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The method of the least squares to find out 
the values of the coefficients of the regression 
line is to minimize the sum of the squared 
vertical distance between the observed value yi
and the predicted value ŷi:

Linear regression
• Assuming that the relationship between the 

dependent and independent variables can be 
modeled by a straight line:

the problem is to found out the values of the 
coefficients β0 and β1 so that the regression line fits 
best the data points (β0 is the intercept and β1 the 
slope of the regression line)

• The predicted value of Y for a given value of X is

• The residual (error) is the difference between the 
observed and predicted value

• By definition, the observed value yi is always equal 
to the sum of the predicted value ŷi and the 
residual εi:
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• To minimize the residual sum of squares SSE 

we differentiate SSE w.r.t β0 and β1

solving for β0 and β1 yields

Proof:

Least-square estimation
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Multiple Regression

• In the multiple regression, we try to predict the value of the dependent 
variable Y on the basis of two or more independent variables (predictors) 
{X1, X2, …., XP}.  

• The multiple line regression model

where x1i and x2i represent the values of the predictor variables and yi
represents the value of the independent variable for the ith observations, 
N represents the number of observations in the data set.

• The parameters of the model are the regression coefficients, β1, β2, ... βp.

• The linear model has one random effect, the error term εi. The error term 
is assumed to follow a normal distribution N(0, σ2). Morevover, the error 
terms for the various observations are assumed to be uncorrelated 
(cov(yi,yj)=cov(εi,εj)=0, i≠j).
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In matrix form

or where y = (y1,..,yN) is the response vector, X is the model or design matrix, 
β = (β1,... , βp) is the vector of regression of coefficients and is the vector of
errors (or residuals).

The vector of errors ε = (ε1, ..., εn) is assumed to follow a n-variable 
multivariate-normal distribution with a n by n covariance matrix Σ

The classic assumptions of homogeneity of the variances (var(εi) = σ2) and 
uncorrelated observations (cov(εi,εj) = 0 for i≠j) imply that Σ = σ2 In.

Linear models in matrix form
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Geometric interpretation

• Any linear multiple regression involving p 
predictors can be represented graphically in 
p+1 dimensional space. 

• For example, for two predictors, we can 
represent each observation (x1i, x2i, yi)  inside a 
three dimensional space. The value predicted 
by the multiple regression model lie in a plane:

• The residuals corresponds to the vertical 
distance between the data points and the 
plane (predicted values):

• The coefficients of the multiple regression 
plane minimize the deviations from the plane 
(residual or error sum of squares):
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• The parameters β of the linear model

are obtained by that minimizing the sum of squares 

where

differentating w.r.t. βi,equating by 0, and solving for 
βi yields

• The predicted values are 

Linear model theory
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This is not a good formula to compute β
(other methods based on QR decomposition 
of X are actually used).

projection operator
(= hat or influence matrix)

Properties of the hat matrix
• tr(A)=p (nb. of parameters)
• idempotence (AA=A)
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lm

Syntax
lm(formula, data, subset)
aov(formula, data, subset)

Usage
lm is used to fit linear models. It can be used to carry out regression, single stratum 
analysis of variance and analysis of covariance (although aov may provide a more 
convenient interface for these).
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Linear regression example

# simple linear regression model yi = b0 + b1*BEPCi + ei
fit<-lm(Percentage~BEPC,data)
# add regression line to the plot
abline(fit)
# The summary function test whether the coefficients are significantaly different from zero
summary(fit) 
Call:
lm(formula = Percentage ~ BEPC, data = data)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  39.2246     8.0097   4.897 0.000292 *** 
BEPC          1.8383     0.6785   2.709 0.017876 *   
Residual standard error: 9.48 on 13 degrees of freedom
Multiple R-squared: 0.3609,     Adjusted R-squared: 0.3117 
F-statistic:  7.34 on 1 and 13 DF,  p-value: 0.01788

# data set
data<-data.frame(

BEPC=c(6.7,18,11.8,13,6.8,9.9,11.4,
6.6,10,13,17.1,6,13.4,10.4,14.5),

Percentage=c(71.1,77,60.4,48.7,39.8,54.9,53,
50.6,66.5,63.4,81.1,47.5,56.9,67.2,60.2))

# plot
plot(data$BEPC,data$Percentage,xlim=c(0,20),ylim=c(0,100),

las=1,xlab="BEPC",ylab="Correct response (%)")
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The test reported here is the so-called omnibus test. It compares the 
model with all predictors to a simpler model with only the intercept. In 
the case of a simple linear regression, this test is equivalent to the 
test of the slope

Tests of the regression coefficients
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Regression diagnostic tools
# coefficient of the regression
coef(fit)
(Intercept)        BEPC 
39.224611    1.838261 

# plot data
plot(data$BEPC,data$Percentage,xlim=c(0,20),ylim=c(0,100),

las=1,xlab="BEPC",ylab="Correct response (%)")
# plot regression line
abline(fit)
# plot fitted values
points(data$BEPC,predict(fit),col="red",pch=16)

# predicted values for new observations
tmp<-data.frame(BEPC=seq(0,20,5))
tmp$Percentage<-predict(fit,newdata=tmp)
points(tmp$BEPC, tmp$Percentage,col="blue",pch=16)

# plot residuals agains predicted values
plot(predict(fit),resid(fit))
abline(h=0,lty=2)

# Standardized residual
standard(fit)
# Studentized residuals 
rstudent(fit)
# Cook's distance
cooks.distance(fit)
# Leverage
hatvalues(fit1)
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The F ratio

where the difference RSSfull-RSS0 is the sum of 
square explained by the additional parameter in 
the full model. When testing the value of singular 
coefficient, the degree of freedom of the 
numerator is always 1 since the two model differ 
only by the exclusion of a single predictor. 

Most software (including R) report a t value 
rather than a F ratio but the two tests are strictly 
equivalent because the F distribution F1,N with 
the first dof equal to 1 is distributed like the 
square of the t distribution tN and the reported t 
values is equal to the square root of the F ratio.

In multiple regression, the usual test is to check 
whether the value of the coefficients is statistically 
different from zero. There is in fact one test per 
coefficient. 

The default way to test the significance of one 
coeffecient is to compare the full model

with a model that include all predictors except the 
tested one. For example, to test the coefficient β1, 
the residual sum of squares RSSfull of the full 
model is compared to the residual sum of square 
RSS0 of the model

In other words, the default test will test whether 
the predictor x1 explains some significant part of 
the variance once all other predictors have 
already been included in the model.

Testing the regression coefficients
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Example

# The test for the intercept is equivalent to comparing
# the full model with a model without the intercept 
#                   yi = b1*BEPCi + ei 
fit1<-lm(Percentage~BEPC-1,data)
abline(fit1,col="red") 
anova(fit1,fit) 
Analysis of Variance Table
Model 1: Percentage ~ BEPC - 1
Model 2: Percentage ~ BEPC
Res.Df    RSS Df Sum of Sq      F    Pr(>F)    

1     14 3323.7                                  
2 13 1168.4  1    2155.4 23.982 0.0002916 ***
# note that sqrt(23.982)=4.897 

# The test for the slope is equivalent to comparing 
# the full model with a model without the predictor
#                   yi = b0 + ei 
fit2<-lm(Percentage~1,data)
abline(fit2,col="blue")
anova(fit2,fit)
Analysis of Variance Table
Model 1: Percentage ~ 1
Model 2: Percentage ~ BEPC
Res.Df     RSS Df Sum of Sq    F  Pr(>F)  

1     14 1828.04                            
2 13 1168.36  1    659.67 7.34 0.01788 *
# note that sqrt(7.340)=2.709
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# full model 
# yi = b0 + b1*BEPCi + ei
fit<-lm(Percentage~BEPC,data)
# the summary function will make the default test
# for the intercept and the slope
summary(fit) 
Call:
lm(formula = Percentage ~ BEPC, data = data)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  39.2246     8.0097   4.897 0.000292 
BEPC          1.8383     0.6785   2.709 0.017876   
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Similarly, the summary function applied to the 
model fit2 will test whether the intercept of the 
intercept only model is different from zero

> summary(fit2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)   
(Intercept)    59.89       2.95    20.3  8.8e-12 

In this case, the full model is

and the null model has no parameter

> anova(fit0,fit2)
Model 1: Percentage ~ 0
Model 2: Percentage ~ 1
Res.Df   RSS Df Sum of Sq   F  Pr(>F)    

1     15 55624                             
2     14  1828  1     53796 412 8.8e-12 ***

Other tests
note that the summary function applied to the 
model fit1 will test whether the slope passing 
through the origin is different from zero

>summary(fit1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
BEPC    5.002      0.337   14.84 5.85e-10 ***

In other words, in this case, the full model is

and the null model has no parameter

> anova(fit0,fit1) 
Model 1: Percentage ~ 0
Model 2: Percentage ~ BEPC - 1
Res.Df   RSS Df Sum of Sq      F    Pr(>F)    

1     15 55624                                  
2     14  3324  1     52301 220.30 5.852e-10

iii xy εβ += 11

iiy ε=

These two tests are different from the tests that that estimated whether the intercept or slope of the 
linear regression are different from zero (see previous slide)

The above tests can be reproduced by fitting the model without any parameters

fit0<-lm(Percentage~0,data)
and comparing the resulting fit:

iiy ε=

iiy εβ += 0
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Model

where yij is the jth observation of the ith 
group and µi is the avearge of the ith group

This model is often expressed in terms of 
the general mean µ and the effects αi

where, by definition, the effect is

The sum of the effects is always zero:

Proof:

One-way ANOVA 
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# create data set with one factor (grp) with 
# 3 levels and 2 observeation (y) per level
data<-data.frame(

y=c(2,3,5,4,1,2),
grp=c(1,1,2,2,3,3))

plot(data$grp,data$y)

# note aov makes a linear regression if
# the predictor is not a factor
fit<-aov(y ~ grp,data)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
grp          1 1.0000  1.0000  0.4068 0.5583
Residuals    4 9.8333  2.4583 

# one-way ANOVA
data$grp<-factor(data$grp)
fit<-aov(y ~ grp,data)
summary(fit)

Df Sum Sq Mean Sq F value  Pr(>F)  
grp          2 9.3333  4.6667  9.3333 0.05152 .
Residuals    3 1.5000  0.5000
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• The tests in the ANOVA can also been seen as a comparison between two models that 
correspond to the models where the null hypothesis is (simple model) and is not (full 
model) assumed.

• The F ratio corresponds the sum of the square explained by the additional parameters 
in the full model over the residual errors of the full model. 

• For example, one-way ANOVAs are conducted to test whether there is a difference 
between the means of three or more groups. In other words, the null hypothesis is that 
all means are equal (H0: µi = µ) or, equivalently, that the effects are null (H0: αi = 0 ).

• In other words, the one-way ANOVA compares the variance explained by the model 
with only the intercept

with the variance explained by model where the means for each group can be fitted 
independently

or

ANOVA revisited

( ) ( )
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in matrix form

The residual sum of squares is minimized when 
the parameter is equal to the general mean

β0 = µ.

Fit intercept only-model

> fit1<-lm(y ~ 1, data)

design matrix

> model.matrix(fit1) 
(Intercept)

1           1
2           1
3           1
4           1
5           1
6           1

The esimated or fitted value of the 
parameter β0 corresponds to the grand 
mean

> coef(fit1)
(Intercept) 

2.833333 

Residual sum of square
> sum(resid(fit1)^2)
or
> deviance(fit1)
[1] 10.83333

Simple model
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can be represented in matrix form

The columns of the design matrix contain 
dummy variables that indicate the group 
membership

where

It can be shown that the parameters βi that 
minimize the residual sum of squares 
correspond to the group means µi.

This model can be fitted with the syntax

> fit2<-lm(y ~ grp - 1, data)
> model.matrix(fit2)
grp1 grp2 grp3

1    1    0    0
2    1    0    0
3    0    1    0
4    0    1    0
5    0    0    1
6    0    0    1
> coef(fit2)
grp1 grp2 grp3 
2.5  4.5  1.5 
> deviance(fit2)
[1] 1.5

This model can be compared to the previously fitted model 
with only the intercept

> anova(fit1,fit2) 
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ grp - 1
Res.Df     RSS Df Sum of Sq      F  Pr(>F)  

1      5 10.8333                              
2      3  1.5000  2    9.3333 9.3333 0.05152 .

Full model and F test
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The coefficients of this fit correspond 
as expected to means of each group

design matrix

residual sum of 
squares of the two 
models

df of the residual 
sum of square

number of additional 
parameters in the 
second model

( ) 333.9
3/5.1

2/5.1833.10
=

−
=F

residual sum of squares
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Other tests

Be careful when interpreting ANOVA tables.

>anova(fit2) 
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value   Pr(>F)   
grp        3 57.500  19.167  38.333 0.006829 
Residuals  3  1.500   0.500 

Using the anova function on the fit2 model does 
not test the equality of the means hypothesis  
(H0: µi = µ). In this case, the null hypothesis 
assumedis that the three coefficients are equal 
to zero (H0: µi = 0)

In other words, the model 

is compared to a model without coefficients

We can verify this by comparing both models 
explicitely (see right column)

ijiijy εβ +=

ijijy ε=

The model without coefficients can be fitted

>fit0<-lm(y ~ 0, data)
> coef(fit0)
numeric(0)

Note that the residual sum of squares is the 
sum of the squares of the observed values 

> deviance(fit0)
[1] 59
> sum(data$y^2)
[1] 59

The comparison between both models produces 
the desired result

anova(fit0,fit) 
Analysis of Variance Table
Model 1: y ~ 0
Model 2: y ~ grp - 1
Res.Df  RSS Df Sum of Sq      F   Pr(>F)   

1      6 59.0                                
2      3  1.5  3      57.5 38.333 0.006829 

( ) 333.38
3/5.1

3/5.159
=

−
=F
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With this design matrix, it is possible to show that the values 
of the parameters that minimize the residual sum of squares 
correspond to

Note that the first coefficient (β0) dost not correspond to 
average value (µ) because the contrasts are not orthogonal 
to the intercept column. In linear system theory, the term 
contrast is usually reserved orthogonal contrasts.

The gx(g-1) “contrast matrix” C specifies how to recode 
class membership:

Note that after recoding of the design matrix, testing the null 
hypothesis that the means are equal (H0: µ1= µ2 = µ3) 
corresponds to testing whehter the two last parameters are 
different from zero (H0: β1= β2 = 0).

The model

can be expressed in matrix form as

This model cannot be fitted because the model is 
over-parametrized (design matrix is singular 
because columns are co-linear). One of the 
parameters must be removed. For example,
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The contrast matrix can be defined explicitely. 
For example, to use the last group as the base 
group (the so-called SAS contrast)

contrasts(data$grp) <-matrix(c(1,0,0,0,1,0),3,2)
contrasts(data$grp)
[,1] [,2]

1    1    0
2    0    1
3    0    0

R offers several functions that return contrast 
matrix

Note that only helmert and polynomial contrasts 
define contrats orrthognal to the intercept 
column (this can be easily verified by checking 
that the sum of the elements in each contrast is 
zero).
contr.helmert(3)
[,1] [,2]

1   -1   -1
2    1   -1
3    0    2

R contrasts
By default, R uses the so call “treatment contrast”
for factors and “polynomial contrast” for ordered 
factor
> contrasts(data$grp)
2 3

1 0 0
2 1 0
3 0 1

The design matrix  of the fit shows that these 
contrasts have been used
>fit<-aov(y ~ grp,data)
>model.matrix(fit) # design matrix
(Intercept)  grp2 grp3
1           1    0    0
2           1    0    0
3           1    1    0
4           1    1    0
5           1    0    1
6           1    0    1
> tapply(data$y,data$grp,mean) # group means
1   2   3 

2.5 4.5 1.5 
> coef(fit) # coefficients
(Intercept)        grp2        grp3 

2.5         2.0        -1.0

As expected (see previous slide) the first parameter 
corresponds to the average of the first group and 
the other parameters correspond to the difference 
with this group

contr.SASSAS

contr.polypolynomial

contr.helmerthelmert

contr.treatmenttreatment
functioncontrasts
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• The structural model of a two-way factorial 
ANOVA without interaction is

• In absence of interaction, the mean value µij in 
condition (AiBj) depends in a additive manner on 
the effect of each condition

• The complete model of the two-way factorial 
ANOVA is

where  αβij = µij- (αi + βj + µ) = µij- µi• - µ•j + µ is 
the interaction effect. The interaction effect 
represents the fact that the contribution of one 
factors depends on the value of the other factor in 
a non-additive way.

Two-way ANOVA

ijkjiijky εβαµ +++=

ijkijiiijky εαββαµ ++++=

µµ•3µ•2µ•1Mean

µ2•µ23µ22µ21A2

µ1•µ13µ12µ11A1

MeanB3B2B1

• Let yijk be the kth observation of the ith level of 
factor A and jth level of factor B. 

• Let µij be the population mean for the ith level of 
factor A and jth level of factor B (condition AiBj), 
let µi• be the population mean in condition Ai, let 
µ•j be the population mean in condition Bj.and let 
µ be the grand mean.

• By definition αi = µi• – µ is the effect of factor A 
and βj = µ•j – µ is the effect of factor B.

jiij βαµµ ++=
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• Type I (sequential) SS
• test of factor A:

• test of factor B:

• test of interaction:

• In a two-way full factorial ANOVA, three different tests are performed that correspond 
to the following null hypotheses

• main effect of factor A H0: αi = 0
• main effect for factor B H0: βj = 0
• Interaction effect H0: αβij=0

The null hypotheses only partially define the tests to be conducted.

Sum of square types revisited

ijkijiiijky εαββαµ ++++=
ijkjiijky εβαµ +++=

ijkjiijky εβαµ +++=

ijkiijky εαµ ++=
ijkijky εµ +=

ijkiijky εαµ ++=

• Type III (marginal) SS
• test of factor A:

• test of factor B:

• test of interaction:

ijkijiiijky εαββαµ ++++=
ijkjiijky εβαµ +++=

ijkijiiijky εαββαµ ++++=

ijkijiiijky εαββαµ ++++=
ijkijiijky εαββµ +++=

ijkijiijky εαβαµ +++=

• Type II (hierarchical) SS
• test of factor A:

• test of factor B:

• test of interaction:

ijkijiiijky εαββαµ ++++=
ijkjiijky εβαµ +++=

ijkiiijky εβαµ +++=

ijkiiijky εβαµ +++=
ijkiijky εβµ ++=

ijkiijky εαµ ++=
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Example

Type I SS
> fit1<-lm(duration~1,v0)
> fit2<-lm(duration~disease,v0)
> fit3<-lm(duration~disease+age,v0)
> fit4<-lm(duration~disease*age,v0)

> anova(fit1,fit2)
Model 1: duration ~ 1
Model 2: duration ~ disease
Res.Df    RSS Df Sum of Sq      F    Pr(>F)    

1     77 5537.0                                  
2     74 2697.4  3    2839.6 25.967 1.396e-11
> anova(fit2,fit3)
Model 1: duration ~ disease
Model 2: duration ~ disease + age
Res.Df    RSS Df Sum of Sq      F   Pr(>F)    

1     74 2697.4                                 
2     71 1535.5  3    1161.9 17.908 9.34e-09
> anova(fit3,fit4)
Model 1: duration ~ disease + age
Model 2: duration ~ disease * age
Res.Df     RSS Df Sum of Sq      F    Pr(>F)    

1     71 1535.51                                  
2 62  926.27  9    609.25 4.5311 0.0001331

> summary(aov(duration~disease*age,v0))
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
disease      3 2839.64  946.55 63.3574 < 2.2e-16 
age          3 1161.89  387.30 25.9238 5.464e-11
disease:age  9  609.25   67.69  4.5311 0.0001331
Residuals   62  926.27   14.94                      

Type III SS
> fit1<-lm(duration~age+disease:age,v0)
> fit2<-lm(duration~disease+disease:age,v0)
> fit3<-lm(duration~disease+age,v0)
> fit4<-lm(duration~disease*age,v0)

> anova(fit1,fit4)
Model 1: duration ~ age + disease:age
Model 2: duration ~ disease * age
Res.Df    RSS Df Sum of Sq F Pr(>F)

1     62 926.27                      
2     62 926.27  0 1.137e-13         
> anova(fit2,fit4)
Model 1: duration ~ disease + disease:age
Model 2: duration ~ disease * age
Res.Df    RSS Df Sum of Sq F Pr(>F)

1     62 926.27                      
2     62 926.27  0 1.137e-13         
> anova(fit3,fit4)
Model 1: duration ~ disease + age
Model 2: duration ~ disease * age
Res.Df     RSS Df Sum of Sq      F    Pr(>F)    

1     71 1535.51                                  
2 62  926.27  9    609.25 4.5311 0.0001331 

> library(car)
> Anova(aov(duration~disease+age,v0),type="III")
Anova Table (Type III tests)
Response: duration

Sum Sq Df  F value    Pr(>F)    
(Intercept) 29261.2  1 1353.001 < 2.2e-16 ***
disease      2928.9  3   45.142 < 2.2e-16 ***
age          1161.9  3   17.908  9.34e-09 ***
Residuals    1535.5 71                       

> visits<-read.table("visits.dat",header=TRUE) # read data
> visits$age<-ordered(visits$age,c("20-29","30-39","40-49",">50")) # reorder factors
> v0<-visits[3:nrow(visits),] # remove two first cases


