 

space in order to achieve a less variable task execution.  Since this hypothesis has 

supporting evidence in a variety of natural tasks (Balasubramaniam et al. 2000; Cole and 

Abbs 1986; Latash et al. 2001), it is possible our finding stems from the unusual nature of 

the task at hand. Under such novel conditions, the control system may be mostly 

concerned with forming of an internal model of the metric properties of task space – 

consistent with increasingly repeatable performance and trajectories. 
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 Another factor that could contribute to our findings stems from the well 

documented presence of synergies and of biomechanical couplings among fingers (Lang 

and Schieber 2004; Schieber 1991; Zatsiorsky et al. 2000). For example Zatsiorsky et al 

(Zatsiorsky et al. 2000) have described the tendency of fingers to generate forces as a 

consequence of activation in other fingers, a phenomenon that was described as 

“enslaving”. In other studies, Soechting and coworkers (Jerde et al. 2003; Santello et al. 

1998) have demonstrated that a small number of principal components can account for 

much of the variance in postures and movements of the hand during fingerspelling and 

other tasks. To the extent that the patterns of synergy and coupling that are present in 

natural tasks are preserved in a new mapping, one may expect to see that a reduction of 

variability in task coordinates would be mirrored by a similar reduction in null-space 

coordinates.  

Our results parallel, in part, patterns of motor learning observed in primates 

whose motor cortical activities controlled a cursor on a computer screen via a brain-

machine interface (Serruya et al. 2002; Taylor et al. 2002).  In both cases, the nervous 

system must learn to select the degrees of freedom that are most relevant to the desired 

movement. By controlling the amount of dimensionality reduction, our paradigm allows 

us to explore by simple and non-invasive means the mechanisms by which feed-forward 

control of a highly redundant system is reorganized when presented with a novel 

coordinate transformation.  An important difference between our experimental conditions 

and the operation of a BMI is the presence of proprioception of hand configuration for 

subjects engaged in our task. There is no such sensory input for the neural activities in a 

population of the cerebral cortex.  While proprioceptive information certainly facilitates 
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the task of creating a new map, it may not be necessary for map formation since in both 

cases the neural controller must reorganize the natural pattern of commands and activities 

to cope with a novel geometrical environment.  

An unavoidable limit of this study stems from the use of only one particular type 

of hand-to-screen mapping.  Understanding in more general terms the impact of this 

mapping on motor learning and performance is an important goal for future studies. This 

is a difficult problem, as even in the simple case presented here, the space of possible 

linear maps is spanned by 38 parameters. However, the same hand postures were used at 

different screen coordinates in the learning and generalization experiments, and therefore 

the resulting maps differed. Nevertheless we observed similar learning trends in the two 

experiments. Thus the learning of rectilinear movements is not contingent upon one 

particular hand-to-screen mapping.  
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Figure Legends 

Figure 1.  Calibration and Targets. (Top) Target layout and postures used to set up the 

map from glove signals to monitor coordinates. Each calibration posture corresponds to a 

corner of the rectangular region on the monitor. Subjects were aware of this 

correspondence.  This target layout was used in the main experiment. (Bottom) Target 

locations for the generalization experiment. Three sets of targets were used: one training 

set (diamond pattern on the left) and two test sets (triangular patterns). The targets in the 

triangular pattern inside the training diamond are the interpolation set. The three targets 

on the right are the extrapolation set. Subjects practiced reaching movements over the 

training set and then were asked to perform movements in the two test sets (see text for 

details). The four calibration postures of the top panel were used to calibrate the corners 

of the larger rectangular workspace in the generalization experiment.  

 

Figure 2. Trajectories from a representative subject (S4 from group P1).  Panels (A) and 

(C) show four cursor trajectories and speed profiles obtained during movements toward 

the dark black circle in the first part of this single session experiment. (B) and (D) are the 

corresponding average trajectories and speed profiles over this limited set of movements. 

The grey regions around each point in (B) are standard deviation ellipses. The six panels 

on the right show examples of average trajectories and standard deviations obtained in 

the first half of the experiment  (Part 1, trials 1 to 5) and from the second half (Part 2, 

trials 6 to 10). Note the decrease in shaded area for similar movements from Part 1 to Part 

2. Only the final target was visible to the subject during each movement. 
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Figure 3. Final error and trajectory linearity.  Training without and with continuous 

visual feedback of movement leads to a progressive reduction in target reaching error. 

(A) Protocol P1 (No vision). Ensemble average of the final error over ten subjects in a 

single (first) session of practice. (B) Protocol P1. Ensemble average of the linearity 

measure over ten subjects in a single session of practice. (C) Protocol P3 (Vision). 

Ensemble average of the final error over six subjects in a single (first) session of practice. 

(D) Protocol P3. Ensemble average of the linearity measure over six subjects in a single 

(first) session of practice.  Error (E)  and linearity (F) over 4 days of practice.  Each data 

point in these graphs was obtained from the ensemble average across six subjects in each 

group and across a whole session. Dotted lines: subjects in group P2 (No vision). Solid 

lines: subjects in group P3 (Vision).  Error bars: 95% confidence intervals. 

 

Figure 4. Control of Redundancy. Length of movements. Trends over 4 days of practice.  

Each data point in these graphs was obtained from the ensemble average across six 

subjects in each group and across a whole session. Dotted lines: P2 subjects. Solid lines: 

P3 subjects. (Top left) Length of movements in the null subspace. (Bottom left) Length of 

movements in the task subspace. Right: ratio of null space length to task-space length. 

 

Figure 5. Analysis of variability, cursor (A1, A2, A3, A4) Average trajectories between 

two targets from one subject – S11 - in four consecutive days. Different colors are 

different days. The shaded areas are standard deviation ellipses about each point. (B1, 

B2, B3, B4) Average trajectories between two targets from all subjects in the P2 group in 

four consecutive days.  (C-top): Norm of the standard deviation for the four movements 
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in the A panels vs. normalized movement time (see Methods section).  (C-bottom): Speed 

profiles for the same four movements vs. normalized time. (D-top)   Ensemble averages 

over P2 subjects of the norm of the standard deviation for the four movements in the B 

panels vs. normalized movement time.  (D-bottom): Ensemble averages over P2 subjects 

of the speed profiles for the same four movements vs. normalized time. Error bars are 

95% confidence intervals. 

 

Figure 6. Analysis of variability, glove signals. Cumulative analysis for all movements. 

Colors represent different days. Each trace was obtained from the average across all data  

from all subjects in a group and all movements in each day. (Top panels): Total glove 

signals. (Middle panels) Null-subspace projections. (Bottom panels): Task subspace 

projections. Left Panels: P2 subjects. Right panels: P3 subjects.  Error bars are 95% 

confidence intervals. 

 

Figure 7. Generalization experiment. Left and middle panels. Examples of cursor 

trajectories from one subject , G10. In each pane, trajectories with the same colors have 

the same start and end targets. Interpolation (left) and extrapolation (right) trajectories are 

plotted in the baseline (B) phase, immediately after training (AT) over the training targets 

and after a six hour pause (AP). The panels on the right show the error (top) and aspect 

ratio (bottom) averaged across subjects and movements in each phase. Solid lines refer to 

the interpolation targets and dotted lines to the extrapolation targets. Error bars are 95% 

confidence intervals. 
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Figure 4
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Figure 7
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