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Factorial design
• The most common design for a n-

way ANOVA is the factorial design. 

• In a factorial design, there are two or 
more experimental factors, each with 
a given number of levels.

• Observations are made for each 
combination of the levels of each 
factor (see example) 

• In a completely randomized factorial 
design, each experimentally unit is 
randomly assigned to one of the 
possible combination of the existing 
level of the experimental factors.   

Example of a factorial design with two 
factors (A and B). Each factor has three 
levels. yijk represents the kth observation 
in the condition defined by the ith level of 
factor A and jth level of factor B.

y33ky32ky31kA3

Y23ky22ky21kA2

y13ky12ky11kA1

B3B2B1

Factor B
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Advantages of the factorial design

• A two-way design enables us to examine the joint (or interaction) 
effect  of the independent variables on the dependent variable. An 
interaction means that the effect of one independent variable has 
on a dependent variable is not the same for all levels of the other 
independent variable.  We cannot get this information by running
separate one-way analyses. 

• Factorial design can lead to more powerful test by reducing the 
error (within cell) variance. This point will appear clearly when will 
compare the result of one-way analyses with the results of a two-
way analyses or t-tests. 
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Interaction plot

• An interaction plot represents the mean 
value mij observed in each one of the 
condition of a factorial design.

• The Y axis corresponds to the dependent 
(or criterion) variable. The various level of  
one of the two experimental factor are 
aligned on the X axis. The lines relate the 
mean values that corresponds to the 
same level of the second experimental 
factor.

• There is an interaction between the 
factors if the lines are not parallel because 
the effect of one factor depends on the 
value of the other factor. 

• If the lines are a parallel, the effect of the 
second factor is independent from the 
value of the first factor. In other words, 
there is no interaction. 

µ23=24µ22=14µ21=10A2

µ13=20µ12=10µ11=6A1

B3B2B1

µ23=4µ22=10µ21=10A2

µ13=20µ12=10µ11=6A1

B3B2B1

Exercise. Make the interaction plots 
for the second table. Describe the 
interaction (if any).
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• The structural model of a two-way 
factorial ANOVA without interaction is

• In absence of interaction, the mean value 
µij in condition (AiBj) depends in a additive
manner on the effect of each condition

• The complete model of the two-way 
factorial ANOVA is

where  αβij = µij- (αi + βj + µ) = µij- µi• -
µ•j + µ is the interaction effect. The 
interaction effect represents the fact that 
the contribution of one factors depends on 
the value of the other factor in a non-
additive way.

Structural model (factorial ANOVA)

ijkjiijky εβαµ +++=

ijkijiiijky εαββαµ ++++=

µµ•3µ•2µ•1Mean

µ2•µ23µ22µ21A2

µ1•µ13µ12µ11A1

MeanB3B2B1

• Let yijk be the kth observation of the ith level 
of factor A and jth level of factor B. 

• Let µij be the population mean for the ith
level of factor A and jth level of factor B 
(condition AiBj), let µi• be the population 
mean in condition Ai, let µ•j be the 
population mean in condition Bj.and let µ be 
the grand mean.

• By definition αi = µi• – µ is the effect of 
factor A and βj = µ•j – µ is the effect of 
factor B.

jiij βαµµ ++=
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Exercise.

1422128m•j

16241410A2

1220106A1

mi•B3B2B1mij

1012108m•j

841010A2

1220106A1

mi•B3B2B1mij

• Compute the main and interaction effects from the mean values (see tables in the 
left column).  Answer: see tables in the right column.

+8 -2-6βj

+2000A2

-2000A1

αiB3B2B1αβij

+2 0-2βj

-2-6+2+4A2

+2+6-2-4A1

αiB3B2B1αβij

Mean values                                              Table of effects
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Sum of squares
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• Like in the one-way ANOVA, the total sum of 
squares (SST) can be decomposed into a between-
groups sum of square (the treatment effect, SStr) 
and a within-group sum of square (SSE) which 
corresponds to the residual variance:

SST = SStr + SSE
Note that the group (or experimental condition) in a 
factorial designed is determined by the value of two 
or more experimental factors.

• The between-group variations (SStr) can themselves 
be decomposed further into a variations that are 
explained by factor A (SSA), variations that are 
explained by factor B (SSB) and variation that are 
explained by the interaction between both factors 
(SSAB)

SStr = SSA + SSB + SSAB
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If the null hypotheses are 
true, the F ratios follow a 
Fisher distribution with the 
corresponding degrees of 
freedom. 

In that can be shown that 
the numerator is also an 
estimate the residual 
variance. 

F tests

• A factorial design aims at answering three different questions:
1. Is there an effect of the first experimental factor? 

H0: αi = 0   (yijk = µ + βj + αβij + εijk)
2. Is there an effect of the second experimental factor? 

H0: βj = 0   (yijk = µ + αi + αβij + εijk)
3. Is there an interaction?

H0: αβij = 0 (yijk = µ + αi + βj + εijk)

• In all cases, the alternative hypothesis is the complete model
H1: yijk = µ + αi + βj + αβij + εijk

• The residual variance (within-group variance) for this model 
is:

• In all cases, the F test is constructed by computing the 
percentage of variance that is explained by the parameters of 
interest divided by the residual variance of the more complex 
model. 
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[R] Interaction plot

> visits<-read.table("visits.dat",header=TRUE)
> visits$age<-ordered(visits$age,c("20-29","30-39","40-49",">50"))
> interaction.plot(visits$age,visits$disease,visits$duration,
+ type="b",col=1:4,lty=1,lwd=2,pch=c(15,15,15,15),las=1,
+ xlab="Age",ylab="Visit duration (min)",trace.label="Disease")
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• Lines are not parallel which is the 
tell-tale sign of an interaction. This 
plot suggests that the visit time 
increase with the older age groups 
for the cancer and cerebro-
vascular diseases while it 
remained constant for the heart 
and tuberculosis diseases.
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[R] 2-way ANOVA

• two-way ANOVA without interaction

> fit<-aov(duration~disease+age,visits)
> anova(fit)
Analysis of Variance Table
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
disease    3 2992.45  997.48  47.037 < 2.2e-16
age        3 1201.05  400.35  18.879 3.649e-09
Residuals 73 1548.05   21.21

• two-way ANOVA with interaction

> fit<-aov(duration~disease+age+disease:age,visits)
> fit<-aov(duration~disease*age,visits)
> anova(fit)
Analysis of Variance Table
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
disease      3 2992.45  997.48 67.9427 < 2.2e-16
age          3 1201.05  400.35 27.2695 1.763e-11
disease:age  9  608.45   67.61  4.6049 0.0001047
Residuals   64  939.60   14.68
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• The ANOVA table shows statistically 
significant main effects of the age 
and disease factors as well as a 
statistically significant interaction.

• Note the change significativity of the 
main effect when the interaction is 
included. This is due to the smaller 
denominator (residual error) in the F 
ratio.

• Manual compuation:
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> anova(aov(duration~disease,visits))
Analysis of Variance Table
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
disease    3 2992.45  997.48  27.576 3.600e-12
Residuals 76 2749.10   36.17                      

> anova(aov(duration~age,visits))
Analysis of Variance Table

Response: duration
Df Sum Sq Mean Sq F value    Pr(>F)    

age        3 1201.0   400.3  6.7012 0.0004502
Residuals 76 4540.5    59.7                      

> anova(aov(duration~disease*age,visits))
Analysis of Variance Table
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
disease      3 2992.45  997.48 67.9427 < 2.2e-16
age          3 1201.05  400.35 27.2695 1.763e-11
disease:age  9  608.45   67.61  4.6049 0.0001047
Residuals   64  939.60   14.68                      

Exercise

• Exercise. Analyze the effect of the age 
and disease variable on the visit time by 
doing two separate one-way ANOVAs. 
Compare the results with the main effects 
of a two-way factorial ANOVA. 

• As expected, the sum of square that 
corresponds to the tested hypothesis (red 
circles) are the same for the one-way 
ANOVA and the two-way ANOVA. 
However, the F statistics (green circles) 
for the one-way ANOVA are quite different 
from the main effect of the two-way 
ANOVA because the estimates of the 
residual variance are different (see blue 
circles).
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Exercise

• What is total sume of square? 

> m<-mean(visits$duration)
> sum((visits$duration-m)^2) 
[1] 5741.55
> fit<-aov(duration~disease*age,visits)
> sum(anova(fit)[,"Sum Sq"])
[1] 5741.55

Can you reconstruct the results of a one-way ANOVA from the results of a two-way 
factorial ANOVA? What would be the SSBetween, SSWithin and SSTotal of a one-way ANOVA 
performed with the disease experimental factor?  
Answer: SSTotal = 5741.550 (no difference)

SSBetween = SSDisease =  2992.45 (no difference)
SSWithin = SSAge + SSAge:Disease + SSE =  1201.050 + 608.450 +939.6 =  2749.1
(In the one-way ANOVA, the age and the interaction are ignored and considered as
unexplained part of the variation of dependent variable).

• What is the value of the F statistics in the one-way ANOVA?
Answer: F = (2992.45/3)/(2747.1/76)=27.576
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Unbalanced data

> v0<-visits[3:nrow(visits),] # remove two first cases
> table(v0$age,v0$disease)

cancer cerebrovascular hear tuberculosis
20-29      5               5    3            5
30-39      5               5    5            5
40-49      5               5    5            5
>50        5               5    5            5

> fit<-aov(duration~disease+age,v0)
> anova(fit)
Analysis of Variance Table
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
disease    3 2839.64  946.55  43.767 3.964e-16 ***
age        3 1161.89  387.30  17.908 9.339e-09 ***
Residuals 71 1535.51   21.63                      

> fit<-aov(duration~age+disease,v0)
> anova(fit)
Analysis of Variance Table

Response: duration
Df  Sum Sq Mean Sq F value    Pr(>F)    

age        3 1072.64  357.55  16.532 3.017e-08 ***
disease    3 2928.88  976.29  45.142 < 2.2e-16 ***
Residuals 71 1535.51   21.63                      

• When the dataset is 
balanced (same number 
of observation per 
group), the order in 
which factor are 
specified is not 
important.

• When the data set is 
unbalanced, the 
percentage of variance 
by a factor explained 
depend on its position.
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Type I, Type II and Type III sum of squares

• Type I (sequential): 
– Terms are entered sequentially in 

the model. 
– Type I SS depend on the order in 

which terms are entered in the 
model

– Type I SS can be added to yield to 
the total SS.

• Type II (hierarchical): 
– see textbook

• Type III (marginal) 
– Type III SS correspond to the SS 

explained by a term after all other 
terms have already been included in 
the model. 

– Type III SS do not add.

• The analysis of unbalanced data sets 
(different number of observation in 
each group) present speficial 
difficulties because there are different 
ways of computing the sum of 
squares. These different ways 
corresponding to different hypotheses 
and, correspondly, the F tests are 
different.

• The R function anova yields Type I 
sum of square.

• Most textbooks suggest using the 
Type III sum of squares and many 
statistical sofftwares use Type III sum 
of square as a default but many 
stasticians think it does not make 
sense when there are statistically 
significant interactions. 

Overall & Spiegel (1969) Psychol. Bull., 72:311- 322, for a detailed discussion of factorial designs.
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[R] Type III sum of square

• The function Anova in the library car compute type II and type III 
sum of squares
> library(car)
> Anova(aov(duration~disease+age,v0),type="III")
Anova Table (Type III tests)
Response: duration

Sum Sq Df  F value    Pr(>F)    
(Intercept) 29261.2  1 1353.001 < 2.2e-16 ***
age          1161.9  3   17.908  9.34e-09 ***
disease      2928.9  3   45.142 < 2.2e-16 ***
Residuals    1535.5 71

• Compare with Type I sum of squares

> anova(aov(duration~age+disease,v0))
Analysis of Variance Table
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
age        3 1072.64  357.55  16.532 3.017e-08
disease    3 2928.88  976.29  45.142 < 2.2e-16
Residuals 71 1535.51   21.63

> anova(aov(duration~disease+age,v0))
Analysis of Variance Table
Response: duration

Df  Sum Sq Mean Sq F value    Pr(>F)    
disease    3 2839.64  946.55  43.767 3.964e-16
age        3 1161.89  387.30  17.908 9.339e-09
Residuals 71 1535.51   21.63
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Repeated-measure designs

This example of one-way 
repeated measure ANOVA 
shows only small differences 
between treatments and large 
difference between subjects. 
In the repeated-measure 
ANOVA, we neglect the 
variations between subjects 
and consider only the 
variation for each treatment 
within each subject. 

• In repeated-measure designs, several 
observations are made on the same experimental 
units. For a example, one of the most common 
research paradigm is that where subjects are 
observed at several different point in time (e.g., 
before and after treatment, longitudinal studies).

• In repeated measure design, it is important to 
distinguish between-subject and within-subject 
factors. 

-Within-subject factors are variables (like 
time or treatment or repetition) that identify the 
differences between conditions or treaments
that have been assigned to each subject.
-Between-subject factors are varables (like 
age or sex or group) that identify differences 
between the subjects.
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Statistical approaches
• There are three approaches to repeated-measure designs:

1. The univariate approach: This approach uses the classic univariate F test of 
the ANOVA. However, the data must satisfy the so-called sphericity condition 
in addition of the usual assumptions for the test to be valid.  It is possible to 
adjust degrees of freedom to account for possible violation of the sphericity 
assumption.

2. The multivariate approach: This sphericity condition does not need to be 
satisfied. However, this approach requires a larger number of observation 
(number of subjects must be larger than number of experimental conditions) 
and,  in general, is less powerful than the univariate approach.

3. The linear mixed model approach: This approach is probably the best 
approach from a theoretical point of view but it is quite complex.

• References: Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The analysis of repeated 
measures designs: a review. British Journal of Mathematical and Statistical Psychology, 54, 1-
20.
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The univariate approach
• In the previous examples of ANOVAs, we have assumed that the 

observations between experimental conditions are uncorrelated (or 
independent). This assumption is valid if different subjects are used in 
different experimental conditions.  However, this assumption is no more 
valid if the same subjects are used in several (or all) experimental 
condition because better subjects in one condition are also likely to 
perform better in the other conditions.

• In the repeated-measure ANOVA, the data must also satisfy the so-called 
sphericity (or circularity) condition  or the compound symmetry
condition in addition of the usual assumptions (independence, 
homogeneity of the variances, and normality) .

• The compound symmetry condition is a stronger assumption than the 
sphericity condition.   

• The sphericity condition needs to apply only to within-subject factors. It is 
automatically satisfied if the within-subject factor has only two levels.
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Adjusting of the degrees of freedom

• While tests for the sphericity or compound symmetry exist (e.g. Mauchly’s test), 
they are not very reliable because they are quite sensitive to deviations of the 
normality assumption. 

• A better approach is to adjust the degrees of freedom in order to make the tests of 
the repeated measure ANOVA more conservative. Several correction factors exist: 
Greenhouse-Geisser (1959), Huynh-Feldt (1990) and a lower-bound value which is 
most conservative (see relevant literature for more details).  SPSS will automatically 
compute the value of these factors.

• To adjust the F test, it is necessary to multiply the two degrees of freedom of the F 
distribution by the correction factor. Since the value of the correction factor is 
smaller than 1, this will decrease the degrees of freedom of the F distribution and 
make, in general, the test more conservative.
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Example. RQ data set

This repeated-measure experimental design 
has only one within-subject factor (time, with 
3 levels). It is an example of longitudinal study.

The underlying model for this experimental 
design is

where yij is the measure done on the ith subject 
at point j in time (i =1,..,8, j =1,..,3), bi is the 
subject effect and βj is the diet effect measured 
at several points in time.  Note that this model 
assumes that there is no interaction between 
the subject and the time (the hypothetical effect 
of the diet after three and seven days is the 
same for all subjects). 

ijjiij by εβµ +++=

> rq.l<-read.table("RQ.dat",header=TRUE,sep="\t")
> interaction.plot(rq.l$day,rq.l$su,rq.l$rq,type="b",las=1,col=1,lty=1,fixed=T,pch=1:8,

trace.label="Subject“,xlab="Days",ylab="Respiratory quotient",)
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RQ data set (see Wayne, Table 8.4.): Analysis of the respiratory quotient (RQ) of 8 patients 
who followed a special diet. The RQ was measured at the beginning  of the diet (day=0), 
after three days, and after seven days.
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Example. RQ data set
• The Error() term in the formula is used to indicate how to compute the 

denominator (eror) term of the F test

> rq.l$su<-factor(rq.l$su) # codes factors
> rq.l$day<-factor(rq.l$day) # 
> fit<-aov(rq~day+Error(su/day),rq.l) # ANOVA
> summary(fit)
Error: su

Df    Sum Sq   Mean Sq F value Pr(>F)
Residuals  7 0.0074380 0.0010626               
Error: su:day

Df    Sum Sq   Mean Sq F value Pr(>F)
day        2 0.0020803 0.0010402  1.0791 0.3666
Residuals 14 0.0134950 0.0009639 

• Note that the error term of the F test of a within-subject factor corresponds to 
the interaction between the factor and the subject:

> anova(aov(rq~day*su,rq.l))
Analysis of Variance Table

Response: rq
Df    Sum Sq   Mean Sq F value Pr(>F)

day        2 0.0020803 0.0010402
su         7 0.0074380 0.0010626               
day:su    14 0.0134950 0.0009639               
Residuals  0 0.0000000 

• the null hypothesis being tested is 
H0: βj= 0 (the diet has no effect).

• The dofs for the F test are k-1=2 for 
the hypothesis being tested where k
is the number of the within-subject 
factor, and (n-1)(k-1)=14 for the error 
term where n is the number of 
subjects
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Example. RQ data set
• Long  (univariate) format: one colum contain all the observations, additional specify 

levels corresponding to within as well as between subject factors 

> head(rq.l)
su day    rq

1  1   0 0.800
2  1   3 0.809
3  1   7 0.832
4  2   0 0.819
5  2   3 0.858

• Wide (multivariate) format: each raw correspond to a different subject, columns 
contains repeated measures that correspond to within-subject factors). Addtional 
columns specify the levels of between-subject factors.

> rq.w<-reshape(rq.l,
v.names="rq",
idvar="su",
timevar="day",
direction="wide")

> rq.l<-rq.l[order(rq.l$su,rq.l$day),c("su","day","rq")]
> head(rq.w)

su  rq.0 rq.3 rq.7
1   1 0.800 0.809 0.832
4   2 0.819 0.858 0.835
7   3 0.886 0.865 0.837
...

Data Analysis (draft) - Gabriel Baud-Bovy

24

Example. RQ data set
• To obtain DoF adjustements, it is necesary to use the data in the wide format and the specify the 

columns with the repeated measures in the rhs of the formula with cbind(...) in aov or lm.

> fit<-aov(cbind(rq.0,rq.3,rq.7)~1,rq.w)

• the idata argument of anova.mlm is necessary to establish a correspondence between columns of 
the dataset and the levels of the within-subject factor(s)

> (idata<-data.frame(day=factor(c(0,3,7))))
day

1  0
2  3
3  7

• Univariate tests with adjusted DoFs are obtained with anova.mlm (anova multivariate) with 
test="Spherical"
> anova(fit,idata=idata,X=~1,test="Spherical")
Analysis of Variance Table
Contrasts orthogonal to
~1
Greenhouse-Geisser epsilon: 0.6945
Huynh-Feldt epsilon:        0.8119

Df      F num Df den Df  Pr(>F)  G-G Pr  H-F Pr
(Intercept)  1 1.0791      2     14 0.36656 0.35084 0.35805
Residuals    7 

• The adjusted degrees of freedom are 
obtained by multiplying the original 
degree of freedom by the correction 
factor. For Greenhouse and Geisser 
correction factor (ε=0.694), the 
adjusted dofs are 1.289=2x0.694 for 
the first dof and 9.723=14x0.694 for 
the second dof. 

• Using the adjusted dofs with the F 
distribution yields typically a more 
conservative p value (.351 instead of 
.367).  .
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Example. RQ data set

• Mauchly’s test is sued to to check if sphericity is statisfied

> mauchly.test(fit,idata=idata,X=~1)
Mauchly's test of sphericity
Contrasts orthogonal to ~1

data:  SSD matrix from aov(formula = cbind(rq.0, rq.3, rq.7) ~ 1, data = rq.w) 
W = 0.5601, p-value = 0.1757

• Multivariate tests do not assume sphericity

> anova(fit,idata=idata,X=~1,test="Pillai")
Analysis of Variance Table
Contrasts orthogonal to ~1

Df  Pillai approx F num Df den Df Pr(>F)
(Intercept)  1 0.17622  0.64175      2      6  0.559
Residuals    7 

Argument test="Spherical" gives access to alternative multivariate tests ("Wilks", 
"Hotelling-Lawley", "Roy", "Spherical"), 
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• The dataset contains the absolute thresholds of 6 subjects (3 males and 3 females). 
Each subject performed 10 trials with one of two possible different starting values 
(start=0 and 10). 

• We want to test  whether there is a difference between the thresholds of the two 
sexes and iIf the threshold depend on the starting values

• One between-subject factor (sex) and one within-subject factor (start)

Example. Threshold dataset
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Example. Threshold dataset
# define threshold dataset (wide format)
th.w<-data.frame(

sex=factor(c("M","F","M","F","M","F")),
y=matrix( c(5.4,3.9,5.8,4.9,5.2,3.9,3.9,6.3,5.9,5.3,

4.2,5.5,4.8,5.5,5.0,6.1,5.4,6.0,4.0,7.7,
3.6,3.1,4.5,4.9,5.1,5.1,6.2,4.9,5.4,4.5,
4.6,6.1,5.6,2.8,5.9,4.5,5.5,3.0,5.7,8.1,
4.0,4.9,4.9,4.5,5.5,3.7,6.2,5.2,3.6,6.3,
4.3,6.1,4.3,5.3,4.3,4.9,5.9,4.9,6.0,7.6),nrow=6,byrow=TRUE)

)
# define within-subject factors
idata<-data.frame(

half=factor(rep(1:2,each=5),
start=factor(rep(c(0,10),5)))

# reshape into long format
th.l<-reshape(th.w,

varying=paste(“y",1:10,sep="."),
v.names="y",
idvar="su",
timevar="trial",
direction="long")

# add start value
th.l$start<-ifelse(th.l$trial%%2,0,10)
# reorder data
th.l<-th.l[order(th.l$su,th.l$trial),c("su","sex","trial","start","y")]
# define factors
th.l$su<-factor(th.l$su)
th.l$sex<-factor(th.l$sex)
th.l$start<-factor(th.l$start)
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Example. Threshold data set
> summary(aov(y~sex*start+Error(su/start),th.l))
Error: su

Df  Sum Sq Mean Sq F value  Pr(>F)  
sex        1 2.81667 2.81667  13.662 0.02090 *
Residuals  4 0.82467 0.20617                  
Error: su:start

Df Sum Sq Mean Sq F value Pr(>F)
start      1 0.3840  0.3840  0.2639 0.6345
sex:start  1 2.5627  2.5627  1.7615 0.2551
Residuals  4 5.8193  1.4548               
Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 48 55.252   1.151 

># compute the means across repetition for each starting values
> th.l0<-aggregate(th.l[,"y",drop=FALSE],th.l[,c("su","sex","start")],mean)
> th.l0<-th.l0[order(th.l0$su),]
> # repeated measure ANOVA
> summary(aov(y~sex*start+Error(su/start),th.l0))
Error: su

Df Sum Sq Mean Sq F value  Pr(>F)  
sex        1 0.56333 0.56333  13.662 0.02090 *
Residuals  4 0.16493 0.04123                  
Error: su:start

Df Sum Sq Mean Sq F value Pr(>F)
start      1 0.07680 0.07680  0.2639 0.6345
sex:start  1 0.51253 0.51253  1.7615 0.2551
Residuals  4 1.16387 0.29097               

• Within group variability is not taken 
into acount in the test of withing 
subject factors

• => ANOVA can be done with mean 
values

• Adjustement of dofs is necessary 
only if the number of dofs > 1.
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> read.table("elashof.dat",header=TRUE)
> head(ela.l)

group su drug dose dv
1     1  1    1    1 19
2     1  1    1    2 22
> ela.l$group<-factor(ela.l$group)
> ela.l$su<-factor(ela.l$su)
> ela.l$drug<-factor(ela.l$drug)
> ela.l$dose<-factor(ela.l$dose)
> ela.w<-data.frame(

group=rep(1:2,each=8),
matrix(ela.l$dv,nrow=16,byrow=T))

> names(ela.w)<-c("group",outer(c("v1","v2"),1:3,paste,sep=""))
> idata<-data.frame(

drug=factor(rep(1:2,each=3)),
dose=factor(rep(1:3,2)))

> ela.w$group<-factor(ela.w$group)
> head(ela.w)

group su v11 v21 v31 v12 v22 v32
1      1  1  19  22  28  16  26  22

Example. The Elashoff dataset

• The questions of interest are: Will the drug be differentially effective for different groups? 
Is the effectiveness of the drugs dependent on the dose level? Is the effectiveness of the 
drug dependent on the does level and the group?

• The dataset is in long-format (ela.l)

• The datset is balanced.

• Define factors

• reshape in wide format (ela.w)

• define within-subject factors (idata)

• The Elashoff dataset (Stevens, Table 13.10): Two groups of eight subjects were given 
three different doses of two drugs.  This experimental design has two within-subject 
factors (dose and drug) and one between-subject factor (group).
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Example. The Elashoff dataset
> fit<-aov(dv~group*drug*dose+Error(su/(drug*dose)),ela.l)
> summary(fit)
Error: su

Df Sum Sq Mean Sq F value  Pr(>F)  
group      1 270.01  270.01  7.0925 0.01855 *
Residuals 14 532.98   38.07                  
Error: su:drug

Df Sum Sq Mean Sq F value   Pr(>F)   
drug        1 348.84  348.84  13.001 0.002866 **
group:drug  1 326.34  326.34  12.163 0.003624 **
Residuals  14 375.65   26.83                    
Error: su:dose

Df Sum Sq Mean Sq F value    Pr(>F)    
dose        2 758.77  379.39 36.5097 1.580e-08 ***
group:dose  2  42.27   21.14  2.0339    0.1497    
Residuals  28 290.96   10.39                      
Error: su:drug:dose

Df  Sum Sq Mean Sq F value Pr(>F)
drug:dose        2  12.062   6.031  0.6815 0.5140
group:drug:dose  2  14.812   7.406  0.8369 0.4436
Residuals       28 247.792   8.850 

• Let us initially assume the sphericity
condition. 

• This analysis indicates a statistically 
significant effect of the drug 
(F(1,14)=13.001, P=0.003). 

• The significant interactions 
DRUG*GP (F(1,14)=12.163,P=0.04) 
indicates that the effect of the drug is 
different for each group. 

• The only other significant effect is 
the dose main effect 
(F(2,28)=36.510, P<0.001).

• The main effect of group is difficult to interpret because there is also statistically significant 
GROUP*DRUG interaction.)

• The is a significant difference in the 
responses of the two groups 
(F(1,14)=7.092,P=0.019)
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Example. The Elashoff dataset

• The first plot shows that the average 
value of the response increases with 
the dose. The absence of interaction 
between the DOSE and the DRUG 
or the GROUP factor is independent 
from these factors.

• The interaction plot shows that the 
response to the second drug is much 
larger for the second than for the 
first group. 

• Note that the main effect of group is 
misleading in this case. It is a side-
effect of the observation that the 
response is much higher in the 
second group for the second drug.
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Example. The Elashoff dataset
• Tests corresponding to sequential (Type 1) SS. 

> anova(fit,idata=idata,M=~drug,X=~1,test="Spherical")
Contrasts orthogonal to ~1
Contrasts spanned by ~drug
Greenhouse-Geisser epsilon: 1
Huynh-Feldt epsilon:        1

Df      F num Df den Df    Pr(>F)    G-G Pr    H-F Pr
(Intercept)  1 13.001      1     14 0.0028659 0.0028659 0.0028659
group        1 12.163      1     14 0.0036242 0.0036242 0.0036242
Residuals   14 
> anova(fit,idata=idata,M=~drug+dose,X=~drug,test="Spherical")
Contrasts orthogonal to ~drug
Contrasts spanned by ~drug + dose
Greenhouse-Geisser epsilon: 0.8787
Huynh-Feldt epsilon:        0.9949

Df F num Df den Df Pr(>F)    G-G Pr    H-F Pr
(Intercept)  1 36.5097      2     28 1.580e-08 9.785e-08 1.705e-08
group        1  2.0339      2     28   0.14970   0.15648   0.14999
Residuals   14 
> anova(fit,idata=idata,M=~drug:dose,X=~drug+dose,test="Spherical")
Contrasts orthogonal to ~drug + dose
Contrasts spanned to ~drug:dose
Greenhouse-Geisser epsilon: 0.7297
Huynh-Feldt epsilon:        0.7931

Df F num Df den Df Pr(>F)  G-G Pr  H-F Pr
(Intercept)  1 0.6815      2     28 0.51404 0.47245 0.48341
group        1 0.8369      2     28 0.44360 0.41338 0.42147
Residuals   14 

With this dataset, there is no 
difference between Type I 
and Type III SS. 
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Repeated-measure summary

• Univariate tests with the sphericity condition assumed: 
– aov and the Error in the formula with data in the long format and summary

• Univariate tests with adjusted degrees of freedom or multivariate tests:
– aov or lm with the data in the wide format and anova.mlm.

• Test of the sphericity condition
– mauchly.test

• Notes:
– For repeated measure, within-subject design needs to be balanced. If one cell 

has no data (missing data), the whole subject needs to be removed.
– If the design includes replications, making the analysis with the avergage 

values gives the same result. 
– Testing repeated-measures the “old” way is a bit complicated in R but possible. 

The preferred R approach is to use mixed models.


