Factorial design

		Factor B				
		B ₁	B ₂	B ₃		
Factor A	A ₁	У _{11к}	У _{12к}	у_{13k}		
	A ₂	У _{21к}	У _{22k}	Y _{23k}		
	A ₃	У _{31k}	У _{32k}	y _{33k}		

Example of a factorial design with two factors (A and B). Each factor has three levels. y_{ijk} represents the k^{th} observation in the condition defined by the i^{th} level of factor A and j^{th} level of factor B.

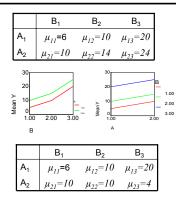
Data Analysis (draft) - Gabriel Baud-Bovy

- The most common design for a *n*way ANOVA is the factorial design.
- In a factorial design, there are two or more experimental factors, each with a given number of levels.
- Observations are made for each combination of the levels of each factor (see example)
- In a completely randomized factorial design, each experimentally unit is randomly assigned to one of the possible combination of the existing level of the experimental factors.

- A two-way design enables us to examine the *joint* (or interaction) effect of the independent variables on the dependent variable. An *interaction* means that the effect of one independent variable has on a dependent variable is not the same for all levels of the other independent variable. We cannot get this information by running separate one-way analyses.
- Factorial design can lead to more powerful test by reducing the error (within cell) variance. This point will appear clearly when will compare the result of one-way analyses with the results of a twoway analyses or t-tests.

Data Analysis (draft) - Gabriel Baud-Bovy

Interaction plot



Exercise. Make the interaction plots for the second table. Describe the interaction (if any).

An interaction plot represents the mean value m_{ij} observed in each one of the condition of a factorial design.

3

- The Y axis corresponds to the dependent (or criterion) variable. The various level of one of the two experimental factor are aligned on the X axis. The lines relate the mean values that corresponds to the same level of the second experimental factor.
 - There is an *interaction* between the factors if the lines are not parallel because the effect of one factor depends on the value of the other factor.
- If the lines are a parallel, the effect of the second factor is independent from the value of the first factor. In other words, there is no interaction.

Structural model (factorial ANOVA)

	B ₁	B ₂	B ₃	Mean
A ₁	μ_{II}	μ_{I2}	μ_{I3}	μ_{I}
A ₂	μ_{21}	μ_{22}	μ_{23}	μ_{2} .
Mean	$\mu_{\bullet I}$	$\mu_{\bullet 2}$	$\mu_{\cdot,3}$	μ

- Let y_{ijk} be the k^{th} observation of the i^{th} level of factor A and j^{th} level of factor B.
- Let μ_{ij} be the population mean for the ith level of factor A and jth level of factor B (condition A,B_j), let μ_i , be the population mean in condition A_i, let μ_j be the population mean in condition B_j, and let μ be the grand mean.
- By definition α_i = μ_i − μ is the effect of factor A and β_j = μ_i − μ is the effect of factor B.

 The structural model of a two-way factorial ANOVA *without interaction* is

 $y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$

• In absence of interaction, the mean value μ_{ij} in condition (A_iB_j) depends in a *additive* manner on the effect of each condition

$$u_{ij} = \mu + \alpha_i + \beta_j$$

The complete model of the two-way factorial ANOVA is

$$y_{ijk} = \mu + \alpha_i + \beta_i + \alpha \beta_{ij} + \varepsilon_{ijk}$$

where $\alpha\beta_{ij} = \mu_{ij}$, $(\alpha_i + \beta_j + \mu) = \mu_{ij} - \mu_{i}$, $\mu_{j} + \mu$ is the interaction effect. The interaction effect represents the fact that the contribution of one factors depends on the value of the other factor in a non-additive way.

Exercise.

	Mea	an valu	ies		Table of effects				
m _{ij}	B ₁	B ₂	B_3	<i>m</i> _{<i>i</i>•}	$\alpha \beta_{ij}$	B ₁	B ₂	B ₃	0
A ₁	6	10	20	12	A ₁	0	0	0	-
A ₂	10	14	24	16	A ₂	0	0	0	+
<i>m</i> .,	8	12	22	14	β _j	-6	-2	+8	
m _{ij}	B ₁	B_2	B_3	<i>m</i> _{<i>i</i>} .	$\alpha \beta_{ij}$	B ₁	B ₂	B ₃	
A ₁	6	10	20	12	A ₁	-4	-2	+6	+
A ₂	10	10	4	8	A ₂	+4	+2	-6	-
<i>m</i> .,	8	10	12	10	β _j	-2	0	+2	

· Compute the main and interaction effects from the mean values (see tables in the left column). Answer: see tables in the right column.

Data Analysis (draft) - Gabriel Baud-Bovy

$$SST = \sum_{i,j,k} (y_{ijk} - m)^2$$
$$SStr = \sum_{i,j,k} (m_{ij} - m)^2$$
$$SSE = \sum_{i,j,k} (y_{ijk} - m_{ij})^2$$

$$SSA = \sum_{i,j,k} (m_{i\bullet} - m)^2$$

$$SSB = \sum_{i,j,k} (m_{\bullet j} - m)^2$$

$$SSAB = \sum_{i,j,k} (m_{ij} - m_{i\bullet} - m_{\bullet j} + m)^2$$

Data Analysis (draft) - Gabriel Baud-Bovy

· Like in the one-way ANOVA, the total sum of squares (SST) can be decomposed into a betweengroups sum of square (the treatment effect, SStr) and a within-group sum of square (SSE) which corresponds to the residual variance:

SST = SStr + SSE

Note that the group (or experimental condition) in a factorial designed is determined by the value of two or more experimental factors.

· The between-group variations (SStr) can themselves be decomposed further into a variations that are explained by factor A (SSA), variations that are explained by factor B (SSB) and variation that are explained by the interaction between both factors (SSAB)

SStr = SSA + SSB + SSAB

F tests

· A factorial design aims at answering three different questions:

1. Is there an effect of the first experimental factor? $H_0: \alpha_i = 0 \quad (y_{iik} = \mu + \beta_i + \alpha \beta_{ii} + \varepsilon_{iik})$

2. Is there an effect of the second experimental factor?

$$H_0: \beta_i = 0 \quad (\gamma_{iik} = \mu + \alpha_i + \alpha \beta_{ii} + \varepsilon_{iik})$$

$$\mathsf{H}_{0}: \alpha \beta_{ij} = 0 \ (\gamma_{ijk} = \mu + \alpha_{i} + \beta_{j} + \varepsilon_{ijk})$$

· In all cases, the alternative hypothesis is the complete model

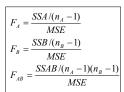
$$H_1: y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$$

· The residual variance (within-group variance) for this model

$$MSE = \frac{SSE}{n_A n_B (n-1)} = \frac{SSE}{N - n_A n_B} \quad (N = n_A n_B n)$$

· In all cases, the F test is constructed by computing the percentage of variance that is explained by the parameters of interest divided by the residual variance of the more complex model.

Data Analysis (draft) - Gabriel Baud-Bovy

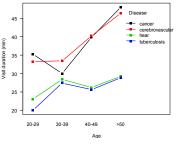


7

If the null hypotheses are true, the F ratios follow a Fisher distribution with the corresponding degrees of freedom.

In that can be shown that the numerator is also an estimate the residual variance.

[R] Interaction plot



· Lines are not parallel which is the tell-tale sign of an interaction. This plot suggests that the visit time increase with the older age groups for the cancer and cerebrovascular diseases while it remained constant for the heart and tuberculosis diseases.

> visits<-read.table("visits.dat",header=TRUE)</pre> > visits\$age<-ordered(visits\$age,c("20-29","30-39","40-49",">50")) > interaction.plot(visits\$age,visits\$disease,visits\$duration, + type="b", col=1:4, lty=1, lwd=2, pch=c(15, 15, 15, 15), las=1, +

xlab="Age",ylab="Visit duration (min)",trace.label="Disease")

[R] 2-way ANOVA

two-way ANOVA without interaction

> fit<-aov(duration-disease+age,visits)
> anova(fit)
Analysis of Variance Table
Response: duration
Df Sum Sq Mean Sq F value Pr(>F)
disease 3 2992.45 997.48 47.037 < 2.2e-16
age 3 1201.05 400.35 118.879 3.643e-09
Residuals 73 1548.05 21.21</pre>

· two-way ANOVA with interaction

> fit<-aov(dura	ation~di:	sease+age	e+diseas	e:age,visits)	
> fit<-aov(dura	ation~di:	sease*age	e,visits)		• 1
> anova(fit)					
Analysis of	Va	riance Ta	able			
Response: d	ura	tion				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
disease	3	2992.45	997.48	67.9427	< 2.2e-16	
age	3	1201.05	400.35	27.2695	1.763e-11	
disease:age	9	608.45	67.61	4.6049	0.0001047	
Residuals	64	939.60	14.68			

Data Analysis (draft) - Gabriel Baud-Bovy

- The ANOVA table shows statistically significant main effects of the age and disease factors as well as a statistically significant interaction.
- Note the change significativity of the main effect when the interaction is included. This is due to the smaller denominator (residual error) in the F ratio.

Manual compuation:

$$\begin{split} F_{AGE} &= \frac{1201.050/3}{939.6/64} = \frac{400.350}{14.681} = 27.269\\ F_{DISEASE} &= \frac{997.483}{14.681} = 67.943\\ F_{AGE DISEASE} &= \frac{67.060}{14.681} = 4.605\\ \sigma^2 &= 14.681 \end{split}$$

11

Exercise

Response: d	uration	
	Df Sum Sq	Mean Sq P value Pr(>F)
disease		997.48 67.9427 < 2.2e-16
age	3 1201.05	
disease:age	9 608.45	67.61 4.6049 0.0001047
Residuals	64 939.60	14.68

Data Analysis (draft) - Gabriel Baud-Bovy

- Exercise. Analyze the effect of the age and disease variable on the visit time by doing two separate one-way ANOVAs.
 Compare the results with the main effects of a two-way factorial ANOVA.
- As expected, the sum of square that corresponds to the tested hypothesis (red circles) are the same for the one-way ANOVA and the two-way ANOVA.
 However, the F statistics (green circles) for the one-way ANOVA are quite different from the main effect of the two-way ANOVA because the estimates of the residual variance are different (see blue circles).

Exercise

· What is total sume of square?

```
> m<-mean(visits$duration)</pre>
```

- > sum((visits\$duration-m)^2)
- [1] 5741.55
- > fit<-aov(duration~disease*age,visits)</pre>
- > sum(anova(fit)[,"Sum Sq"])
- [1] 5741.55

Can you reconstruct the results of a one-way ANOVA from the results of a two-way factorial ANOVA? What would be the $SS_{Between},\,SS_{Within}$ and SS_{Total} of a one-way ANOVA performed with the disease experimental factor?

Answer: $SS_{Total} = 5741.550$ (no difference)

$$\begin{split} &SS_{Between} = SS_{Disease} = 2992.45 \text{ (no difference)} \\ &SS_{Within} = SS_{Age} + SS_{Age,Disease} + SSE = 1201.050 + 608.450 + 939.6 = 2749.1 \\ &(In the one-way ANOVA, the age and the interaction are ignored and considered as unexplained part of the variation of dependent variable). \end{split}$$

• What is the value of the F statistics in the one-way ANOVA? Answer: F = (2992.45/3)/(2747.1/76)=27.576

Unbalanced data

> v0<-visits[3:nrow(visits),] # remove two first cases > table(v0\$age,v0\$disease)

	cancer	cerebrovascular	hear	tuberculosis	
20-29	5	5	3	5	
30-39	5	5	5	5	
40-49	5	5	5	5	
>50	5	5	5	5	

> fit<-aov(duration~disease+age,v0) > anova(fit)

Analysis of Variance Table

 Response:
 duration
 Pr(>F)

 0f
 Sum Sq Mean Sq F value
 Pr(>F)

 disease
 3 2839.64
 946.55
 43.767
 3.964e-16

 age
 3 1161.89
 387.30
 17.908
 9.339e-09

 Residuals
 71 1535.51
 21.63
 21.63
 21.63
 21.63

> fit<-aov(duration~age+disease,v0)</pre>

> anova(fit)
Analysis of Variance Table

 Response:
 duration
 Df
 Sum Sq Mean Sq F value
 Pr(>F)

 age
 3
 1072.64
 357.55
 16.532
 3.017e-08

 disease
 3
 2928.88
 976.29
 45.142 < 2.2e-16</td>

 Residuals 71
 1535.51
 21.63
 21.64

Data Analysis (draft) - Gabriel Baud-Bovy

When the dataset is balanced (same number of observation per group), the order in which factor are specified is not important.

12

 When the data set is unbalanced, the percentage of variance by a factor explained depend on its position.

Type I, Type II and Type III sum of squares

Type I (sequential):	(different number of observation in
 Terms are entered sequentially in the model. Type I SS depend on the order in which terms are entered in the model Type I SS can be added to yield to the total SS. 	each group) present speficial difficulties because there are diffe ways of computing the sum of squares. These different ways corresponding to different hypothe and, correspondly, the F tests are different.
Type II (hierarchical): - see textbook	 The R function anova yields Type sum of square.
Type III (marginal)	 Most textbooks suggest using the Type III sum of squares and many

- Type III SS correspond to the SS explained by a term after all other terms have already been included in the model.
- Type III SS do not add.

The analysis of unbalanced data sets in ferent neses e

- be I
- ۱e nv statistical sofftwares use Type III sum of square as a default but many stasticians think it does not make sense when there are statistically significant interactions.

Overall & Spiegel (1969) Psychol. Bull., 72:311- 322, for a detailed discussion of factorial designs.

Data Analysis (draft) - Gabriel Baud-Bovy

 The function Anova in the library car compute type II and type III sum of squares

> library(car) > Anova (aov (duration~disease+age, v0), type="III") Anova Table (Type III tests) Response: duration Sum Sq Df F value Pr(>F) (Intercept) 29261.2 1 1353.001 < 2.2e-16 *** 1161.9 3 17.908 9.34e-09 *** age disease 2928.9 3 45.142 < 2.2e-16 ***

Residuals 1535.5 71

· Compare with Type I sum of squares

> anova (ad	ov (o	durati	Lon	~disea	ase	Fag	ge,v0))	
Analysis d	of 1	/arian	nce	Table	2			
Response:	du	catior	1					
	Df	Sum	Sq	Mean	Sq	F	value	Pr(>F
disease	3	2839.	.64	946	.55		13.767	3.964e-1
age	3	1161.	.89	387	.30	- 3	L7.908	9.339e-0
Residuals	71	1535.	.51	21	. 63			

> anova(aov(duration~age+disease,v0)) Analysis of Variance Table Response: duration
 Df Sum Sq Mean Sq F value
 Pr(>F)

 age
 3 1072.64
 357.55
 16.532
 3.017e-08

 disease
 3 2928.88
 976.29
 45.142 < 2.2e-16</td>
 Residuals 71 1535.51 21.63

Data Analysis (draft) - Gabriel Baud-Bovy

15

13

Repeated-measure designs

Treatment						
1	2	3	Mean			
2	4	7	4.33			
	12	13	11.67			
	29	30	27.00			
	31	34	31.67			
16	19	21	18.67			
	1 2 10 22 30 16	1 2 2 4 10 12 22 29 30 31	1 2 3 2 4 7 10 12 13 22 29 30 30 31 34			

This example of one-way repeated measure ANOVA shows only small differences between treatments and large difference between subjects. In the repeated-measure ANOVA, we neglect the variations between subjects and consider only the variation for each treatment within each subject.

Data Analysis (draft) - Gabriel Baud-Bovy

- observations are made on the same experimental units. For a example, one of the most common research paradigm is that where subjects are observed at several different point in time (e.g., before and after treatment, longitudinal studies).
- In repeated measure design, it is important to distinguish between-subject and within-subject factors.

-Within-subject factors are variables (like time or treatment or repetition) that identify the differences between conditions or treaments that have been assigned to each subject.

-Between-subject factors are varables (like age or sex or group) that identify differences between the subjects.

- There are three approaches to repeated-measure designs:
 - The univariate approach: This approach uses the classic univariate F test of the ANOVA. However, the data must satisfy the so-called sphericity condition in addition of the usual assumptions for the test to be valid. It is possible to adjust degrees of freedom to account for possible violation of the sphericity assumption.
 - The multivariate approach: This sphericity condition does not need to be satisfied. However, this approach requires a larger number of observation (number of subjects must be larger than number of experimental conditions) and, in general, is less powerful than the univariate approach.
 - 3. The linear mixed model approach: This approach is probably the best approach from a theoretical point of view but it is quite complex.
- References: Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The analysis of repeated measures designs: a review. British Journal of Mathematical and Statistical Psychology, 54, 1-20.

Data Analysis (draft) - Gabriel Baud-Bovy

The univariate approach

19

17

- In the previous examples of ANOVAs, we have assumed that the
 observations between experimental conditions are uncorrelated (or
 independent). This assumption is valid if different subjects are used in
 different experimental conditions. However, this assumption is no more
 valid if the same subjects are used in several (or all) experimental
 condition because better subjects in one condition are also likely to
 perform better in the other conditions.
- In the repeated-measure ANOVA, the data must also satisfy the so-called sphericity (or circularity) condition or the compound symmetry condition in addition of the usual assumptions (independence, homogeneity of the variances, and normality).
- The compound symmetry condition is a stronger assumption than the sphericity condition.
- The sphericity condition needs to apply only to within-subject factors. It is automatically satisfied if the within-subject factor has only two levels.

Adjusting of the degrees of freedom

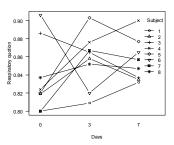
- While tests for the sphericity or compound symmetry exist (e.g. Mauchly's test), they are not very reliable because they are quite sensitive to deviations of the normality assumption.
- A better approach is to adjust the degrees of freedom in order to make the tests of the repeated measure ANOVA more conservative. Several correction factors exist: Greenhouse-Geisser (1959), Huynh-Feldt (1990) and a lower-bound value which is most conservative (see relevant literature for more details). SPSS will automatically compute the value of these factors.
- To adjust the F test, it is necessary to multiply the two degrees of freedom of the F distribution by the correction factor. Since the value of the correction factor is smaller than 1, this will decrease the degrees of freedom of the F distribution and make, in general, the test more conservative.

Example. RQ data set

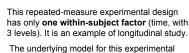
RQ data set (see Wayne, Table 8.4.): Analysis of the respiratory quotient (RQ) of 8 patients who followed a special diet. The RQ was measured at the beginning of the diet (day=0), after three days, and after seven days.

> rq.l<-read.table("RQ.dat",header=TRUE,sep="\t")</pre>

> interaction.plot(rq.l\$day,rq.l\$vq,l\$rq,l\$rq,type="b",las=1,col=1,lty=1,fixed=T,pch=1:8, trace.label="Subject",xlab="Days",ylab="Respiratory quotient",)



Data Analysis (draft) - Gabriel Baud-Bovy



design is

$$y_{ij} = \mu + b_i + \beta_j + \varepsilon_{ij}$$

where y_{ij} is the measure done on the *i*th subject at point *j* in time (*i* = 1,...,8, *j* = 1,...,3), *b_i* is the subject effect and β_j is the diet effect measured at several points in time. Note that this model assumes that there is no interaction between the subject and the time (the hypothetical effect of the diet after three and seven days is the same for all subjects).

Example. RQ data set

 The Error() term in the formula is used to indicate how to compute the denominator (eror) term of the F test

> rq.l\$su<-factor(rq.l\$su) # codes factors > rq.l\$day<-factor(rq.l\$day) # > fit<-aov(rq~day+Error(su/day),rq.l) # ANOVA</pre>

> summary(fit)
Error: su

Df Sum Sq Mean Sq F value Pr(>F) Residuals 7 0.0074380 0.0010626 Error: su:day

 Df
 Sum Sq
 Mean Sq F value Pr(>F)

 day
 2 0.0020803 0.0010402 1.0791 0.3666

 Residuals
 14 0.0134950 0.0009639

 Note that the error term of the F test of a within-subject factor corresponds to the interaction between the factor and the subject:

> anova(aov(rq~day*su,rq.l))
Analysis of Variance Table

 Response:
 rq
 Mean Sq F value Pr(>F)

 day
 2
 0.0020803
 0.0010402

 su
 7
 0.0074380
 0.0010626

 day:su
 14
 0.0134950
 0.00009639

 Residuals
 0
 0.000000

Data Analysis (draft) - Gabriel Baud-Bovy

Example. RQ data set

23

21

- Long (univariate) format: one colum contain all the observations, additional specify levels corresponding to within as well as between subject factors
 - > head(rq.1)
 su day rq
 1 1 0 0.800
 2 1 3 0.809
 3 1 7 0.832
 4 2 0 0.819
 5 2 3 0.858
- Wide (multivariate) format: each raw correspond to a different subject, columns contains repeated measures that correspond to within-subject factors). Additional columns specify the levels of between-subject factors.

```
Data Analysis (draft) - Gabriel Baud-Bovy
```

Example. RQ data set

- To obtain DoF adjustements, it is necessary to use the data in the wide format and the specify the columns with the repeated measures in the *rhs* of the formula with cbind (...) in acv or lm.
- > fit<-aov(cbind(rq.0,rq.3,rq.7)~1,rq.w)</pre>
- the idata argument of anova.mlm is necessary to establish a correspondence between columns of the dataset and the levels of the within-subject factor(s)

> (idata<-data.frame(day=factor(c(0,3,7))))
 day
1 0
2 3
3 7</pre>

 Univariate tests with adjusted DoFs are obtained with anova.mlm (anova multivariate) with test="Spherical"

```
> anova(fit,idata=idata,X=-1,test="Spherical")
Analysis of Variance Table
Contrasts orthogonal to
-1
Greenhouse-Geisser epsilon: 0.6945
Huynh-Feldt epsilon: 0.8119
Df F num Df den Df Pr(>F) G-G Pr H-F Pr
(Intercept) 1 1.0791 2 14 0.36656 0.35084 0.35805
Residuals 7
```

 The adjusted degrees of freedom are obtained by multiplying the original degree of freedom by the correction factor. For Greenhouse and Geisser correction factor (c=-0.694), the adjusted dofs are 1.289=2x0.694 for the first dof and 9.723=14x0.694 for the second dof.

24

 Using the adjusted dofs with the F distribution yields typically a more conservative p value (.351 instead of .367).

· the null hypothesis being tested is

H0: $\beta = 0$ (the diet has no effect).

. The dofs for the F test are k-1=2 for

the hypothesis being tested where k

is the number of the within-subject

term where n is the number of

subjects

factor, and (n-1)(k-1)=14 for the error

Data Analysis (draft) - Gabriel Baud-Bovy

Example. RQ data set

25

27

· Mauchly's test is sued to to check if sphericity is statisfied

> mauchly.test(fit,idata=idata,X=~1)

```
Mauchly's test of sphericity
Contrasts orthogonal to ~1
data: SSD matrix from aov(formula = cbind(rq.0, rq.3, rq.7) ~ 1, data = rq.w)
W = 0.5601, p-value = 0.1757
```

Multivariate tests do not assume sphericity

```
> anova(fit,idata=idata,X=~1,test="Pillai")
Analysis of Variance Table
Contrasts orthogonal to ~1
    Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.17622 0.64175 2 6 0.559
Residuals 7
```

Argument test="Spherical" gives access to alternative multivariate tests ("Wilks", "Hotelling-Lawley", "Roy", "Spherical"),

Data Analysis (draft) - Gabriel Baud-Bovy

Example. Threshold dataset

tr	ial	1	2	3	4	5	6	7	8	9	10
st	art	0	10	0	10	0	10	0	10	0	10
SU	Sex										
1	М	5.4	3.9	5.8	4.9	5.2	3.9	3.9	6.3	5.9	5.3
2	F	4.2	5.5	4.8	5.5	5.0	6.1	5.4	6.0	4.0	7.7
3	М	3.6	3.1	4.5	4.9	5.1	5.1	6.2	4.9	5.4	4.5
4	F	4.6	6.1	5.6	2.8	5.9	4.5	5.5	3.0	5.7	8.1
5	М	4.0	4.9	4.9	4.5	5.5	3.7	6.2	5.2	3.6	6.3
6	F	4.3	6.1	4.3	5.3	4.3	4.9	5.9	4.9	6.0	7.6

- The dataset contains the absolute thresholds of 6 subjects (3 males and 3 females). Each subject performed 10 trials with one of two possible different starting values (start=0 and 10).
- We want to test whether there is a difference between the thresholds of the two sexes and ilf the threshold depend on the starting values
- One between-subject factor (sex) and one within-subject factor (start)

Data Analysis (draft) - Gabriel Baud-Bovy

Example. Threshold dataset

```
# define threshold dataset (wide format)
     th.w<-data.frame(
               sex=factor(c("M", "F", "M", "F", "M", "F")),
               y=matrix( c(5.4,3.9,5.8,4.9,5.2,3.9,3.9,6.3,5.9,5.3,
                           4.2, 5.5, 4.8, 5.5, 5.0, 6.1, 5.4, 6.0, 4.0, 7.7,
                           3.6, 3.1, 4.5, 4.9, 5.1, 5.1, 6.2, 4.9, 5.4, 4.5,
                           4.6,6.1,5.6,2.8,5.9,4.5,5.5,3.0,5.7,8.1,
                           4.0,4.9,4.9,4.5,5.5,3.7,6.2,5.2,3.6,6.3,
                           4.3,6.1,4.3,5.3,4.3,4.9,5.9,4.9,6.0,7.6),nrow=6,byrow=TRUE)
     # define within-subject factors
     idata<-data.frame(
               half=factor(rep(1:2,each=5),
               start=factor(rep(c(0,10),5)))
     # reshape into long format
     th.l<-reshape(th.w,
               varying=paste("y",1:10,sep="."),
               v.names="y",
               idvar="su",
               timevar="trial",
               direction="long"
     # add start value
     th.l$start<-ifelse(th.l$trial%%2,0,10)
     # reorder data
     th.1<-th.1[order(th.1$su,th.1$trial),c("su","sex","trial","start","y")]
     # define factors
     th.1$su<-factor(th.1$su)
     th.l$sex<-factor(th.l$sex)
     th.l$start<-factor(th.l$start)
Data Analysis (draft) - Gabriel Baud-Bovy
```

Example. Threshold data set

```
> summary(aov(y~sex*start+Error(su/start),th.1))
Error: su
         Df Sum Sq Mean Sq F value Pr(>F)
          1 2.81667 2.81667 13.662 0.02090 *
sev
Residuals 4 0.82467 0.20617
                                                      · Adjustement of dofs is necessary
Error: su:start
                                                         only if the number of dofs > 1.
Df Sum Sq Mean Sq F value Pr(>F)
start 1 0.3840 0.3840 0.2639 0.6345
sex:start 1 2.5627 2.5627 1.7615 0.2551
Residuals 4 5.8193 1.4548
Error: Within
         Df Sum Sq Mean Sq F value Pr(>F)
Residuals 48 55.252 1.151
># compute the means across repetition for each starting values
> th.l0<-aggregate(th.l[,"y",drop=FALSE],th.l[,c("su","sex","start")],mean)
> th.10<-th.10[order(th.10$su),]
> # repeated measure ANOVA
> summary(aov(y~sex*start+Error(su/start),th.10))
Error: su
        Df Sum Sq Mean Sq F value Pr(>F)
                                                      · Within group variability is not taken
         1 0.56333 0.56333 13.662 0.02090 *
sex
                                                         into acount in the test of withing
Residuals 4 0.16493 0.04123
                                                         subject factors
Error: su:start
                                                      · => ANOVA can be done with mean
         Df Sum Sq Mean Sq F value Pr(>F)
                                                         values
start 1 0.07680 0.07680 0.2639 0.6345
sex:start 1 0.51253 0.51253 1.7615 0.2551
Residuals 4 1.16387 0.29097
```

Data Analysis (draft) - Gabriel Baud-Bovy

Example. The Elashoff dataset

29

Example. The Elashoff dataset

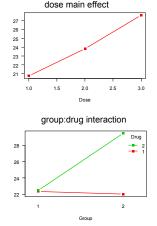
 The Elashoff dataset (Stevens, Table 13.10): Two groups of eight subjects were given three different doses of two drugs. This experimental design has two within-subject factors (dose and drug) and one between-subject factor (group). > read.table("elashof.dat",header=TRUE) · The dataset is in long-format (ela.I) > head(ela.1) group su drug dose dv The datset is balanced. 1 1 1 1 19 1 1 1 2 22 > ela.l\$group<-factor(ela.l\$group) > ela.l\$su<-factor(ela.l\$su)</pre> Define factors > ela.l\$drug<-factor(ela.l\$drug) > ela.l\$dose<-factor(ela.l\$dose) > ela.w<-data.frame(reshape in wide format (ela.w) group=rep(1:2,each=8), matrix(ela.l\$dv.nrow=16.bvrow=T)) > names(ela.w)<-c("group",outer(c("v1","v2"),1:3,paste,sep=""))</pre> > idata<-data.frame(define within-subject factors (idata) drug=factor(rep(1:2,each=3)), dose=factor(rep(1:3,2))) > ela.w\$group<-factor(ela.w\$group) > head(ela.w) group su v11 v21 v31 v12 v22 v32 1 1 19 22 28 16 26 22 · The questions of interest are: Will the drug be differentially effective for different groups? Is the effectiveness of the drugs dependent on the dose level? Is the effectiveness of the drug dependent on the does level and the group? Data Analysis (draft) - Gabriel Baud-Bovy

<pre>> fit<-aov(dv~group*drug*dose+Error(su/(drug*dose) > summary(fit)</pre>),ela.l)						
Error: su Df Sum Sg Mean Sg F value Pr(>F)	The is a significant difference in the						
group 1 270.01 270.01 7.0925 0.01855 * Residuals 14 532.98 38.07	responses of the two groups (F(1,14)=7.092,P=0.019)						
Error: su:drug	Let us initially assume the sphericity						
Df Sum Sq Mean Sq F value Pr(>F)	condition.						
drug 1 348.84 348.84 13.001 0.002866 **							
group:drug 1 326.34 326.34 12.163 0.003624 ** •	The analysis maleates a statistically						
Residuals 14 375.65 26.83	significant effect of the drug						
Error: su:dose	(F(1,14)=13.001, P=0.003).						
Df Sum Sq Mean Sq F value Pr(>F)	The significant interactions						
dose 2 758.77 379.39 36.5097 1.580e-08 ***	DRUG*GP (F(1,14)=12.163,P=0.04)						
group:dose 2 42.27 21.14 2.0339 0.1497	indicates that the effect of the drug is						
Residuals 28 290.96 10.39	different for each group.						
Error: su:drug:dose	3 1						
Df Sum Sq Mean Sq F value Pr(>F) •	The only other significant effect is						
drug:dose 2 12.062 6.031 0.6815 0.5140	the dose main effect						
group:drug:dose 2 14.812 7.406 0.8369 0.4436	(F(2,28)=36.510, P<0.001).						
Residuals 28 247.792 8.850							
The main effect of group is difficult to interpret because there is also statistically significant							

GROUP*DRUG interaction.)

Data Analysis (draft) - Gabriel Baud-Bovy

Example. The Elashoff dataset



Data Analysis (draft) - Gabriel Baud-Bovy

2

31

- · The first plot shows that the average value of the response increases with the dose. The absence of interaction between the DOSE and the DRUG or the GROUP factor is independent from these factors.
- · The interaction plot shows that the response to the second drug is much larger for the second than for the first group.
- · Note that the main effect of group is misleading in this case. It is a sideeffect of the observation that the response is much higher in the second group for the second drug.

Example. The Elashoff dataset

Tests corresponding to sequential (Type 1) SS.

```
> anova(fit,idata=idata,M=~drug,X=~1,test="Spherical")
Contrasts orthogonal to ~1
Contrasts spanned by ~drug
Greenhouse-Geisser epsilon: 1
Huynh-Feldt epsilon: 1
                   Df F num Df den Df Pr(>F) G-G Pr H-F Pr

        (Intercept)
        1
        13.001
        1
        14
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659
        0.0028659

Residuals 14
> anova(fit,idata=idata,M=~drug+dose,X=~drug,test="Spherical")
Contrasts orthogonal to ~drug
Contrasts spanned by ~drug + dose
Greenhouse-Geisser epsilon: 0.8787
Huynh-Feldt epsilon: 0.9949
              Df F num Df den Df Pr(>F) G-G Pr H-F Pr
 (Intercept) 1 36.5097 2 28 1.580e-08 9.785e-08 1.705e-08
                        1 2.0339 2 28 0.14970 0.15648 0.14999
group
Residuals 14
> anova(fit,idata=idata,M=~drug:dose,X=~drug+dose,test="Spherical")
Contrasts orthogonal to ~drug + dose
Contrasts spanned to ~drug:dose
                                                                                                                               With this dataset, there is no
Greenhouse-Geisser epsilon: 0.7297
Huynh-Feldt epsilon: 0.7931
                                                                                                                              difference between Type I
                  Df F num Df den Df Pr(>F) G-G Pr H-F Pr
                                                                                                                              and Type III SS.
 (Intercept) 1 0.6815 2 28 0.51404 0.47245 0.48341
group
                        1 0.8369 2 28 0.44360 0.41338 0.42147
 Residuals 14
```

Data Analysis (draft) - Gabriel Baud-Bovy

Repeated-measure summary

- Univariate tests with the sphericity condition assumed:
 aov and the Error in the formula with data in the long format and summary
- Univariate tests with adjusted degrees of freedom or multivariate tests:
 - aov or lm with the data in the wide format and anova.mlm.
- Test of the sphericity condition
 - mauchly.test
- · Notes:
 - For repeated measure, within-subject design needs to be balanced. If one cell
 has no data (missing data), the whole subject needs to be removed.
 - If the design includes replications, making the analysis with the avergage values gives the same result.
 - Testing repeated-measures the "old" way is a bit complicated in R but possible. The preferred R approach is to use mixed models.

Data Analysis (draft) - Gabriel Baud-Bovy