
Lectures on mechanics

(LESSON #3)

francesco.becchi@telerobot.it

LESSONS TIME TABLE (pls. take note)

28/11 h9/12- mech components 1 (3h) 4/12 h9/12 mech components 2 (3h) 11/12 h9/12 mech technologies (3h) 16/12 h 9/12 (in TLR) - mech technologies tlr workshop 19/12 h9/12- robotic (3h) CHANGED!!

STUDENT LIST

Baizid Khelifa Biso Maurizio Iqbal Jamshed Jafari Amir Naceri Abdeldjallil Palyart Lamarche Jean-Christophe Patra Niranjan

SYNCHRONOUS BELTS (TIMING BELTS)

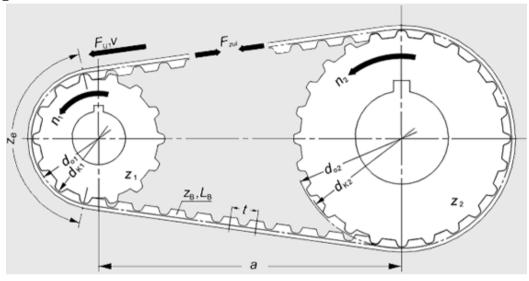
Ine fastest overview..

Synchronous belts are toothed belts where timing is guaranteed by the presence of the teeth. Load is transferred both by the teeth and the belt core.

Synchronous belts – Shape of teeth

Purpose of tooth optimization is:

-Decrease of noise -Increase of maximum load -Increase of life (less wear) -Increase of maximum speed

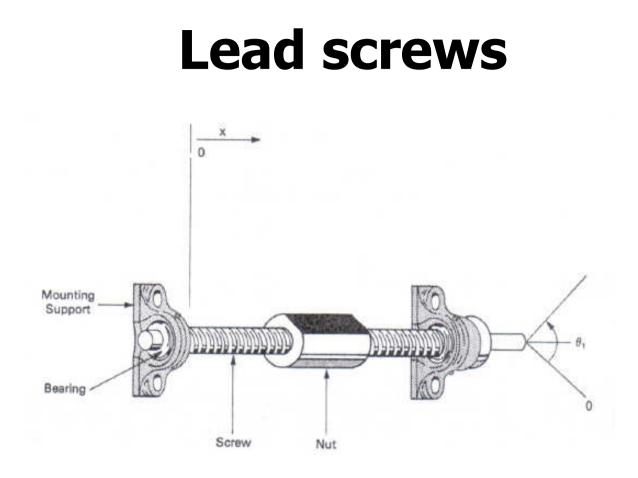

Each profile has its own characteristics

SYNCHRONOUS BELTS – TOOTHED PULLEYS

Synchronous belts – Some formulas

Peripheral force	Fu	[N]	Center to center distance	а	[mm]
specific tooth force	Fuspec	[N/cm]	Belt length	LB	[mm]
Pre-Tension force	FV	[N]	Belt width	b	[mm]
Shaft force	Fw	[N]	Pulley width	в	[mm]
Torque	M	[Nm]	Bore, pulley	d	[mm]
Acceleration torque	MB	[Nm]	Pitch circle diameter	do	[mm]
specific torque	Mspec	[Ncm/cm]	pulley outside diameter	dK	[mm]
Power	P	[kW]	Span length	L,	[mm]
specific power	Pspec	[W/cm]	Pitch	t	[mm]
Speed	v	[m/s]	Number of belt teeth	z _B	
Rotational speed	n	[min ⁻¹]	Number of teeth in mesh	ze	
Angular speed		[s ⁻¹]	No. of teeth, small pulley	z,	
Acceleration time	t ₈	[s]	No. of teeth, large pulley	z ₂	
	<u> </u>		Number of teeth with i=1	z	
			pulley ratio	i	

Peripheral Force:	$F_{U} = \frac{2 \cdot 10^{3} \cdot M}{d_{0}} = \frac{19.1 \cdot 10^{6} \cdot P}{n \cdot d_{0}} = \frac{10^{3} \cdot P}{v}$
Torque:	$M = \frac{d_0 \cdot F_U}{2 \cdot 10^3} = \frac{9.55 \cdot 10^3 \cdot P}{n} = \frac{d_0 \cdot P}{2 \cdot v}$
Power:	$P = \ \frac{M \cdot n}{9.55 \cdot 10^3} = \ \frac{F_{U} \cdot d_0 \cdot n}{19.1 \cdot 10^6} = \ \frac{F_{U} \cdot v}{10^3}$
Angular speed:	$w = \frac{\pi \cdot n}{30}$
Rotational speed:	$n = \frac{19.1 \cdot 10^3 \cdot v}{d_0}$
Peripheral speed:	$v = \frac{d_0 \cdot n}{19.1 \cdot 10^3}$
Pitch circle diameter:	$d_0 = \frac{z \cdot t}{\pi}$
Belt Length for i = 1:	$L_{B} = 2a + \pi \cdot d_{0} = 2a + z \cdot t$


ROTARY TO LINEAR

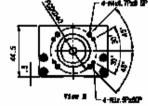
Lead screw

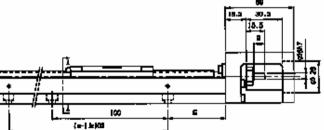
Rack and pinion

Slider cranks

Cams

Screw is fixed with its ends free to rotate: as the screw is turned, the nut moves along the shaft with the payload attached

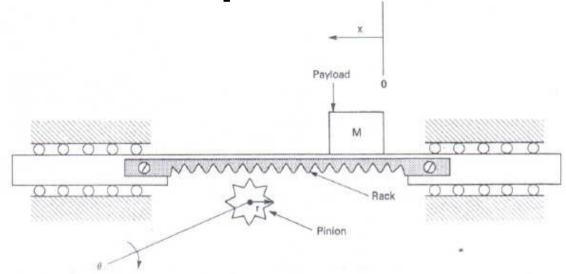

A rotary displacement of the input shaft **\theta1** causes a linear motion of the payload **x X** = **\theta** · **P** (P pitch of the screw mm/rev)


This equation may be differentiated any number of times in order to obtain the relationship among linear velocity, acceleration and jerk and rotational relative quantities How a load on th output is seen by the input? i.e. Equivalent **torque-inertia system** For linear motion of the payload mass the kinetic energy is: $\mathbf{E}\mathbf{k} = \frac{1}{2} \mathbf{M} \mathbf{V}_{L}^{2}$ The corresponding kinetic energy of a torque-inertia system $\mathbf{E}\mathbf{k} = \frac{1}{2} \mathbf{J}_{eq} \boldsymbol{\omega}^{2}$ Solving for the inertia, after relating rotary and linear velocity with the pitch

 $J_{eq} = M'(P/2\pi)^2$

reflected inertia reduced by smaller pitch

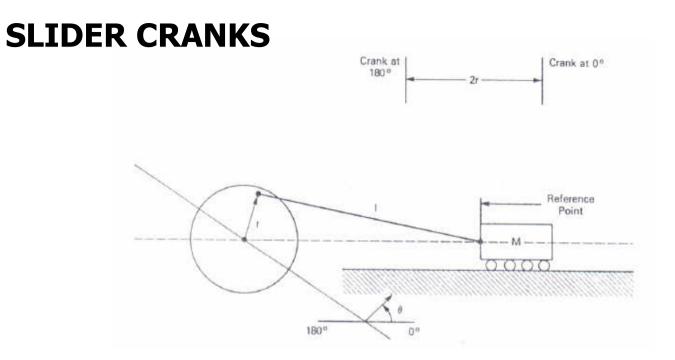
			KK5002	KK6005		KK6010		
			Precision Normal	Precision	Normal	Precision	Normal	
Ballscrew	Nominal Diameter (mm)		08	12				
	Lead (mm)		02	05		10		linear stage
מימי	Basic Dynamic Load Rating (N)		2136	3744	3377	2410	2107	
v Guideway	Basic Static Load Rating (N)		3489	6243	5625	3743	3234	
	Basic Dynamic	Block A	8007	13230				
	Load Rating (N)	Block S	-	7173				
	Basic Static	Block A	12916	21462				
	Load Rating (N)	Block S	-	11574				
	Allowable Static	Block A1	116			152		
	Moment M _x	Block A2	278	348				
		Block S1	-	72				
5	(pitching)(N-m)	Block S2	-					
	Allowable Static	Block A1	116					
	Moment My	Block A2	278		278-92.0			N2.600.45Pv+ 07
	,	Block S1	-		1	(本部)		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	(yawing)(N-m)	Block S2	-		- R.	Ψ		
	Allowable Static	Block A1	222					
	Moment Mo	Block A2	444				Ĩ	K 9 4
	_	Block S1	_			4-4		Roff Langta
	(rolling)(N-m)	Block S2	_					



Unit: mm

	Doill an ath	Total Law oth L.d.	Maximu	~	~			
	Rail Length	Total Length L1	A1 Block	A2 Block	G	к	n	m
Γ	150	220	60	-	25	100	2	2
	200	270	110	-	50	100	2	2
	300	370	210	135	50	200	3	2
	400	470	310	235	50	100	4	3
	500	570	410	335	50	200	5	3

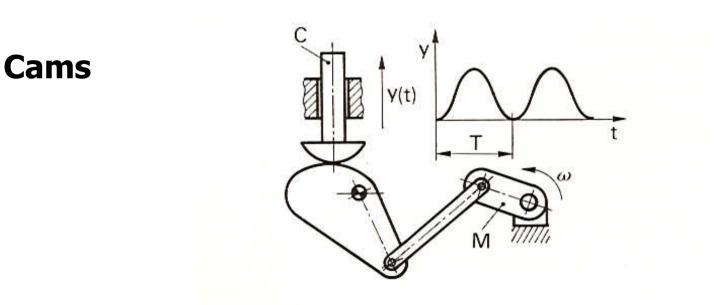
Rack and pinion



The pinion is the small gear attached to the actuator and the rack is a linear member with gear teeth on one side.

The relation between pinion angle and rack translation is

 $\mathbf{X} = \mathbf{2} \mathbf{n} \mathbf{r} \mathbf{\theta}$


The reflected inertia, as seen by the input shaft, is $J_{eq} = Mr^2$

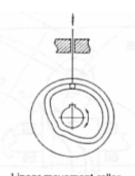
The crank portion is the wheel that rotates about its center and has a rod of fixed lenght mounted to a point on its circumference; the other end of the connecting rod is attached to a linear stage which is constrained to move in only one dimension.

As the disk travels from 0 to 180° in the counterclockwise direction, the linear stage moves a distance equal to 2r: if the disk continues to travle from 180° back to 0° - still in counterclockwise direction, the load will move in the opposite direction over exactly the same linear distance.

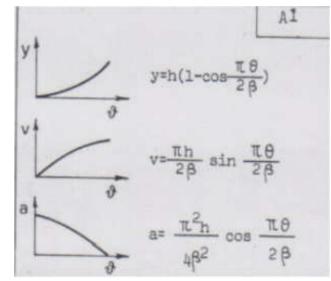
If the input shaft is rotated continuously the motion of the linear stage is reciprocating.

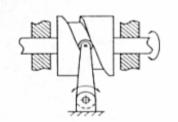
Cams are shape coupling.

Cams can be both uni or be directional

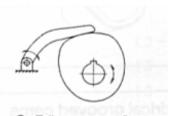

Relation between input rotating shaft and moved output is "in" the cam shape

"shape pre-programmed in hardware devices"

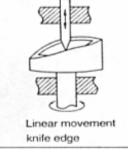

Some Cam devices examples

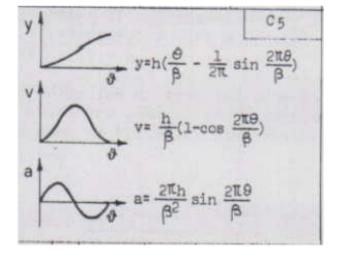


Linear movementroller



Linear movement-roller


Oscillating movement- roller



Oscillating movement-flat

Intermittent rotary movement -roller

BEARINGS

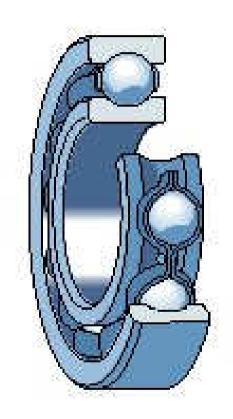
Bearings are used to support rotating shafts and are classified according to the direction of the main load:

Axial bearings are designed to withstand axial thrust

Radial bearings are designed to withstand radial loads

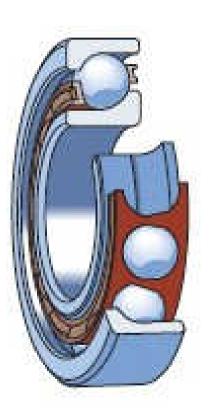
..even more

Linear bearing


Bearings types

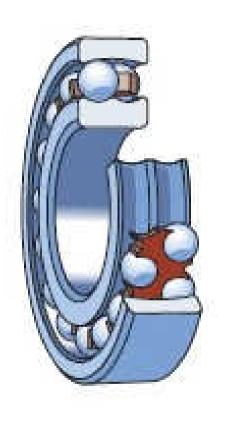
A bearing is constituted by an inner and an outer ring. Between them a serie of rolling element is found

Sometimes a fourth element (cage) is present to keep the rolling elements in their position


Rolling elements can be spheres (ball bearing) or cylinders (cylindrical roller bearings)

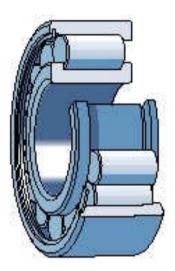
Deep groove ball bearing

- Good capacity to withstand radial and axial loads
- -May be of sealed type
- -Available in a wide range of build precision
- -Low cost
- -Moderate tolerant towards misalignment

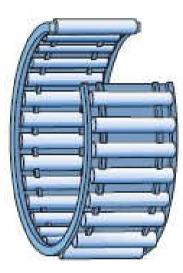

Angular contact ball bearing

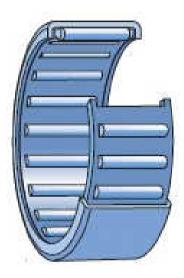
- Increased capacity to withstand axial loads

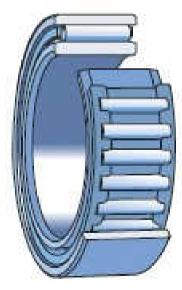
-Coupled with another bearing of the same kind can withstand high bending torques

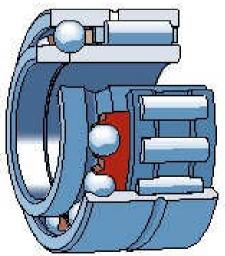

Self aligning ball bearing

 Very good capacity to tolerate misalignment

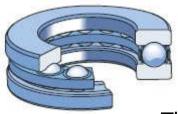

-Can't withstand axial loads


Cylindrical roller bearings


-High radial load -low axial loads


Needle roller bearings

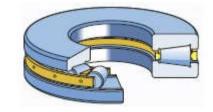
Look at this bearing.. Composed bearing


Taper roller bearings

-High radial load -High axial load in one direction

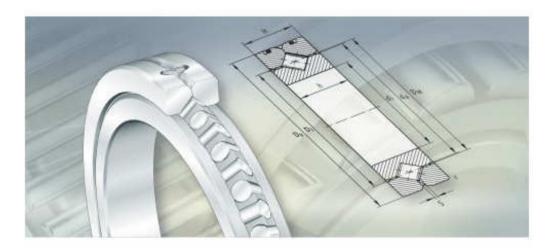
(generally are in paris)

Thrust bearings (axial)


Thrust ball bearing

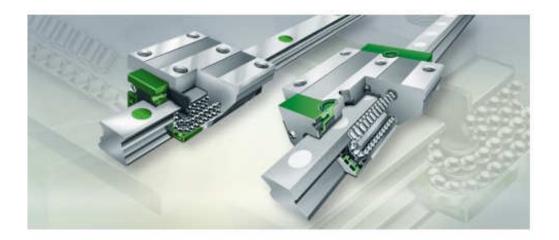
Cylindrical roller thrust bearing

Needle roller thrust bearing



Taper roller thrust bearing

More..



4 point contact

Crossed roller bearing

Due to the X arrangement of the rolling elements, these bearings can support axial forces from both directions as well as radial forces, tilting moment loads and any combination of loads with a single bearing position. This allows designs with two bearing positions to be reduced to a single bearing position. Crossed roller bearings are very rigid,

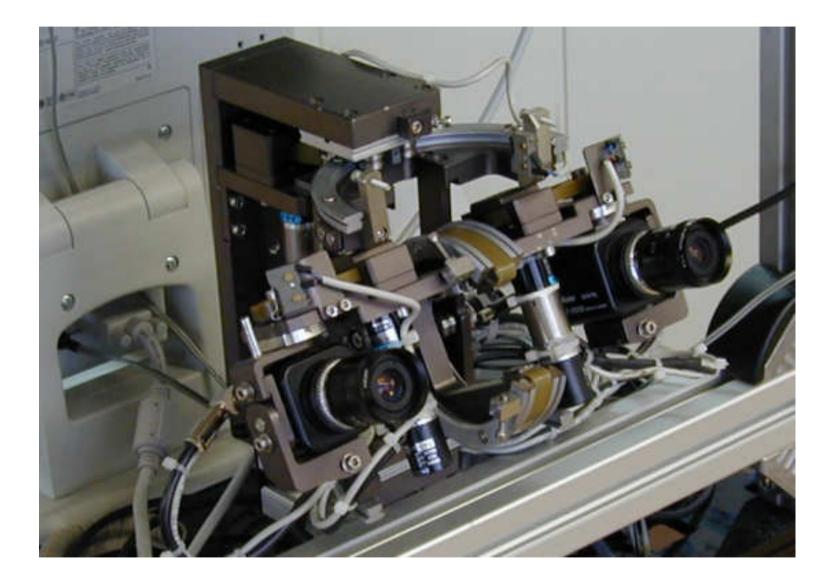
linear..

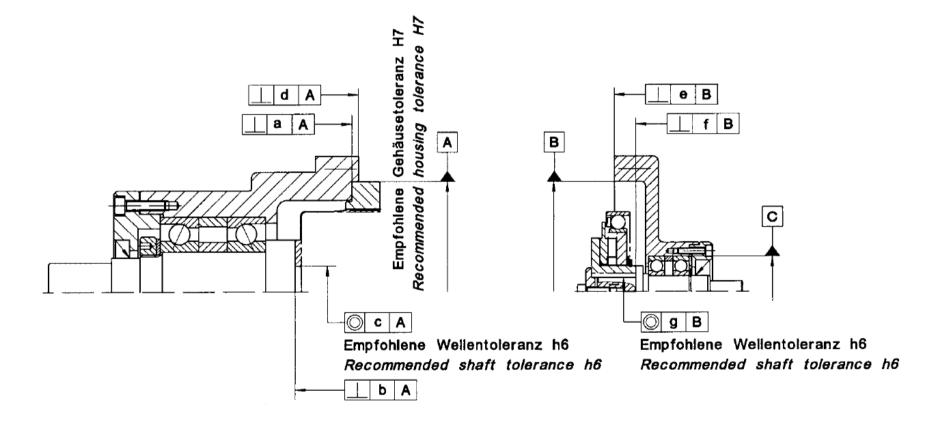
Linear guides recirculating balls or rollers

Track rollers

Linear ball bushing

Last: friction bearing




Plastig bushing

Linear friction guide

a tracker roller application example

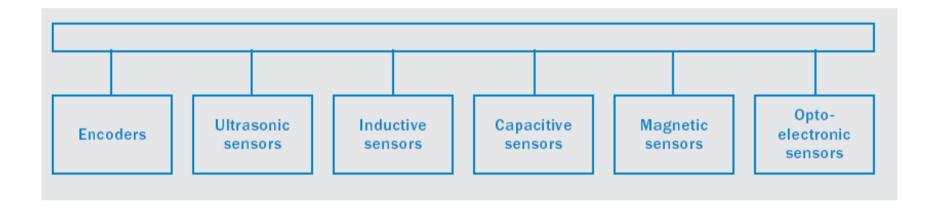
Bearing assembly example

SENSORS

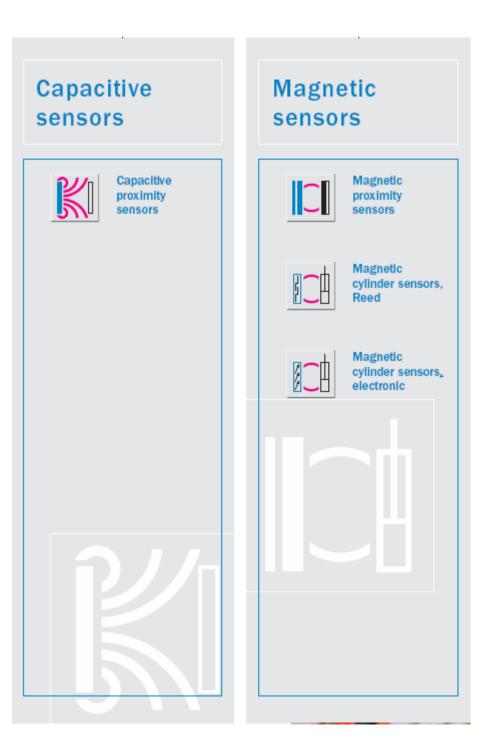
what does it mean?

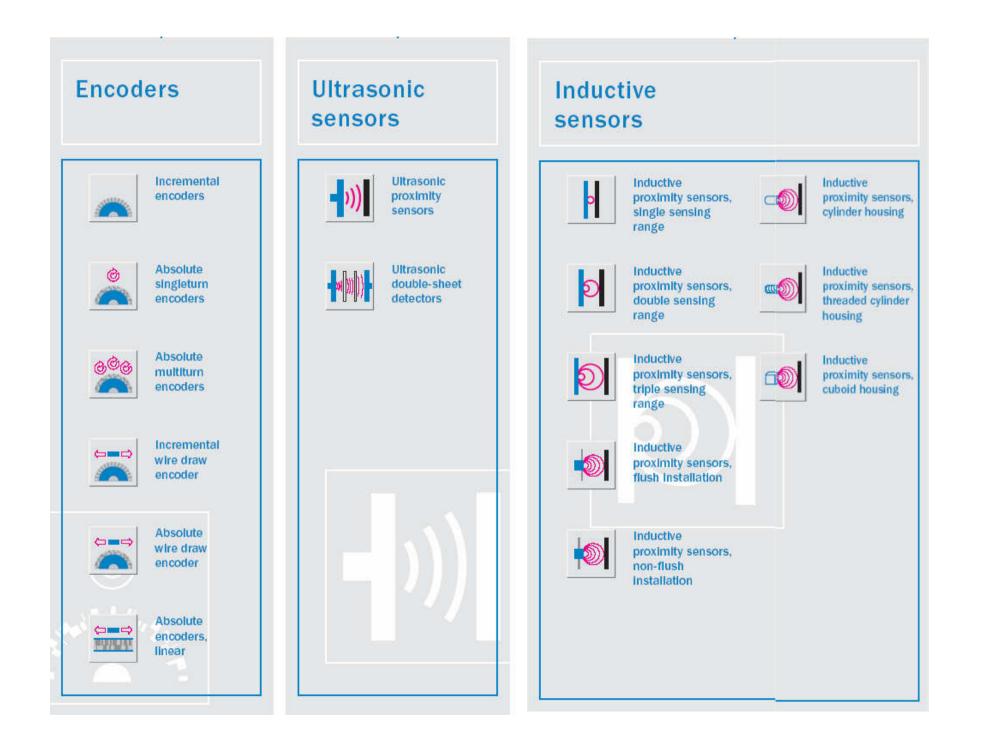
How many different kind of sensor do you know?

Sensor to sense.. (free order list)


POSITION (LINEAR AND ANGLE) POSITION (absolute and relative) FORCE SPEED ACCELERATION SHAPE DISTANCE

...

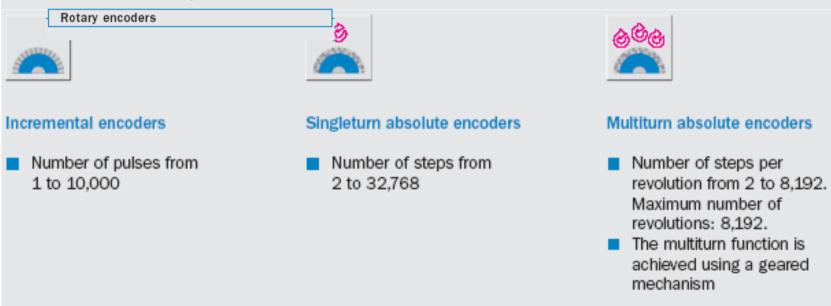

Sensor that sense.. (first approximation list)

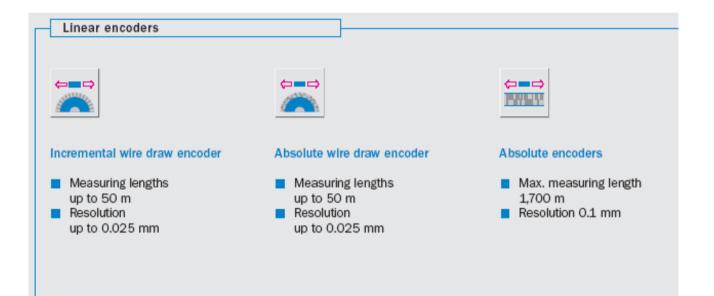

light intensity magnetic field electric field electric current strain coupled electro magnetic flux inertial forces pressure

General industrial classification of sensors

A tentative classification of sensors (according to the sick products range)

Optoelectronic sensors Photoelectric pro-Contrast Light grids 1 7 ximity sensors, scanners foreground suppression FGS Photoelectric pro-Color Reflex light grids 1---1 ximity sensors, sensors background suppression BGS Intelligent Photoelectric pro-Luminescence ximity sensors, Camera Sensors scanners energetic <u>-</u>C Color Vision Photoelectric Fork sensors Sensor reflex sensors A Through-beam Light section Distance huhud հակակը photoelectric sensors sensors sensors ѧ Photoelectric IR data Position finders Turur • sensors with transmission <u>~~</u> fibre-optic cable photoelectric sensors


Encoders:


Incremental encoders, rotary

Incremental encoders generate information relating to position and angle in the form of electrical impulses. The number of pulses per revolution determines the resolving capability. The individual position is determined by counting these pulses from a point of reference. When the power is first switched on an initialising reference run is needed to determine absolute position.

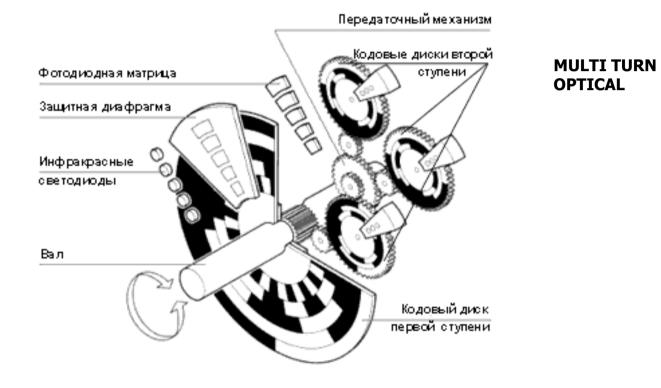
Absolute encoders, rotary

Absolute encoders generate information relating to position, angle or number of revolutions in the form of unique codes. A unique code is assigned to each angular step. The number of unique code patterns per revolution determines the resolving capability. Since an absolute position is assigned to each unique code pattern, an initialising reference run is not required. Singleturn and multiturn versions are available.

..let's focus on sensor that will most be used in robotics..

MEASURING ANGLES:

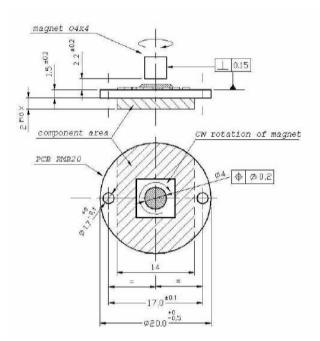
- * **ENCODER**
- * **RESOLVER**

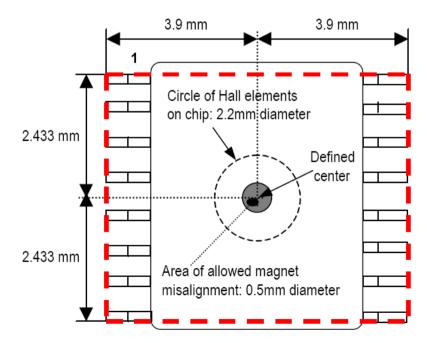

Absolute encoders..

SINGLE TURN

OPTICAL

...an incremental encoder is a single row absolute encoder...

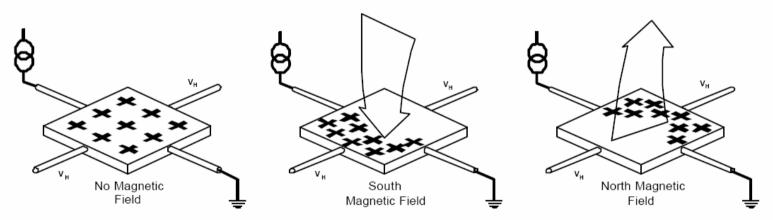

Absolute encoders..



Absolute encoders..

SINGLE TURN MAGNETIC

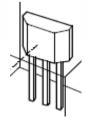
The AS5040 chip consists of a ring of hall elements, placed at the center of the IC at a circle diameter of 2.2mm (86.6mil).


The hall elements pick up the field of a magnet, placed atop this hall array circle. This information is digitized and fed into a digital signal processor (DSP), which calculates the angle of the magnet with a resolution of 0.35 degrees or 1024 positions per revolution (10bit) at a sampling rate of 100µs (10kHz).

The digital angle information is available in several formats: as serial 10-bit data stream, as pulse-width modulated (PWM) signal or as quadrature incremental signal

in btw..

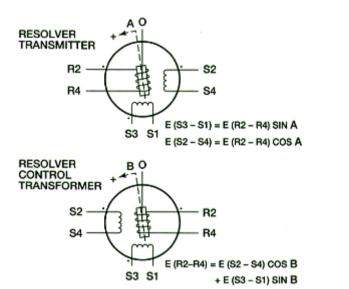
The Hall-Effect


The Hall-Effect principle is named for physicist **Edwin Hall**. In 1879 he discovered that when a conductor or semiconductor with current flowing in one direction was introduced perpendicular to a magnetic field a voltage could be measured at right angles to the current path.

The Hall voltage can be calculated from $V_{Hall} = \sigma B$ where:

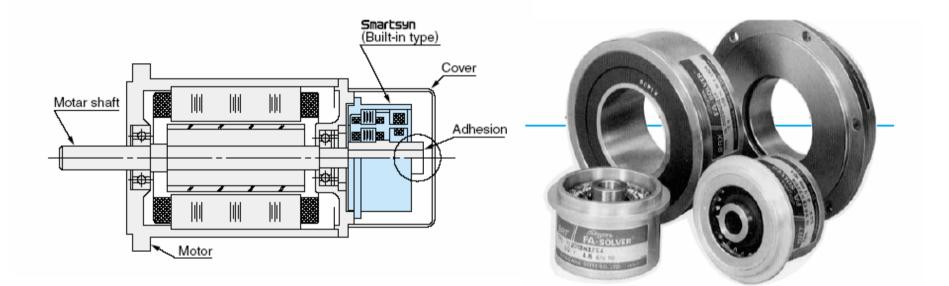
 $V_{Hall} = emf in volts$

- $\sigma =$ sensitivity in Volts/Gauss
- B = applied field in Gauss
- I = bias current

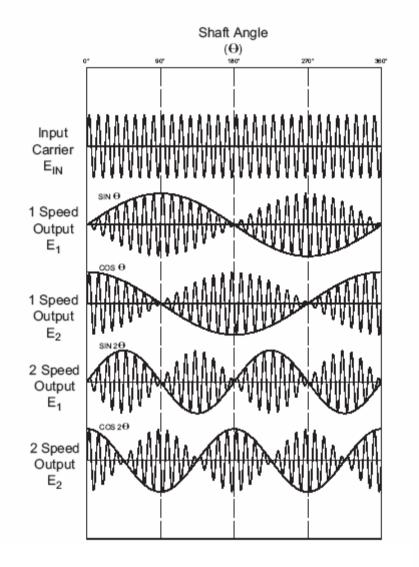

Some examples

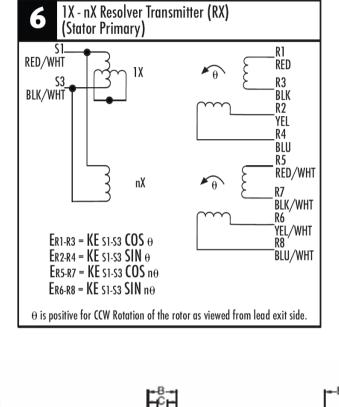
Some examples

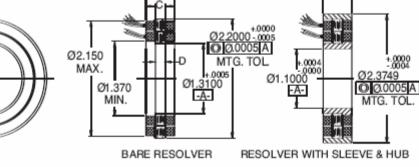
RESOLVERS



Tap for sine signal Tap for cosine signal Rotary transformer


wired rotor


[&]quot;brushless" rotor


Resolver from real (typical application:brushless field commutation)

"MULTI SPEED" RESOLVER

"MULTI SPEED" RESOLVER

Selection Guide							
Part Number:	0.D. (in.)	I.D. (in.)	Height (in.)	Speed	Accuracy	Frequency (Hz)	Page No.
RP028-080SNFA-B4V	3.0000	1.5000	0.690	8	10″	2000	55
160SMFC-C7V	3.0000	1.5000	0.690	16	15″	5000	56
161BBFA-D7V	2.7500	1.7450	0.680	1/16	15′/20″	400	56
161BBFA-EOV	2.7500	1.7450	0.680	1/16	15′/30″	400	56
161BBFB-D7V	2.7500	1.7450	0.680	1/16	15′/20″	2000	56
161BBFB-EOV	2.7500	1.7450	0.680	1/16	15′/30″	2000	56
161SMFB-C7V	3.0000	1.5000	0.690	1/16	15′/15″	2000	56
161SMFB-D0V	3.0000	1.5000	0.690	1/16	15′/20″	2000	57
361SMFA-D0V	3.0000	1.5000	0.690	1/36	15″	2000	57
RP034-010BBFA-H0V1	3.3740	2.2503	0.520	1	2′	400	58
010BBFA-KOV	3.3740	2.2503	0.520	1	3′	400	58
010BBFA-LOV	3.3740	2.2503	0.520	1	3′	400	58
010BBFA-LOV1	3.3740	2.2503	0.520	1	6′	400	58
010BBFB-LOV	3.3740	2.2503	0.520	1	6′	800	58
010BBFB-LOV1	3.3740	2.2503	0.520	1	6′	2000	58
010BBFC-K0V1	3.3740	2.2503	0.520	1	3′	1000	59
010FMFA-H0V1	3.5700	2.0800	0.520	1	2′	400	59
080BBFA-C4V	3.3740	2.2503	0.600	8	15″	400	59
080BBFA-DoV	3.3740	2.2503	0.600	8	20″	400	59
080SMFA-B4V	3.5700	2.0800	0.600	8	10″	400	59
080SMFA-COV	3.5700	2.0800	0.600	8	15″	400	59
160BBFD-C4V	3.3740	2.2503	0.600	16	15″	400	60
160BBFD-C4V1	3.3740	2.2503	0.600	16	15″	400	60
160BBFD-D4V1	3.3740	2.2503	0.600	16	15″	2000	60
160SMFC-C7V	3.5700	2.0800	0.600	16	15″	2000	60
161BBFA-D7V	3.3740	2.2503	0.600	1/16	15′/20″	400	60
161BBFA-EOV	3.3740	2.2503	0.600	1/16	15′/30″	400	60
161BBFB-D7V	3.3740	2.2503	0.600	1/16	15′/20″	2000	61
161BBFB-EOV	3.3740	2.2503	0.600	1/16	15″	2000	61
161BBFB-E0V1	3.3740	2.2503	0.600	1/16	15″	2000	61
			30			www	.axsys.co

Selection Guide	0.D.	I.D.	Height	Speed	Accuracy	Frequency	Page No.
Part Number:	(in.)	(in.)	(in.)	speed	Accuracy	(Hz)	rageno
RP065-321FMFB-B0V	6.750	4.712	0.650	1/32	15′/10″	2000	72
321SMFA-A2V	6.750	4.712	0.650	1/32	15′/5′	2000	72
321SMFA-B0V	6.750	4.712	0.650	1/32	15′/10″	2000	72
321FMFA-BoV	6.6875	4.7720	0.650	1/32	15′/10″	2000	72
321FMFA-A2V	6.6875	4.7720	0.650	1/32	15′/5′	2000	72
RP083-010BBFA-K0V1	8.2500	6.2300	0.850	1	3′	1500	73
010BBFA-LOV	8.2500	6.2300	0.850	1	6′	400	73
080BBFA-D5V1	8.2500	6.2300	0.600	8	20″	2000	73
081BBFA-B2V	8.2500	6.2300	0.850	1/8	15′/10″	400	73
081BBFA-C0V	8.2500	6.2300	0.850	1/8	15′/15″	400	73
161BBFA-C6V	8.2500	6.2300	0.850	1/16	15′/15″	400	73
161BBFA-D0V	8.2500	6.2300	0.850	1/16	15′/20″	400	74
161BBFB-B6V	8.2500	6.2300	0.850	1/16	15′/10″	400	74
161BBFB-C0V	8.2500	6.2300	0.850	1/16	15′/15″	400	74
321BBFA-A2V	8.2500	6.2300	0.850	1/32	15′/5′	400	74
321BBFA-B0V	8.2500	6.2300	0.850	1/32	15′/10″	400	74
321BBFB-DoV	8.2500	6.2300	0.850	1/32	15′/20″	400	74
RP094-010SMFA-MOV	9.6063	8.0709	1.024	1	10″	400	75
161SMFA-D5V	9.6063	8.0709	1.024	1/16	15′/20″	400	75
161SMFA-E0V	9.6063	8.0709	1.024	1/16	15′/30″	400	75
RP115-010BBFA-LoV	11.360	9.192	1.000	1	6′	400	76
010SMFA-LOV	11.675	8.880	1.000	1	6′	400	76
161BBFA-B6V	11.360	9.192	1.000	1/16	15′/10″	400	76
161BBFA-D0V	11.360	9.192	1.000	1/16	15′/20″	400	76
161SMFA-A6V	11.675	8.880	1.000	1/16	15′/5′	400	76
161SMFA-C0V	11.675	8.880	1.000	1/16	15′/15″	400	76
320SMFA-B0V	11.675	8.880	1.000	32	10″	400	77
321SMFA-C0V	11.675	8.880	1.000	1/32	15′/15″	400	77
321SMFD-B0V	11.675	8.880	1.000	1/32	15′/10″	1200	77

MEASURING LINEAR:

* "LINEAR" ENCODER* LVDT

Line	ar encoders	Absolute encoder
		SCK STROMANN
600	Technical data	POMUX* KH 53
THE R. P.	Measurement range	Up to 1,700 m
1	Resolution	0.1 mm
	Reproducibility	300 µm
	Interfaces	SSI, RS 422, Profibus
	Operating voltage	10 32 V DC

Magnetic strip MBA511

The base material is absolutely coded at defined distances and firmly joined to the steel carrier strip. For fixing, a special adhesive tape is premounted. An additional stainless steel cover strip is also included as standard.

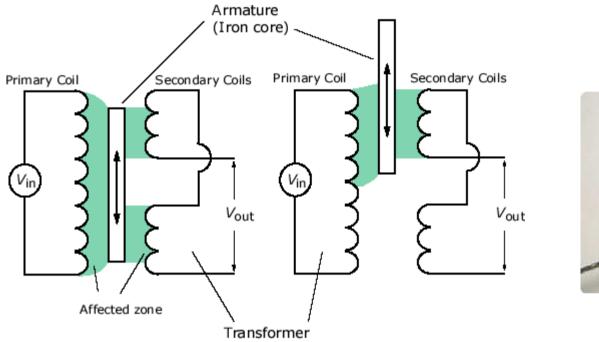
Magnetic Display MA505

With this display the information of the absolute magnetic sensors MSA or LSA200 is processed for distance or position measurement. The display is comprehensively and indivually programmable and optionally available with serial interface and integrated power supply unit.

Features

- high-contrast LCD, 12-digit, dot matrix
- · integrated translation module for absolute length measurement
- incremental/reset function
- calibration input
- · direct reference/offset value input
- serial RS232/RS485 interface as an option

Magnetic sensor MSA510


This sensor gathers the absolute length information of the coded MBA magnetic strip and forms an absolute, linear distance or position measuring system for measuring lengths up to 5120 mm.

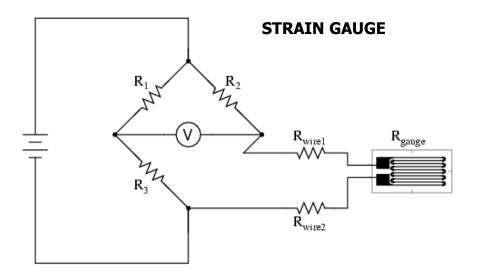
Features

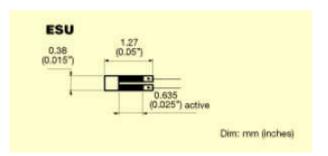
- compact design with integrated translation module
- SSI interface
- measuring length up to 5120 mm
- accuracy class 0.05 mm, resolution 0.01 mm
- strip/sensor gap max. 1.0 mm
- use with MBA magnetic strip

LINEAR DIFFERENTIAL VARIABLE TRANSFORMER (LVDT)

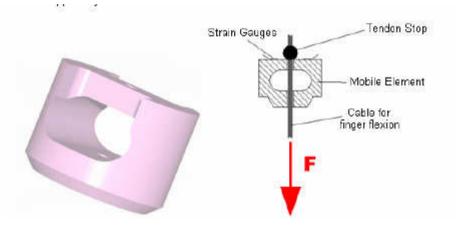
..even more:

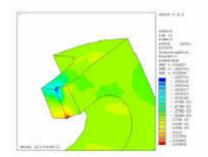
LINEAR OPTICAL ENCODER;

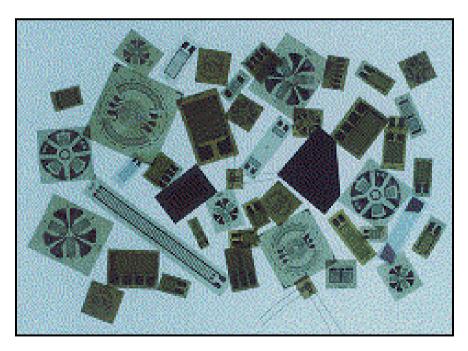

INDUCTOSYN;


OPTICAL TRIANGULATION MEASUREMENT SENSOR;

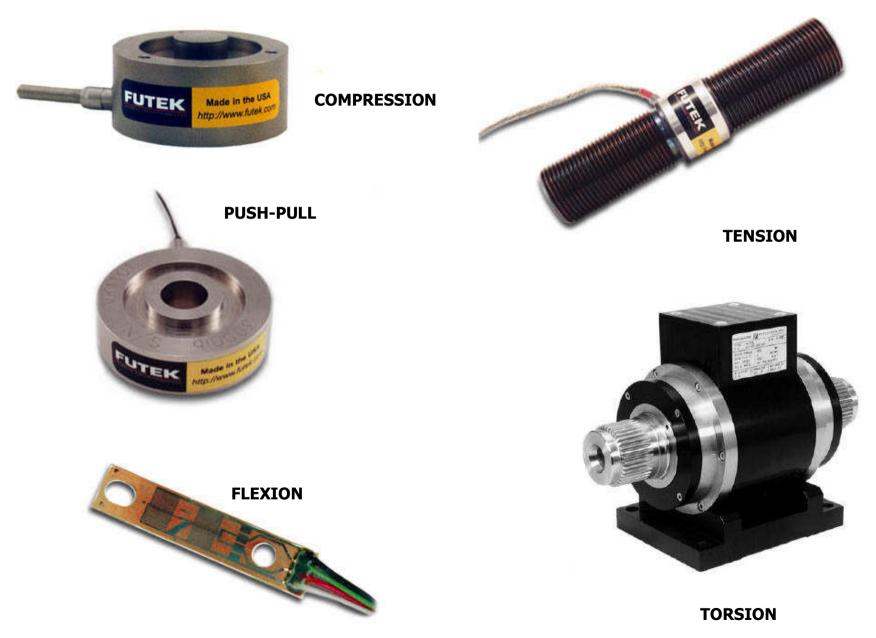
...




MEASURING FORCES



semi-conductor strain gauge



typical single and multi axis strain gauges

...more strain gauges coupled..MULTI AXIS LOAD CELL



Standard Calibrations

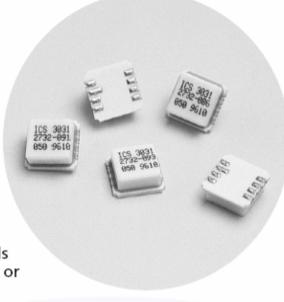
Maximum Single-Axis Load (without damage...these loads beyond sensing range)

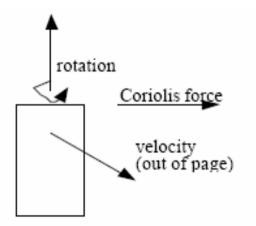
Transducer	English	Metric	Transducer Body	Axes	English	Metric
Body	lb / in-lb	(N / N-m)		F×y	± 79 lbs	± 350 N
Nano17	US-3-1	SI-12-0.12	Nano17	Fz	± 180 lbs	± 800 N
	US-6-2	SI-25-0.25		Тху	±23 in-lbs	± 2.6 N-m
	US-12-4	SI-50-0.50		Tz	±28 in-Ibs	±3.1 N-m
Nano25	US-25-25	SI-125-3		F×y	± 520 lbs	± 2325 N
Nano43	US-50-50 US-4-2	SI-250-6 SI-18-0.25	Nano25	Fz	± 1400 lbs	±6250 N
				Тху	±310 in-lbs	±34 N-m
nano45	US-8-4	SI-36-0.5		Tz	± 560 in-lbs	±62 N-m
	US-5-10	SI-20-1		F×y	± 68 lbs	± 300 N
Mini40	US-10-20	SI-40-2	Nano43	Fz	± 89 lbs	± 400 N
	US-20-40	SI-80-4		Тху	±30 in-Ibs	±3.4 N-m
	US-30-40	SI-145-5		Tz	±48 in-Ibs	±5.4 N-m
Mini45	US-60-80	SI-290-10		F×y	± 200 lbs	±870 N
	US-120-160	SI-580-20	Mini40	Fz	±610 lbs	±2700 N
	US-7.5-25	SI-32-2.5		Тху	± 190 in-Ibs	±21 N-m
Gamma	US-15-50	SI-65-5		Tz	± 190 in-Ibs	±21 N-m
US-30	US-30-100	SI-130-10	F×y	± 1200 lbs	±5100 N	
Delta	US-75-300	si-330-30	Mini 45	Fz	± 2300 lbs	± 10000 N
	US-150-600	SI-660-60	101111-10	Тху	± 950 in-Ibs	± 110 N-m
	US-200-1000	SI-1000-120		Tz	±1200 in-Ibs	± 140 N-m
Theta	US-350-2100	SI-1500-240 SI-2500-400	Gamma	F×y	± 270 lbs	± 1200 N
	US-600-3600			Fz	±910 lbs	± 4100 N
	US-200-1000	si-1000-120		Тху	±690 in-lbs	±79 N-m
Omega160	US-350-2100	00 SI-1500-240		Tz	±730 in-1bs	±82 N-m
	US-600-3600			F×y	± 770 lbs	±3400 N
	US-400-3000	SI-1800-350	Delta	Fz	± 2600 lbs	± 12000 N
Omega190	US-800-6000	SI-3600-700 SI-7200-1400		Txy	± 2000 in-lbs	± 220 N-m
-	US-1600-12,000			Tz	±3700 in-1bs	± 420 N-m
	US-3600-18000	SI-16000-2030		F×y	± 5700 lbs	± 25000 N
Omega250	others available	others available	Theta	Fz	± 14000 lbs	±61000 N
				T×y T=	± 22000 in-lbs	± 2500 N-n
				Tz	±24700 in-lbs	± 2700 N-n
				F×y	± 4000 lbs	±18000 N
			Omega160	Fz	±11000 lbs	± 48000 N
				Txy	±15000 in-lbs	±1700 N-m
				Tz	±17000 in-lbs	±1900 N-m
				F×y	± 8000 lbs	± 36000 N
			Omega190	Fz	± 25000 lbs	±11000 N
				Тху	± 49000 in-lbs	± 5500 N-n

inertia sensors

..from the "classic" GYROSCOPE

..to MEMS GYRO

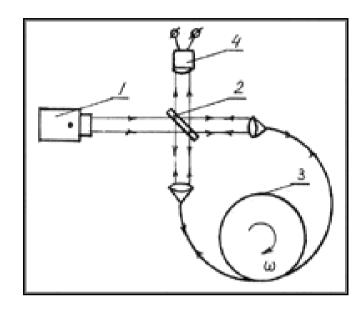


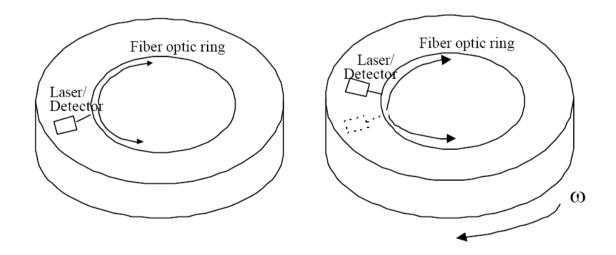

SMD Accelerometer Miniature DC Response Piezoresistive MEMS 10,000g Over-Range Protection

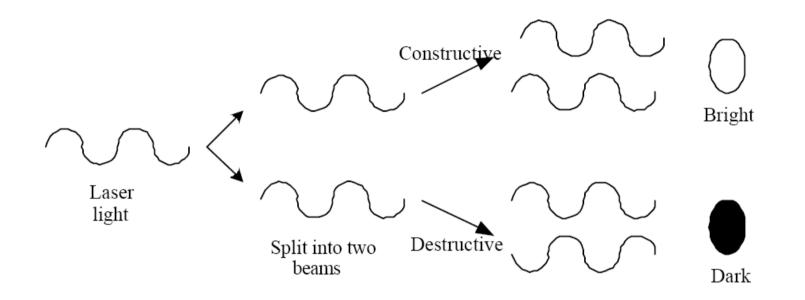
DESCRIPTION

The Model 3031 is a piezoresistive SMD accelerometer designed for demanding high volume applications. The accelerometer is ideal for applications requiring a miniature light weight accelerometer with outstanding performance.

The model 3031 incorporates a 2nd generation MEMS sensing element providing superior longterm stability. The accelerometer provides a millivolt output signal and features mechanical overload stops that provide shock protection to 10,000g. For nonsurface mount accelerometers please see Models 3022, 3028, 3052 or 3058.





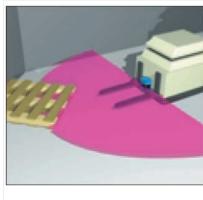

 $\mathbf{F} = 2\mathbf{m}\boldsymbol{\omega}\mathbf{V}$

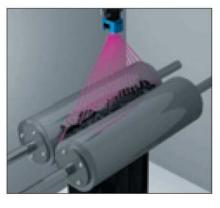
. MEMS Vibrating Structure Rate Sensor

FIBER OPTIC GYRO (fog)

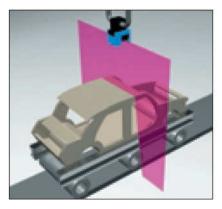
 $\Delta S = 8\pi nA\omega/c\lambda$

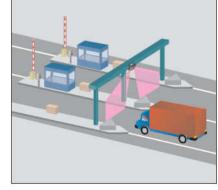
Sagnac effect


LASER SCANNER

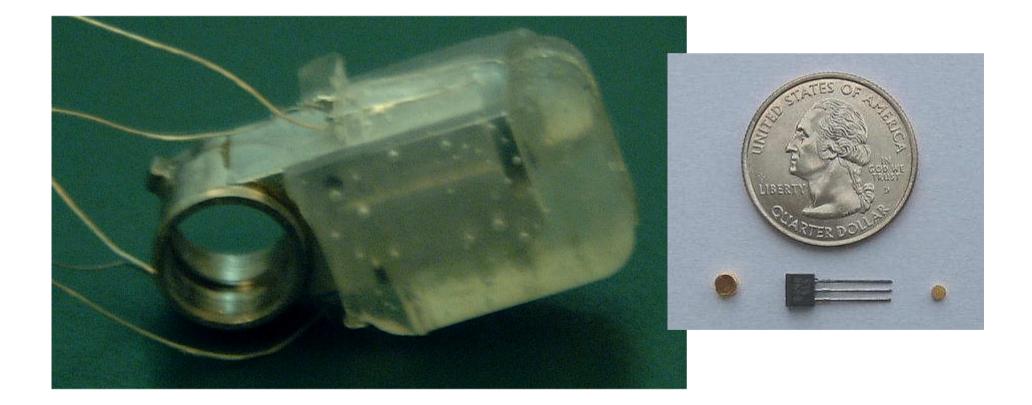


Technical data	LMS 200 ID	LMS 220 ID	LMS 211 0D
Range (max. / 10% reflectivity)	80 m/10 m	80 m/10 m	80 m/30 m
Scanning angle	max. 180°	max. 180°	max. 100°
Angular resolution	0.25°/0.5°/1° adjustable	0.25°/0.5°/1° adjustable	0.25°/0.5°/1° adjustable
Response time	53 ms/26 ms/13 ms	53 ms / 26 ms / 13 ms	53 ms / 26 ms / 13 ms
Resolution / systematic error	10 mm/typ. \pm 15 mm	$10 \text{ mm/typ.} \pm 15 \text{ mm}$	$10 \text{ mm/typ.} \pm 35 \text{ mm}$
Data interface	RS 232 / RS 422	RS 232 / RS 422	RS 232 / RS 422
Switching outputs	3 x PNP; typ. 24 V DC	3 x PNP; typ. 24 V DC	3 x PNP; typ. 24 V DC
Laser protection class	1 (eye-safe)	1 (eye-safe)	1 (eye-safe)
Operating ambient temperature	0+50 °C	-30+50 °C	-30+50 °C
Enclosure rating	IP 65	IP 67	IP 67/heated front window
Dimensions (W x H x D)	155 x 210 x 156 mm ³	352 x 266 x 229 mm ³	352 x 266 x 236 mm ³ *


* (w/o dust prevention shield)

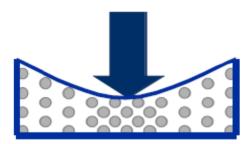

e.g. detecting positions/ collision prevention

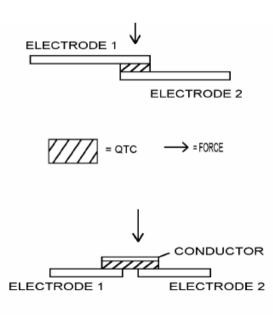
e.g. determining filling levels



e.g. classifying bodywork

e.g. vehicle detection


A SIMPLE tactile sensor made using hall effect sensor



another tactile sensor: quantum tunneling composite (QTC)

- Carbon composites always show some conduction typically with a resistance of a few thousand ohms, whereas in the unstressed state QTCs can be considered an insulator at 10¹² ohms
- Under pressure, carbon composites can decrease to a few hundred ohms, whereas QTCs reduce to less that 1 ohm
- The deformation required to produce a significant (factor of 10) change in resistance is significantly less for QTC than for carbon composites

(fine !)

