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Linear regression

« Assuming that the relationship between the v
dependent and independent variables can be
modeled by a straight line:

y=Pp+pBx
the problem is to found out the values of the
coefficients ,and g, so that the regression line fits
best the data points (8, is the intercept and f3, the
slope of the regression line)

* The predicted value of Y for a given value of X is

Vi =By + Bx,

« The residual (error) is the difference between the | The method of the least squares to find out

observed and predicted value the v_alues of_ the_coefﬁcients of the regression
R line is to minimize the sum of the squared
=Y~ Vi vertical distance between the observed value y;

« By definition, the observed value y, is always equal | @nd the predicted value y;:
to the sum of the predicted value y, and the . . o
residual ¢;: min, , >l =ming ;> (vi-§)?

.:A.+g.: + X. +&.
Vi=Yi+e =B+ pix; +é :minﬂ‘,Aﬂ,Z()’i—ﬂo—ﬂl&)z
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Least-square estimation

* To minimize the residual sum of squares SSE

SSE=Y (v, =) =2 (v; = By - Bx,)’

we differentiate SSE w.r.t §,and g,
as

6 0
oS
—=-2 E x,(yi=pf, = px)=0
8, : yi—py =P
solving for g,and g, yields

:_zz(yi_ﬂo -px)=0

i

Normal equations

SXY
A= ssx
ﬂo =m, 7ﬂlmr

Analytical solution

Proof:

:Zm Bo-Bx)=0=yi ﬂ‘z‘(:.\‘ﬂ“:ﬂ_:\‘/zw ﬂ‘%z"\‘:m Bim,

722‘:;(;,7/;‘ ) =02 B =Y xyi- Y, —Z\‘Hf(m‘ 7/hn,]z:r‘ =Y wyi-m Y x +p, %\:Z\\/\
. Sxyi-Nmm,
:/ﬂ‘\zv\f 7‘\/m[]:‘2v yi-Nm,m, = B, sz\f:%
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Multiple Regression

.

In the multiple regression, we try to predict the value of the dependent
variable Y on the basis of two or more independent variables (predictors)
X X0 oy Xoh

The multiple line regression model ¥~ model parameters

Vi :@ +@xli +@x2i +"'+@xm +¢ (i=L..,N)

where x,; and x,, represent the values of the predictor variables and y;
represents the value of the independent variable for the " observations,
N represents the number of observations in the data set.

* The parameters of the model are the regression coefficients, 8y, By, ... B,

* The linear model has one random effect, the error term €i. The error term
is assumed to follow a normal distribution N(0, 02). Morevover, the error
terms for the various observations are assumed to be uncorrelated
(cov(y,p;)=cov(€,€)=0, i#).
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Linear models in matrix form

Geometric interpretation

¥~ model parameters

In matrix form

=Xp+e

design matrix X

or where y = (y,,..,vy) is the response vector, X is the model or design matrix,
B = (B, , B,) is the vector of regression of coefficients and is the vector of
errors (or residuals).

The vector of errors & = (¢, ..., ¢,) is assumed to follow a n-variable
multivariate-normal distribution with a n by n covariance matrix

var(g)  cov(e,&,) - cov(e,e,)]| |of oh o on| |6 0 0
cov(e,,g)  var(e,) cov(e,,e,)| |oh o o3, 0 o’ 0 )
= . . . =7 7 S . |=o,
cov(e,, &) cov(e,,&,) - var(g,) o, 05 - O, 0 0 - o

The classic assumptions of homogeneity of the variances (var(¢,) = ¢) and
uncorrelated observations (cov(&,.,sj) =0 for i#j) imply that Z = 21I,.
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X2

Deviazioni dat piano

» Any linear multiple regression involving p
predictors can be represented graphically in
Y p+1 dimensional space.

» For example, for two predictors, we can
represent each observation (x;;, Xy, y;) inside a
three dimensional space. The value predicted
by the multiple regression model lie in a plane:

Vi =By + Bixy; + Brxy,
* The residuals corresponds to the vertical

distance between the data points and the
plane (predicted values):

x’ E=Vi—):

The coefficients of the multiple regression
plane minimize the deviations from the plane
(residual or error sum of squares):

SSE= Y57 =3 (v, -3,
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Piano di regressione
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Linear model theory

Im

* The parameters B of the linear model

y=XpB+e
are obtained by that minimizing the sum of squares

where HSH = zgiz
i

differentating w.r.t. ,equating by 0, and solving for
B, yields

A

mjnHzH = mjnHy — XP
B B

This is not a good formula to compute p
(other methods based on QR decomposition
of X are actually used).

B=xx)"X"y

* The predicted values are

Properties of the hat matrix
« tr(A)=p (nb. of parameters)

§=Xp=X(X'X) "Xy
— « idempotence (AA=A)

projection operator
(= hat or influence matrix)
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Syntax
Im(formula, data, subset)

aov (formula, data, subset)

Usage

1mis used to fit linear models. It can be used to carry out regression, single stratum
analysis of variance and analysis of covariance (although aov may provide a more
convenient interface for these).
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Linear regression example

Regression diagnostic tools

# data set

# simple linear regression model yi = b0 + b1*BEPCi

e~BEP!
ion line to the plot

ei

Correct response (%)

# The summary function test whether the coefficients are significantaly different from zero

summary (£it)

>, data = data)

The test reported here is the so-called omnibus test. It compares the
model with all predictors to a simpler model with only the intercept. In
the case of a simple linear regression, this test is equivalent to the
test of the slope
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# coefficient of the regression

plot (data

# plot
e (fit)

# plot fitted values
points (data$BEPC, predic

pch=16)

# predicted values for

redict (fit),resid(fit))
e (h=0,1ty=2)

#

Standa.
andard (fi

Studentized residuals
3 nt (fit)

Cook's distance
cooks.d: ance (£
# Leverage
hatvalues (fitl)

5w
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Testing the regression coefficients

Example

In multiple regression, the usual test is to check
whether the value of the coefficients is statistically
different from zero. There is in fact one test per
coefficient.

The default way to test the significance of one
coeffecient is to compare the full model

Vi =By + Bixy + BoXy +ooo+ PpXp +

with a model that include all predictors except the
tested one. For example, to test the coefficient 3,
the residual sum of squares RSSy,, of the full
model is compared to the residual sum of square
RSS, of the model

Vi=p + Py et Ppxp + €
In other words, the default test will test whether
the predictor x,; explains some significant part of

the variance once all other predictors have
already been included in the model.
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The F ratio

(RSS ,, — RSS, )/1
RSS 1 df,

error

where the difference RSSy,-RSS; is the sum of
square explained by the additional parameter in
the full model. When testing the value of singular
coefficient, the degree of freedom of the
numerator is always 1 since the two model differ
only by the exclusion of a single predictor.

Most software (including R) report a t value
rather than a F ratio but the two tests are strictly
equivalent because the F distribution F4 \ with
the first dof equal to 1 is distributed like the
square of the t distribution ty and the reported t
values is equal to the square root of the F ratio.
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# full model

# yi = b0 + BL*BERCI + ei

£ ta data)

# will make the default test

+ rcept and the slope

summary (£it)

Call:

m(formula = Percentage ~ BEPC, data = data)
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# The test for the intercept is equivalent to comparing
f the full model with a model without the intercept

yi = bl*BEPCi + ei

EPC-1,data)

F Pr (>F)

4 23.982 0.0002916 ***
4.897

2 13 1168.4 1 215
# note that sqrt(23.982)=

# The test for the slope is equivalent to comparing
# the full model with a model without the predictor
# yi = b0 + el

fit2<-1m(Per e~1,
abline (fit2,col="blue")

Percentage
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Other tests One-way ANOVA

note that the summary function applied to the Similarly, the summary function applied to the
model fit1 will test whether the slope passing model fit2 will test whether the intercept of the Model 7 N
through the origin is different from zero intercept only model is different from zero - °
it1) y"j:’ui-"_g"j ?!E”’D
where y; is the jth observation of the ith e o
group and y; is the avearge of the ith group -4 J

In other words, in this case, the full model is 10 15 20 25 30

In this case, the full model is
Vi =Bxitg Vi =B+,

data$grp
This model is often expressed in terms of
the general mean p and the effects o

# create data set with one factor (grp) with
# 3 levels and 2 observeation (y) per level

data<-data.fr

and the null model has no parameter and the null model has no parameter

Vi =& Vi =&

yy=Hta +eg;

These two tests are different from the tests that that estimated whether the intercept or slope of the where, by definition, the effect is

linear regression are different from zero (see previous slide)

# note aov makes a linear regression if
# the predictor is not a factor
o, =H —H £it -

The sum of the effects is always zero:

Za[ =0

i

The above tests can be reproduced by fitting the model without any parameters

and comparing the resulting fit:
Proof:

t0, £

Za, :Z(/f, *ﬂ):[z’:ﬂ,j—lwzo
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ANOVA revisited Simple model

The tests in the ANOVA can also been seen as a comparison between two models that -
Fit intercept only-model

correspond to the models where the null hypothesis is (simple model) and is not (full V. = ﬂ +e.
model) assumed. Y 0 Y > fitl<-Im(y ~ 1, data)
» The F ratio corresponds the sum of the square explained by the additional parameters in matrix form design matrix
in the full model over the residual errors of the full model.
Y 1 &, > el.matrix (fitl)
(RSS s = RSS 0 W s = Af ) vl 1| e )
full — simple f full — fmp/e ? : 2 1 1
= Y £ 2 1
= +
RSS Sfull /df, full ol |1 ] £ 3 1 design matrix
ya| |1 & : !
vol 1 e :

For example, one-way ANOVAs are conducted to test whether there is a difference
The residual sum of squares is minimized when

between the means of three or more groups. In other words, the null hypothesis is that
all means are equal (Hy: y; = p) or, equivalently, that the effects are null (Hy: ;= 0).

In other words, the one-way ANOVA compares the variance explained by the model
with only the intercept
Yy =HTE

with the variance explained by model where the means for each group can be fitted
independently

Yq:ﬂ[+5[/ or yi/.:,u+ai+8i/.
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the parameter is equal to the general mean

Bo= b
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The esimated or fitted value of the
parameter 8, corresponds to the grand
mean

> coef (fitl)
(Intercept)
2.833333

Residual sum of square
> sum(resid(fit1)"2)

or

> deviance(fit1)
[1]10.83333
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Full model and F test

Vi = ﬂi +é&;
can be represented in matrix form

Y Loo &u
yol [1 00 5 c.,z
Yau|_|0 10 &

= B |+
ya| |010 ﬁ' &n
yul |00 17 ey
Yol [0 01 &,

The columns of the design matrix contain
dummy variables that indicate the group
membership

Vi =B+ Boxy + Bixy + 6

where
1 if i" obs isin g" group (i=g)
“ 10 otherwise

It can be shown that the parameters f; that | 4f of the residual
minimize the residual sum of squares sum of square

correspond to the group means ;.

This model can be fitted with the syntax

The coefficients of this fit correspond
as expected to means of each group

This model can be compared to the previously fitted model
with only the intercept

f Sum of Sq F  Pr(>F)

residual sum of

models

squares of the two

parameters in the
second model

number of additional ‘
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Other tests

Be careful when interpreting ANOVA tables.

Using the anova function on the fit2 model does
not test the equality of the means hypothesis
(Ho: 1; = ). In this case, the null hypothesis
assumedis that the three coefficients are equal
to zero (Hy: ;= 0)

In other words, the model
Yy =B +¢,
is compared to a model without coefficients

Vi =&

We can verify this by comparing both models
explicitely (see right column)
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The model without coefficients can be fitted

Note that the residual sum of squares is the
sum of the squares of the observed values

viance (£1t0)

The comparison between both models produces
the desired result
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Contrasts

The model
Vi = ﬂu ta, +é&;

Dummy variables
indicating class
memberships

This model cannot be fitted because the model is
over-parametrized (design matrix is singular
because columns are co-linear). One of the
parameters must be removed. For example,

ol 1 &
v | |1 ARG
Ya|_|1 &
y - 1 Al £
Y AR
yal |1 &y
Vi 1 &3

contrasts
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With this design matrix, it is possible to show that the values
of the parameters that minimize the residual sum of squares
correspond to

Bo =
Br= by =y
B =ms—

Note that the first coefficient (8,) dost not correspond to
average value (u) because the contrasts are not orthogonal
to the intercept column. In linear system theory, the term
contrast is usually reserved orthogonal contrasts.

The gx(g-1) “contrast matrix” C specifies how to recode
class membership:

oo = = o o

S o o o — —

Note that after recoding of the design matrix, testing the null
hypothesis that the means are equal (Hy, 4;=, = ;)
corresponds to testing whehter the two last parameters are
different from zero (H, #,=5,=0).
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R contrasts

By default, R uses the so call “treatment contrast”
for factors and “polynomial contrast” for ordered
factor

Wk

The design matrix of the fit shows that these
contrasts have been used

a$grp,mean) # group means

> f(fit) # coefficients
(Intercept) grp2
2.5 2.0

As expected (see previous slide) the first parameter
corresponds to the average of the first group and
the other parameters correspond to the difference
with this group
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The contrast matrix can be defined explicitely.
For example, to use the last group as the base
group (the so-called SAS contrast)

contrasts (data$grp) <-matrix(c(1,0,0,0,1,0),3,2)
contrasts (data$grp)

(11 [,2]
1 1 0
2 0 1
3 0 0

R offers several functions that return contrast
matrix

contrasts function

treatment contr.treatment
SAS .SAS
helmert .helmert
polynomial contr.poly

Note that only helmert and polynomial contrasts
define contrats orrthognal to the intercept
column (this can be easily verified by checking
that the sum of the elements in each contrast is

zero).

contr.helmert (3)
L1 [,2]

1 -1 -1

2 1 -1

3 0 2
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Two-way ANOVA

Sum of square types revisited

B, B, B, Mean
Ay Mg M2 M3 My
A, Hap Moz Moz Hoe
Mean My Mo M| op

* Lety,, be the k™ observation of the i*" level of
factor A and jt level of factor B.

* Lety;; be the population mean for the it" level of
factor A and " level of factor B (condition AB)),
let ;. be the population mean in condition A, let
1y be the population mean in condition Bband let
1 be the grand mean.

* By definition &; = ;. — pis the effect of factor A
and B; = u.;— u is the effect of factor B.
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The structural model of a two-way factorial
ANOVA without interaction is

Vi :,quaiJrﬂ,‘Jrg[jA

In absence of interaction, the mean value ;; in
condition (AB;) depends in a additive manner on
the effect of each condition

'uz/' =lu+ax+ﬁ,‘

The complete model of the two-way factorial
ANOVA is

Y =Hto +p +af; +e,

where aB; = u;- (o; + B; +u) = [y Hia- gt pis
the interaction effect. The interaction effect
represents the fact that the contribution of one
factors depends on the value of the other factor in
a non-additive way.
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« In a two-way full factorial ANOVA, three different tests are performed that correspond
to the following null hypotheses

* main effect of factor A
* main effect for factor B

« Interaction effect

Ho: ;=0
Ho: =0
Ho: =0

The null hypotheses only partially define the tests to be conducted.

» Type | (sequential) SS
« test of factor A:
Yig = H+ &y
Yipg =M+ + &y
« test of factor B:
Vg SHTQ +Ey
Y = HTQ; +ﬂ, + &

« test of interaction:
Y =HTQ; +ﬁ, +Eu

Vg SHTQ; +5 +aﬂ., +&u
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« test of factor A:
YV =H+ B + &y
Vi =M+ + P+ Ey

« test of factor B:
Y =Hta+ Eiji

Y =HAQ + i+ ey

« test of interaction:
Y =uta;+ i+ Eik
Vi = HtQ; +5 +aﬂ., +&u

« Type Il (hierarchical) SS -« Type lll (marginal) SS

* test of factor A:
Y =kt BiraP;te
Y =HTQ; +B+ aﬂ./ + &y

« test of factor B:
Y =Ht o+ ap; + &y
Y =HtTa; + B+ aﬂ./ + &y
« test of interaction:

yyk:/l+a,+ﬁ,+ Eijk
Y SHTQ; + 5 +aﬂ;, + &y
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Example

Type | SS

> fitl<-lm(duration~1,v0)

F Pr (>F)

2839.6 25.967 1.396e-11

An Introduction to Statistics with R

wrTTn)

3 17.9 .

1
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