
Lectures on Mechanics

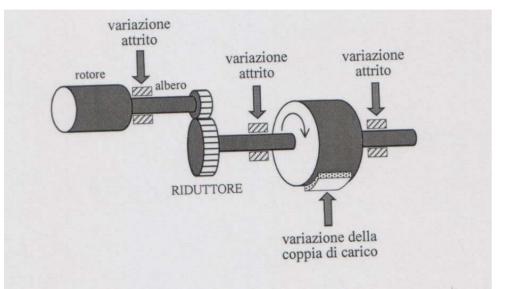
Lesson#1 Francesco.becchi@telerobot.it

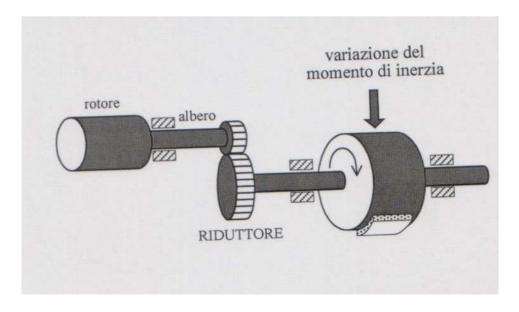
LESSONS TIME TABLE (pls. take note)

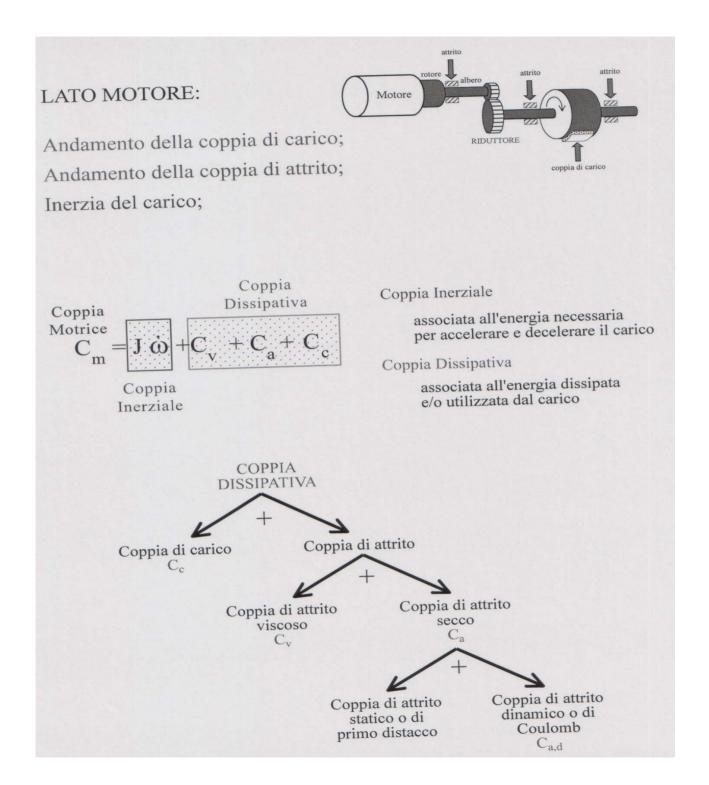
28/11 h9/12- mech components 1 (3h) 4/12 h9/12 mech components 2 (3h) 11/12 h9/12 mech technologies (3h) 16/12 h 9/12 (in TLR) - mech technologies tlr workshop 18/12 h9/12- robotic (3h) TO BE REARRANGED

STUDENT LIST

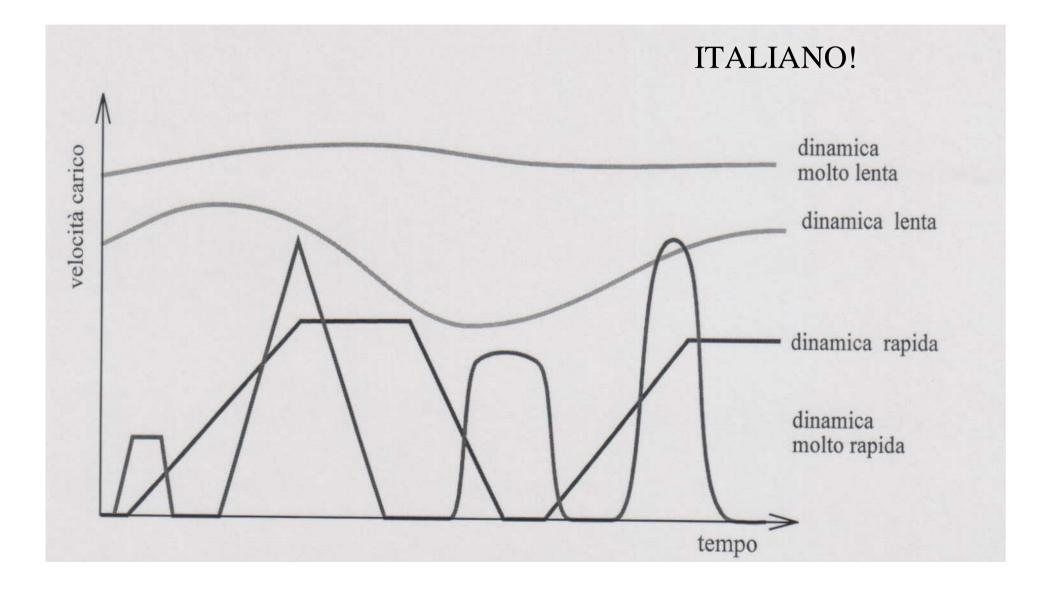
Baizid Khelifa Biso Maurizio Iqbal Jamshed Jafari Amir Naceri Abdeldjallil Palyart Lamarche Jean-Christophe Patra Niranjan


POWER TRANSMISSION

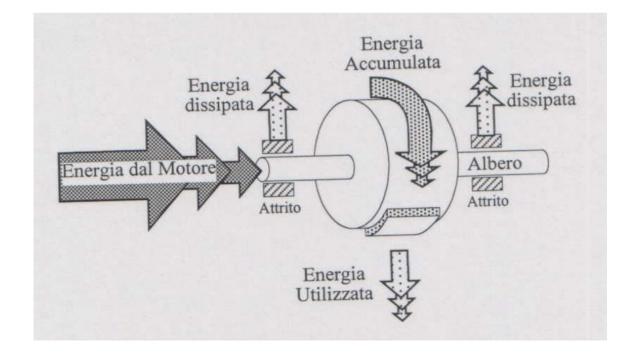

Mechanical load characterization


The **apparatus load** can be divided into two classes:

Dissipative load when energy supplied by the actuator is used to provide work e.g. tool machining like turning, milling etc. or lost for friction compensation e.g. industrial mixers or fans, rail drive, lifting.


Inertial load when energy supplied by the actuator is used to accelerate and/or to brake the load e.g. robots, high speed automatic positioning devices, metropolitan wheel drive

DYNAMIC LOAD CHARACTERIZATION



VERY SLOW DYNAMIC : $J d\omega/dt \ll Cv + Ca + Cc$

SLOW DYNAMIC : $J d\omega/dt < Cv + Ca + Cc$

FAST DYNAMIC : $J d\omega/dt > Cv + Ca + Cc$

VERY FAST DYNAMIC : $J d\omega/dt >> Cv + Ca + Cc$

ACTUATORS

what does it mean?

How many different kind of actuator can you remember?

ACTUATORS

(first approximation list)

ELECTRIC ACTUATORS

PNEUMATIC ACTUATORS

HYDRAULIC ACTUATORS

...

ACTUATORS

TABLE 14.5.3 Lower Power Actuator Principles

Electro-mechanical	Fluid power	Alternative concepts
Direct Current (DC) motor Alternating Current (AC) motor	Hydraulic actuators Pneumatic actuators	Piezoelectric Magnetostrictive
Stepper motor Electromagnetic Linear motor		Electrochemical Thermo-bimetal Shape Memory Alloy Electrostatic

Each actuator has its own characteristic

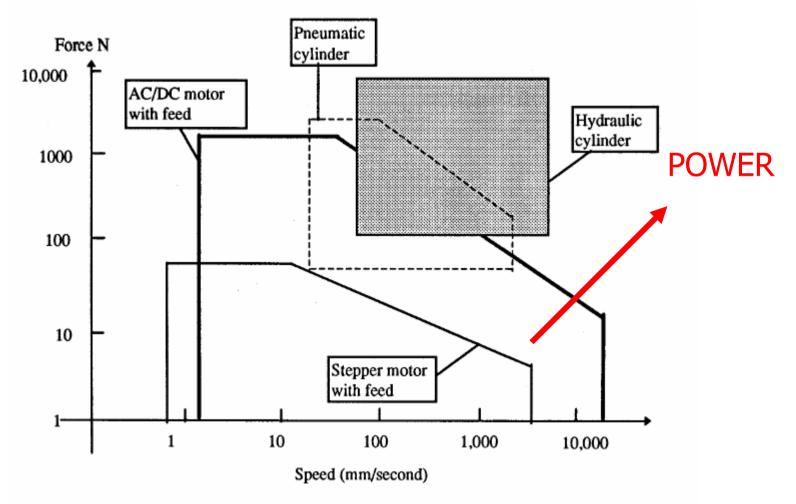
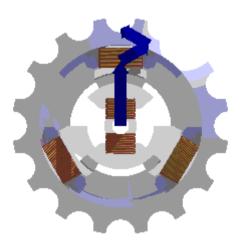


FIGURE 14.5.11 Force vs. speed for common actuators.


The choice between different option is not always unique

			Non-linearity				
Actuator type	Static linearity	Friction	Backlash	Hysteresis	mm		
AC/DC motor with feed	А	B-C	B-C	B-C	0.005-100		
Stepper motor with feed	А	B-C	B-C	B-C	0.01-50		
Hydraulic cylinder		С			0.01-100		
Pneumatic cylinder		С			0.1-100		

TABLE 14.5.4 Comparison between Common Actuators

Symbols: A good, negligible; B: average, common; C: bad, significant.

ELECTRIC ACTUATORS

Electro magnetic principia (Lorentz Law)

ELECTRIC ACTUATORS (both linear and rotational)

AC motor

DC brushed motor

Stepper motor

Brushless motor

Torque and linear motors

AC motor

Through electromagnetic induction, the rotating magnetic field induces a current in the conductors in the rotor, which in turn sets up a counterbalancing magnetic field that causes the rotor to turn in the direction the field is rotating

AC motor speed

The nominal synchronous speed is obtained by

$$Ns = 120F/p$$

where

Ns = Synchronous speed, in revolutions per minute

F = AC power frequency

p = Number of poles per phase winding

AC motor speed

Actual RPM for an induction motor will be less than this calculated synchronous speed by an amount known as *slip* that increases with the torque produced. With no load the speed will be very close to synchronous. When loaded, standard motors have between 2-3% slip

As an example, a typical four-pole motor running on 50 Hz might have a nameplate rating of 1430 RPM at full load, while its calculated speed is 1500.

AC motor control

The state of the art in the AC motor control is the digital inverter

Standard inverters may control the AC ref frequency, controlling consequently the speed of the motor. The resulting characteristic of the motor is linear. The torque decrease linearly with the speed.

AC motor control

Vectorial inverters lead to a flat characteristics with constant power over the full speed range.

AC motor can be controlled by an inverter either in open or closed loop adding an external sensor that close the speed loop.

Nominal open loop speed tolerance on vectorial inverter may be lower than 2%.

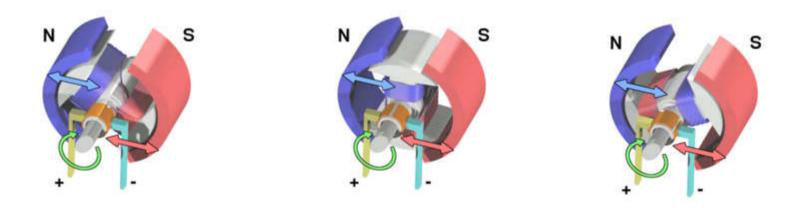
Pn kW			n min ¹	Mn Nm	7) %	cosø	In ∧ (400∨)	ls In	Ms Mn	Ma Mn	Jm ≭10 ⁻⁴ kgm²	м в 5 С
0.18	BN 63A	2	2700	0.64	53	0.78	0.63	3.0	2.1	2	2.0	3.5
0.25	BN 63B	2	2700	0.88	62	0.78	0.75	3.3	2.3	2.3	2.3	3.9
0.37	BN 63C	2	2750	1.29	64	0.79	1.06	3.9	2.6	2.6	3.3	5.1
0.37	BN 71A	2	2810	1.26	70	0.78	88.0	4.8	2.8	2.6	3.5	5.4
0.55	BN 71B	2	2810	1.87	73	0.77	1.41	5.0	2.9	2.8	4.1	6.2
0.75	BN 71C	2	2800	2.6	74	0.77	1.90	5.1	3.1	2.8	5.0	7.3
0.75	BN 80A	2	2800	2.6	74	0.78	1.88	4.8	2.6	2.2	7.8	8.6
1.1	BN 80B	2	2800	3.8	76	0.77	2.71	4.8	2.8	2.4	9.0	9.5
1.5	BN 80C	2	2800	5.1	80	0.81	3.3	4.9	2.7	2.4	11.4	11.3
1.5	BN 90SA	2	2870	5.0	78	0.78	3.6	5.9	2.7	2.6	12.5	12.3
1.85	BN 90SB	2	2880	6.1	79	0.79	4.3	6.2	2.9	2.6	16.7	14
2.2	BN 90L	2	2880	7.3	79	0.79	5.1	6.3	2.9	2.7	16.7	14
3	BN 100L	2	2860	10.0	80	0.80	6.8	5.7	2.6	2.2	31	20
4	BN 100LB	2	2870	13.3	82	0.81	8.7	5.9	2.7	2.5	39	23
4	BN 112M	2	2900	13.2	83	0.84	8.3	6.9	3	2.9	57	28
5.5	BN 132SA	2	2890	18.2	83	0.85	11.3	6	2.6	2.2	101	35
7.5	BN 132SB	2	2900	25	84	0.86	15.0	6.4	2.6	2.2	145	42
9.2	BN 132M	2	2900	30	86	0.87	17.7	6.9	2.8	2.3	178	53
11	BN 160MR	2	2910	36	87	0.86	21	7.0	2.9	2.5	210	65
15	BN 160MB	2	2930	49	88	0.86	29	7.1	2.6	2.3	340	84
18.5	BN 160L	2	2930	60	89	0.86	35	7.6	2.7	2.3	420	97
22	BN 180M	2	2930	72	89	0.87	41	7.8	2.6	2.4	490	109
30	BN 200LA	2	2960	97	90	0.88	55	7.9	2.7	2.9	770	140

AC motor range – 2 poles

The IEC-normalized BN motors comply with all the applicable international standards, including the EMC and LV Directives. They are available in the 0.06 - 30 kW range in the foot and the flange mounting version, the latter in both the IM B5 and the IM B14 configuration. Single and dual pole version available with generally, three brake options offered, one DC and two AC supply, lending further flexibility to the system. Finally, all motors are inverter duty.

NB: power is traditionally fraction of HP, ref size is 0.75 kW=1HP

AC motor range 4,6 poles..

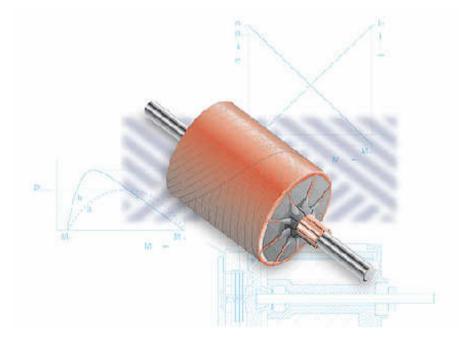

Pn	-		n	Mn	η		In	la.	Ms	Ma	Jm ≭10 ⁻⁴	IMB5	
	-[]					cos ø	А	ls In	Mn	Min		с Ка	
kW			min ⁻¹	Nm	%		(400V)				kgm²		
0.06	BN 56A	4	1350	0.42	47	0.62	0.30	2.6	2.3	2.0	1.5	3.1	
0.09	BN 56B	4	1350	0.64	52	0.62	0.40	2.6	2.5	2.4	1.5	3.1	
0.12	BN 63A	4	1310	0.88	51	0.68	0.50	2.6	1.9	1.8	2.0	3.5	
0.18	BN 63B	4	1320	1.30	53	0.68	0.72	2.6	2.2	2.0	2.3	3.9	
0.25	BN 63C	4	1320	1.81	60	0.69	0.87	2.7	2.1	1.9	3.3	5.1	
0.25	BN 71A	4	1375	1.74	62	0.77	0.76	3.3	1.9	1.7	5.8	5.1	
0.37	BN 71B	4	1370	2.6	65	0.77	1.07	3.7	2.0	1.9	6.9	5.9	
0.55	BN 71C	4	1380	3.8	69	0.74	1.55	4.1	2.3	2.3	9.1	7.3	
0.55	BN 80A	4	1390	3.8	72	0.77	1.43	4.1	2.3	2.0	15	8.2	
0.75	BN 80B	4	1400	5.1	75	0.78	1.85	4.9	2.7	2.5	20	9.9	
1.1	BN 80C	4	1400	7.5	75	0.79	2.68	5.1	2.8	2.5	25	11.3	
1.1	BN 90S	4	1400	7.5	73	0.77	2.82	4.6	2.6	2.2	21	12.2	
1.5	BN 90LA	4	1410	10.2	77	0.77	3.7	5.3	2.8	2.4	28	13.6	
1.85	BN 90LB	4	1400	12.6	77	0.78	4.4	5.2	2.8	2.6	30	15.1	
2.2	BN 100LA	4	1410	14.9	78	0.76	5.4	4.5	2.2	2.0	40	18.3	
3	BN 100LB	4	1410	20	80	0.78	6.9	5	2.3	2.2	54	22	
4	BN 112M	4	1420	27	83	0.78	8.9	5.6	2.7	2.5	98	30	
5.5	BN 132S	4	1440	36	84	0.80	11.8	5.5	2.3	2.2	213	44	
7.5	BN 132MA	4	1440	50	85	0.81	15.7	5.7	2.5	2.4	270	53	
9.2	BN 132MB	4	1440	61	86	0.81	19.1	5.9	2.7	2.5	319	59	
11	BN 160MR	4	1440	73	87	0.82	22.3	5.9	2.7	2.5	360	70	
15	BN 160L	4	1460	98	89	0.82	29.7	5.9	2.3	2.1	650	99	
18.5	BN 180M	4	1460	121	89	0.81	37.0	6.2	2.6	2.5	790	115	
22	BN 180L	4	1465	143	89	0.82	45	6.5	2.5	2.5	1250	135	
30	BN 200L	4	1465	196	90	0.83	58	7.1	2.7	2.8	1650	157	

Pn	1 ⁴ m		n	Mn	η		In	ls	Ms	Ma	Jm × 10 ⁻⁴	IM B5
kW	Ļ		min ⁻¹	Nm	%	cos ¢	A (400V)	In	Mn	Mn	kgm²	Kg.
0.09	BN 63A	6	880	0.98	41	0.53	0.60	2.1	2.1	1.8	3.4	4.6
0.12	BN 63B	6	870	1.32	45	0.60	0.64	2.1	1.9	1.7	3.7	4.9
0.18	BN 71A	6	900	1.91	56	0.69	0.67	2.6	1.9	1.7	8.4	5.5
0.25	BN 71B	6	900	2.7	62	0.71	0.82	2.6	1.9	1.7	10.9	6.7
0.37	BN 71C	6	910	3.9	66	0.69	1.17	3	2.4	2.0	12.9	7.7
0.37	BN 80A	6	910	3.9	68	0.68	1.15	3.2	2.2	2.0	21	9.9
0.55	BN 80B	6	920	5.7	70	0.69	1.64	3.9	2.6	2.2	25	11.3
0.75	BN 80C	6	920	7.8	70	0.65	2.38	3.8	2.5	2.2	28	12.2
0.75	BN 90S	6	920	7.8	69	0.68	2.31	3.8	2.4	2.2	26	12.6
1.1	BN 90L	6	920	11.4	72	0.69	3.2	3.9	2.3	2.0	33	15
1.5	BN 100LA	6	940	15.2	73	0.72	4.1	4	2.1	2.0	82	22
1.85	BN 100LB	6	930	19.0	75	0.73	4.9	4.5	2.1	2.0	95	24
2.2	BN 112M	6	940	22	78	0.73	5.6	4.8	2.2	2.0	168	32
3	BN 132S	6	940	30	76	0.76	7.5	4.8	1.9	1.8	216	36
4	BN 132MA	6	950	40	78	0.77	9.6	5.5	2.0	1.8	295	45
5.5	BN 132MB	6	945	56	80	0.78	12.7	5.9	2.1	1.9	383	56
7.5	BN 160M	6	955	75	84	0.81	15.9	5.9	2.2	2.0	740	83
11	BN 160L	6	960	109	87	0.81	22.5	6.5	2.5	2.3	970	103
15	BN 180L	6	970	148	88	0.82	30	6.2	2.0	2.4	1550	130
18.5	BN 200LA	6	960	184	88	0.81	37	5.9	2.0	2.3	1700	145

AC motor PROS/CONS

PROS: Widely used industrially No commutation If required flexible control is available Rugged Wide range (<0.1 W:>> 1kW) CONS: NO POSITION LOOP IS POSSIBLE Low dynamics Low torque/weight ratio

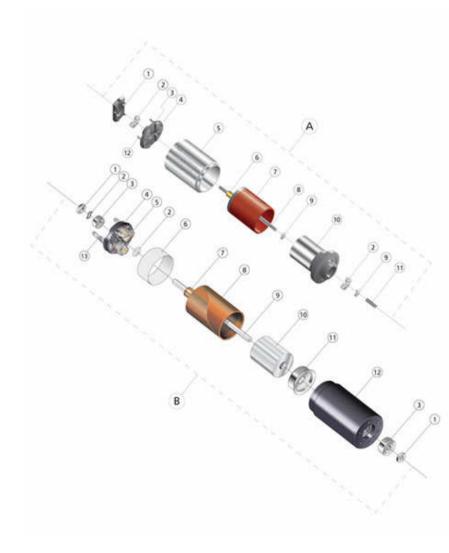
DC brushed motor


General principia: static magnet and rotating coils Coil commutation with "brushes"

DC brushed motor:

Wound field DC motor (magnet replaced by coils: magnetic field strenght controlled by fixed coil currents)

Universal motor (wound fieldAC operated brushed motor, low cost- only copper no magnets)

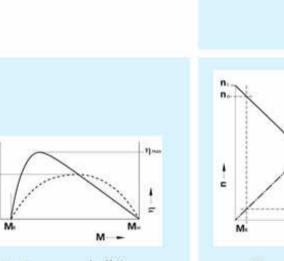

Low inertia small size motor (small power high efficency high speed motors)

The "System FAULHABER®" Rotor Coil

The motor concept is simple yet revolutionary: a lightweight ironless copper coil rotates around a stationary permament magnet instead of rotating a heavy iron armature wound with copper wire. Dr. Fritz Faulhaber's invention launched a whole new era in drive technology. The FAULHABER System provides solutions for the ever more complex world of miniature drives.

Low inertia small size DC motor (exploded view)

Micromotors C.C.


۹.	Precious Metal Commutation
1	End cap
2	Ball bearing
3	Brush cover
4	Brushes
5	Housing
6	Commutator
7	Coil
8	Shaft
9	Washer
10	Magnet
11	Bushing
12	Terminals
3.	Graphite Commutation
1	Retaining ring
2	Spring washer
3	Ball bearing
4	Brush cover
5	Graphite brushes
6	Isolation ring
7	Commutator
8	Coil
9	Shaft
10	Magnet
11	Magnet support
12	Housing
13	Terminals

Motor-Characteristics

Coreless DC-Motors with the FAULHABER skew wound coil have linear performance characteristics.

- High power-to-volume ratio
- Low starting voltage
- Low inertia
- Very rapid starting
- High efficiency
- Linear voltage-speed relationship
- Linear current-torque relationship
- High precision assures long life

Skew wound coil

Output power and efficiency as a function of torgue Current and speed as functions of torque

P = Power M = Torque

n = Speed

I = Current

 $\mathbf{n} = Efficiency$

Take care: low inertia means low mass: low thermal inertia..It's really easy to get too hot!.. Take a look at continuous performances vs. peak performances !!

..some equations about the fundamental electic motor (valid for both DC brushed and brushless)..

The electrical equation is:

 $V_{T} = I_{R} + LdI/dt + K_{B}\omega \qquad (1)$

Where

 V_T = the terminal voltage across the active commutated phase

I = the sum of the phase currents into the motor

R = the equivalent input resistance of the active commutated phase

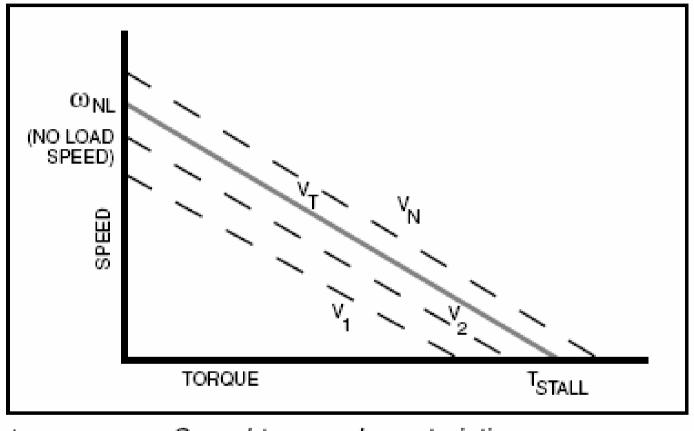
L = the equivalent input inductance of the active commutate phase

 K_{B} = the back EMF constant of the active commutated phase

 ω = the angular velocity of the rotor

If the electrical time constant of the brushless DC motor is substantially less than the period of commutation, the steady state equation describing the voltage across the motor is:

 $V_{T} = I_{R} + K_{B}\omega \qquad (2)$


The torque developed by the brushless DC motor is proportional to the input current.

 $T = I K_T$ Where K_T = the torque sensitivity If we solve for I and substitute into Equation (2) we obtain:

 $V_{T} = T/K_{T}R + K_{B}\omega \qquad (3)$

The first term is the voltage required to give the required torque

The second term is the voltage rise for the back EMF

Speed torque characteristic curves.

Faulhaber DC brushed motor range (good for robotics)

DC-Micromoto	ors							
Туре	Commutation	Outer Ø (mm)	Length (mm)	Shaft Ø (mm)	Nominal voltage (Volt)	No-load speed (rpm)	Stall torque (mNm)	Output power (Watt)
<u>0615 S</u>	Precious Metal	6	15	1,5	1,5 4,5	20 200	0,24	0,12
<u>0816 S</u>	Precious Metal	8	16	1,5	3 8	16 500	0,41	0,18
<u>1016 G</u>	Precious Metal	10	16	1,5	3 12	18 400	0,87	0,42
<u>1024 S</u>	Precious Metal	10	24	1,5	3 12	14 700	2,89	1,11
<u>1219 G</u>	Precious Metal	12	19	1,5	4,5 15	16 200	1,19	0,50
<u>1224 S</u>	Precious Metal	12	24	1,5	6 15	13 100	3,69	1,3
<u>1319 SR</u>	Precious Metal	13	19	1,5	6 24	14 600	2,91	1,10
<u>1331 SR</u>	Precious Metal	13	31	1,5	6 24	10 600	11,20	3,11
<u>1336 C</u>	Graphite	13	36	2	6 24	9 200	8,40	2,02
<u>1516 S</u>	Precious Metal	15	16	1,5	1,5 12	17 200	0,99	0,41
<u>1516 SR</u>	Precious Metal	15	16	1,5	6 12	12 900	1,61	0,54
<u>1524 SR</u>	Precious Metal	15	24	1,5	3 24	10 800	7,12	1,92
<u>1624 S</u>	Precious Metal	16	24	1,5	3 24	14 400	5,16	1,87
<u>1717 SR</u>	Precious Metal	17	17	1,5	3 24	14 000	5,38	1,97
<u>1724 SR</u>	Precious Metal	17	24	1,5	3 24	8 600	13,20	2,83
<u>1727 C</u>	Graphite	17	27	2	6 24	7 800	11,6	2,37
<u>2224 SR</u>	Precious Metal	22	24	2	3 36	8 200	21,40	4,55
<u>2230 S</u>	Precious Metal	22	30	1,572	3 40	9 600	14,70	3,69
<u>2232 SR</u>	Precious Metal	22	32	2	6 24	7 400	59,2	11
<u>2233 S</u>	Precious Metal	22	33	1,572	4,5 30	9 300	18,40	3,85
<u>2342 CR</u>	Graphite	23	42	3	6 48	9 000	91,40	20,50
<u>2642 CR</u>	Graphite	26	42	4	12 48	6 400	139	23,2
<u>2657 CR</u>	Graphite	26	57	4	12 48	6 400	286	47,9
<u>3242 CR</u>	Graphite	32	42	5	12 48	5 400	193	27,3
<u>3257 CR</u>	Graphite	32	57	5	12 48	5 900	547	84,5
<u>3557 C</u>	Graphite	35	57	4	6 32	5 000	122	15
<u>3557 CS</u>	Graphite	35	57	4	9 48	5 700	188	28,1
<u>3863 C</u>	Graphite	38	63	6	12 48	6 700	1 290	226

...some relevant data..

Series 1024 ... S 1024 N 006 S 012 S 003 S 1 Nominal voltage U, Volt 3 6 12 2 Terminal resistance 10.8 31.6 Ω 2.3 R 3 Output power P2 mass 0,97 0,81 1,11 w 4 Efficiency % ηmes 79 78 79 5 No-load speed 13 800 13 200 14 700 n. rpm 6 No-load current (with shaft ø 1,0 mm) l. 0.016 0.008 0.004 A 7 Stall torque Μн 2,69 2,34 2,89 mNm 8 Friction torque 0,03 0.03 0,03 Ma mNm 9 Speed constant 4 658 2 2 3 1 1 240 rpm/v kո 10 Back-EMF constant k٤ 0,215 0,448 0,806 mV/rpm 11 Torque constant kм mNm/A 2.05 4,28 7,70 12 Current constant kı. 0,488 0,234 0,130 A/mNm 13 Slope of n-M curve $\Delta n / \Delta M$ rpm/mNm 5 135 5630 5 090 14 Rotor Inductance L 26 100 344 иΗ 15 Mechanical time constant τn 6 7 6 ms 16 Rotor Inertia J 0,12 0,12 0,12 gcm² 17 Angular acceleration ·10³rad/s² 195 α max. 224 241 18 Thermal resistance Rth 1 / Rth 2 14/41K/W 19 Thermal time constant 5,0 / 289 τω1/τω2 s 20 Operating temperature range: °C motor - 30 ... + 85 - rotor, max. permissible °C + 85 21 Shaft bearings sintered bronze sleeves 22 Shaft load max.: with shaft diameter 1,0 mm radial at 3 000 rpm (1,5 mm from bearing) 0,5 Ν axial at 3 000 rpm 0,1 Ν axial at standstill 20 Ν 23 Shaft play: – radial 0,03 mm ≤ axial 0,2 mm ≤. 24 Housing material steel, black coated 25 Weight 8,8 g 26 Direction of rotation clockwise, viewed from the front face Recommended values 27 Speed up to De mas. 12 000 12 000 12 000 rpm 28 Torque up to Малаз 1,27 1,21 1,28 mNm 29 Current up to (thermal limits) 0,636 0,291 0,170 А le max.

Check out: Nominal torque is 50% peak torque

On bigger motor same kind ratio may be 1/5!

Remember nominal speed..we will discuss

motor is not always the limiting element of the chain

..some industrial sizes..

DC servomotors

The proven and valuable choice when it comes to DC servomotors

The motors of the BCS series are of the permanent magnet type and will allow an approx. 400% peak torque over the rated torque. The particular construction guarantees extreme smoothness in operation, even at low speed.

BCS series

BC series

DC motors

A comprehensive range of permanent magnet DC motors

The motors of the BC series are the simple, proven and economical solution to the requirements of DC drives. The materials and the design concepts exploited allow the use of BC motors under the severest duty and with 4-quadrants thyristor converters. Motors can be operated in the -20 to +40 °C temperature range and are IP54 protected and class F isolated.

Torque Range 0,3 Nm ... 4,5 Nm

Speed 1.500, 2.000, 3.000 min⁻¹

Supply 12, 24, 36, 48,65, 110, 180, Vdc

Configurations IM B5 and IM B14 Flange Mount

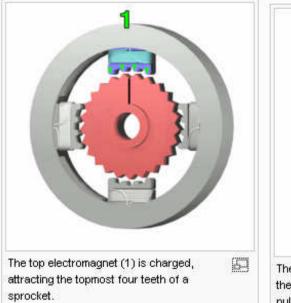
Ventilation BC110 ... BC140 non-ventilated BC220 ... BC310 TEFC Locked Rotor Torque 0,05 Nm ... 7,7 Nm

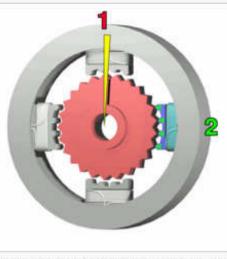
Speed 1.500, 2.000, 3.000, 4.000 min⁻¹

Rated Voltage 24 ... 180 Vdc

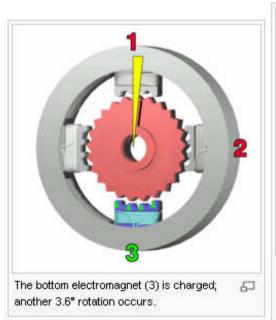
Momentary Peak Torque 400/500% over LRT

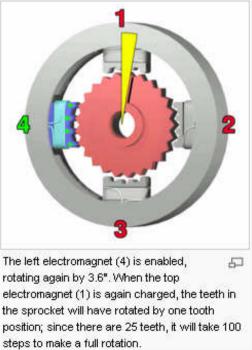
Degree of Protection IP54


Configurations IM B5 and IM B14 Flange Mount


Options

Failsafe DC Brake Tacho-generator


DC brushed motor PROS/CONS


PROS: **DC driven Easy to control (mechanical commutation)** Wide range (<0.1 W:>> 1kW) **CONS: Brushes wear out** Mechanical commutation may be critical Limits in high speed (...low inertia rotors availables on low power motors..) High power motors require wound field motor (cannot have HUGE magnets!)

The top electromagnet (1) is turned off, and the right electromagnet (2) is charged, pulling the nearest four teeth to the right. This results in a rotation of 3.6°.

Stepper Motor

An internal rotor containing permanent magnets or a large iron core with salient poles is controlled by a set of external windings that are switched electronically The control is generally made in open loop

Closed loop generally exists as option.

Linear version with thread integrated in the rotor and translating screw (or screw integrated in the rotor and traslating nut)

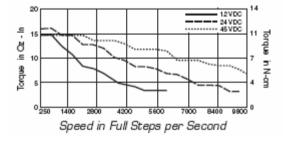
Interesting solutions with motor unit with embedded control board

Sophisticate driver monitors the winding current to sense the right step commutation (if a "step" is missed the control compensates)

..some stepper examples..

small size (NEMA 14)

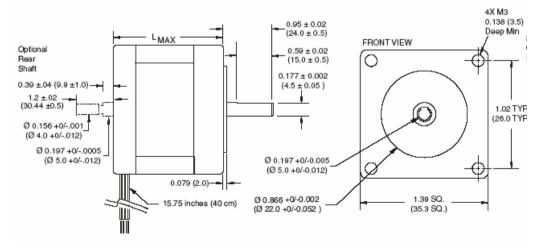
STEPPER SIZE 14


1.8° ENHANCED HYBRID STEPPING MOTOR

	Motor Con	nection
	WIRE COLOR	PHASE
	 black 	ØA
	 green 	ØĀ
	red	ØB
	blue	ØB

Part Number	Holding Torque	Phase Curren t	Number of Leads	Phase Resistance	Phase Inductance	Detent Torque	Rotor Inertia	L _{Max} Leng t h	Weight
	oz-in (N-cm)	Amps		ohms	mH	oz-in (N-cm)	oz-in-sec² (kg-cm²)	inches (mm)	oz (g)
M-1410-0.75[X]*	10 (7)	0.75	4	4.3	4	1.4 (1.0)	0.00017 (0.012)	1.02 (26)	4.2 (120)

TORQUE-SPEED CURVES


M-1410-0.75, 0.75 Amps RMS

Torque decreases with speed, slope is function of winding voltage. Speed in steps per second (200 step per turn)

MECHANICAL SPECIFICATIONS

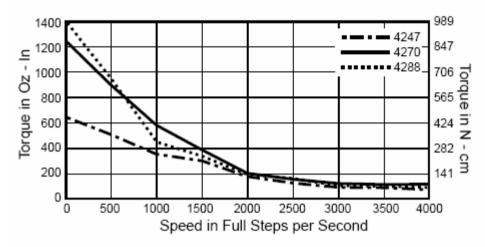
Dimensions in Inches (mm)

BIG size (NEMA 42)

SIZE 42 1.8° HYBRID STEPPING MOTORS

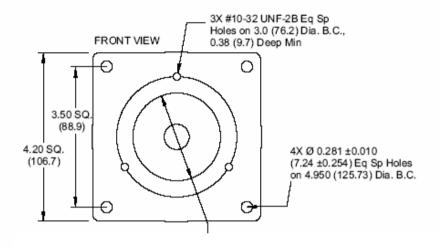
	Specifications	olding Torque oz-in (N-cm)	Cu	ase rrent nps	fLeads	Resis	ase stance ms	Induc	ase tance H	t Torque (N-cm)	otor Inertia ɔz-in-sec² (kg-cm²)	Length s (cm)	Weight oz (gm)
(S=Single Shaft (D=Double Shaft)	Holding oz-in (h	Series	Parallel	Number of	Series	Parallel	Series	Parallel	Detent oz-in (Rotor oz-in- (kg-	L _{MAX} L inches	We oz (
	M2-4247-S (D)	810 (572)	5.0	10.0	8	0.46	0.115	24.64	6.16	13.0 (9.2)	0.055 (3.8838)	5.39 (13.69)	216 (6125.6)
	M2-4270-S (D)	1440 (1017)	5.0	10.0	8	0.88	0.220	29.81	7.45	26.0 (18.4)	0.114 (8.0502)	7.55 (19.18)	320 (9072)
	M2-4288-S (D)	2100 (1483)	5.0	10.0	8	1.00	0.250	22.24	5.56	39.0 (27.5)	0.172 (12.1458)	9.72 (24.69)	424 (12020.4)

CONNECTION

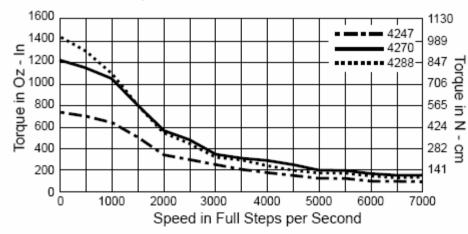

E			
	m.	m	-•1
			•6
			-•2
	nn i	m	-•3
			•4
			●8 ●7

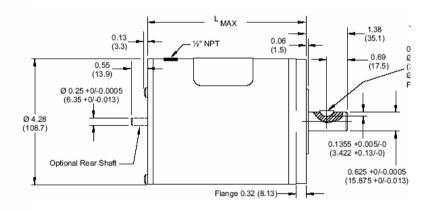
Mot	Motor Connection												
WIRE NO.	SERIES	PARALLEL											
1	Α												
2	Connect	A											
6	Toget her	Ā											
3	Ā	A											
4	В												
7	Connect	в											
8	Toget her	_											
5	B	в											

Same FRAME (frontal dimension, rotor diameter) Several stack length (we will see that this is typical for most motors)


TORQUE SPEED CURVES

Series: 5 Amps RMS, 75 VDC



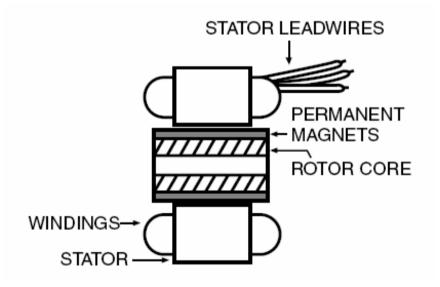

MECHANICAL

Dimensions in Inches (mm)

Parallel: 9 Amps RMS, 75 VDC

Changing the connection between coils change the motor characteristic

Stepper motor PROS/CONS


PROS:

For low power low cost application good for simple position control: motor is controlled in steps (angle); Ideally direct drive; With embedded control may be a simple and cheap

solution for small positioning units.

CONS:

At high dynamics or for unexpected overload may "loose the step" without noticing (this may be avoided adding closed loop control)

In a brushless motor the field of the stator is commutated electronically to follow the position of the rotor

Using high efficency magnet in the rotor high power density may be reached

In some application the magnetic rotor may be external to an internal fixed coil group (eg. direct drive wheel with magnet on wheel and coils on hub)

Brushless have several advantages over conventional motors: Higher efficiency than AC motors.

Without commutation that wear out, the life of a brushless motor can be significantly longer compared to a DC motor using brushes

(Commutation also tends to cause a great deal of electrical and RF noise);

The commutation feedback may be done using:

A set of hall sensors that detect the magnetic poles of the rotor (see next lesson about sensors);

Another feedback device as a Resolver or an Encoder coupled to the rotor shaft (see next lesson about sensors);

The back EMF of the winding (sensor-less)

...again the same equations about the (brushless) electic motor...

The electrical equation is:

 $V_{T} = I_{R} + LdI/dt + K_{B}\omega \qquad (1)$

Where

 V_T = the terminal voltage across the active commutated phase

I = the sum of the phase currents into the motor

R = the equivalent input resistance of the active commutated phase

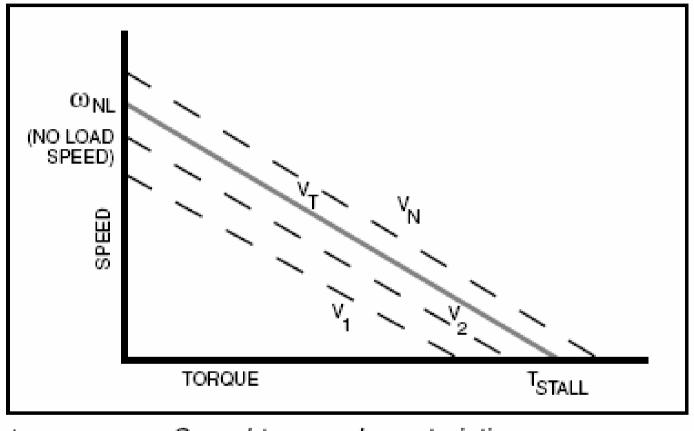
L = the equivalent input inductance of the active commutate phase

K_B = the back EMF constant of the active commutated phase

 ω = the angular velocity of the rotor

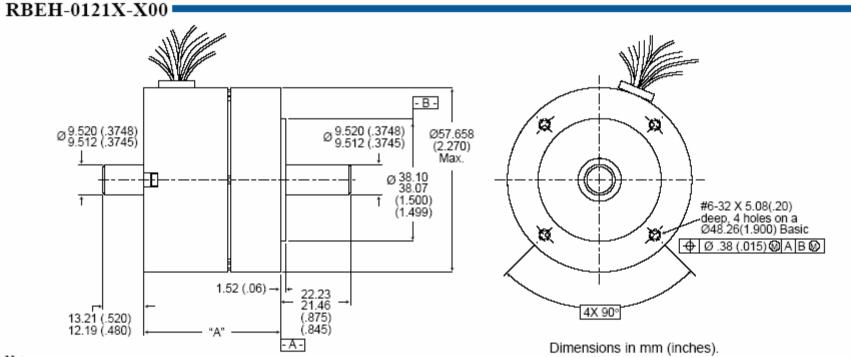
If the electrical time constant of the brushless DC motor is substantially less than the period of commutation, the steady state equation describing the voltage across the motor is:

 $V_{T} = I_{R} + K_{B}\omega \qquad (2)$


The torque developed by the brushless DC motor is proportional to the input current.

 $T = I K_T$ Where K_T = the torque sensitivity If we solve for I and substitute into Equation (2) we obtain:

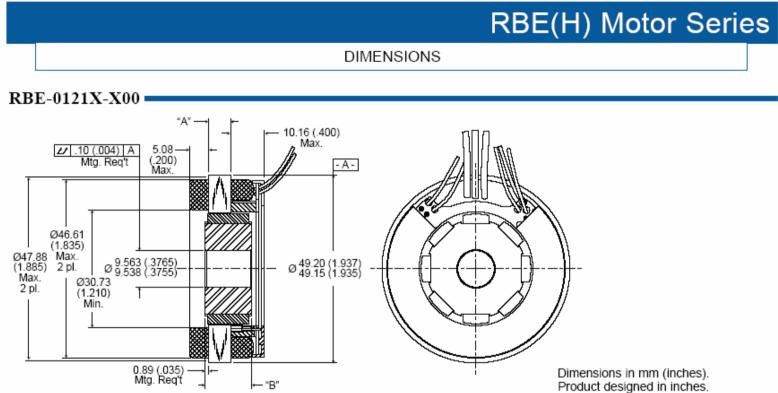
 $V_{T} = T/K_{T}R + K_{B}\omega \qquad (3)$


The first term is the voltage required to give the required torque

The second term is the voltage rise for the back EMF

Speed torque characteristic curves.

A brushless motor


Notes:

- Shaft end play: with a 9 lb reversing load, the axial displacement shall be .013-.15 (.0005-.006).
- For a C.C.W. rotation, as viewed from pilot end, energize per excitation sequence table.
- V-AB, V-BC and V-CA is back EMF of motor phases AB, BC and CA respectively, aligned with sensor output as shown for C.C.W. rotation only.

Dimensions in mm (inches). Product designed in inches. Metric conversions provided for reference only.

MODEL	RBEH-	RBEH-	RBEH-	RBEH-	RBEH-	RBEH-
NUMBER	01210	01211	01212	01213	01214	01215
"A"	43.05	50.04	56.39	62.74	70.36	88.14
Dimension	(1.695)	(1.970)	(2.220)	(2.470)	(2.770)	(3.470)

A brushless motor (iCub) – FRAMELESS

Metric conversions provided for reference only.

Notes:

- 1) For a C.W. rotation, as viewed from lead end, energize per excitation sequence table.
- 2) V-AB, V-BC and V-CA is back EMF of motor phases AB, BC and CA respectively, aligned with sensor output as shown for C.W. rotation only.
- 3) Mounting surface is between Ø 47.88 (1.885) and Ø 49.17 (1.936) on both sides.

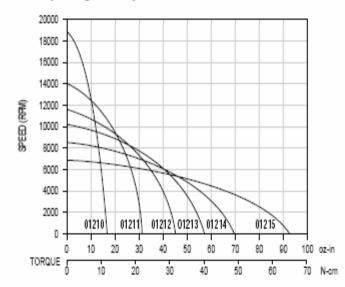
For a given diameter 6 different lenghts

MODEL NUMBER	RBE- 01210	RBE- 01211	RBE- 01212	RBE- 01213	RBE- 01214	RBE- 01215
"A"	5.72	12.7	19.05	25.4	33.02	50.8
Dimension	(0.225)	(0.500)	(0.750)	(1.000)	(1.300)	(2.000)
"B"	12.07	19.05	25.4	31.75	39.37	57.15
Dimension	(0.475)	(0.750)	(1.000)	(1.250)	(1.550)	(2.250)

Tolerance ± .010 on "A" Dimension.

RBE(H) Motor Series

RBE(H) 01210 MOTOR SERIES PERFORMANCE DATA


Motor Para	ameters	Symbols	Units	01210	01211	01212	01213	01214	01215
Max Cont. (Output Power	HP Rated	HP	0.142	0.204	0.243	0.272	0.290	0.310
at 25°C a	mb.	P Rated	Watts	106	152	181	203	216	231
Speed at Ra	ted Power	N Rated	RPM	13800	9680	8100	7152	6230	5100
Max Mecha	nical Speed	N Max	RPM	18000	18000	18000	18000	18000	18000
Continuous	Stall Torque	Tc	oz-in	16.4	31.6	43.5	54.8	66.2	90.4
at 25°C a	mb.		N-m	0.115	0.223	0.307	0.387	0.467	0.639
Peak Torque	e	Тр	oz-in	48.4	114	168	222	282	435
			N-m	0.342	0.806	1.18	1.57	1.99	3.07
Max Torque		Tsl	oz-in	48.4	114	168	222	282	435
for Linear	KT		N-m	0.342	0.806	1.18	1.57	1.99	3.07
Motor Cons	tant	Tm	oz-in/ V	4.00	7.12	9.50	11.7	13.9	18.4
			N-m/√W	0.028	0.050	0.067	0.083	0.098	0.130
Thermal Resistance*		Rth	°C/Watt	4.25	3.86	3.68	3.55	3.44	3.27
Viscous Damping		Fi	oz-in/RPM	1.30E-04	2.96E-04	4.46E-04	5.97E-04	7.78E-04	1.20E-03
			N-m/RPM	9.18E-07	2.09E-06	3.15E-06	4.22E-06	5.49E-06	8.48E-06
Max Static I	Friction	Tf	oz-in	1.70	2.13	2.53	2.92	3.40	4.50
			N-m	0.0120	0.015	0.018	0.021	0.024	0.032
Max Coggii	ng Torque	Tcog	oz-in	0.41	0.66	0.88	1.10	1.37	2.00
Peak to P	Peak		N-m	0.0029	0.0046	0.0062	0.0078	0.0097	0.014
	Inertia	Jmf	oz-in-sec2	7.30E-04	1.20E-03	1.70E-03	2.10E-03	2.70E-03	4.00E-03
Frameless			Kg-m ²	5.15E-06	8.47E-06	1.20E-05	1.48E-05	1.91E-05	2.82E-05
Motor	Weight	Wtf	oz	4.5	7.2	9.6	12.1	15.1	22.0
			Kg	1.26E-01	2.03E-01	2.74E-01	3.44E-01	4.28E-01	6.24E-01
	Inertia	Jmh	oz-in-sec2	7.60E-04	1.30E-03	1.80E-03	2.20E-03	2.80E-03	4.20E-03
Housed			Kg-m ²	5.37E-06	9.18E-06	1.27E-05	1.55E-05	1.98E-05	2.97E-05
Motor	Weight	Wth	ΟZ	11.3	14.2	16.8	19.5	22.6	30.0
			Kg	3.20E-01	4.02E-01	4.77E-01	5.52E-01	6.41E-01	8.50E-01
No. of poles	s	Р		8	8	8	8	8	8

For each motor different electric characteristic are available

Winding Constants	Symbols	Units	A	В	С	A	В	С	A	В	С	Α	В	С	Α	В	С	Α	В	С
Current at Cont. Torque	Ic	Amps	5.41	3.89	6.95	5.81	3.63	9.06	5.42	3.38	8.45	5.77	4.00	8.88	6.15	3.73	8.61	5.46	3.31	7.64
Current at Peak Torque	Ip	Amps	15.0	10.6	18.9	20.0	10.6	26.8	20.0	10.6	26.8	22.5	13.4	30.1	25.3	13.4	35.8	25.3	13.4	35.8
Torque Sensitivity	Kt	oz-in/Amp	3.34	4.64	2.60	5.80	9.30	3.72	8.49	13.6	5.45	10.0	14.5	6.50	11.3	18.7	8.08	17.4	28.7	12.4
		N-m/Amp	0.0236	0.0328	0.0183	0.0410	0.0657	0.0263	0.0600	0.0962	0.0385	0.0707	0.102	0.0459	0.0799	0.132	0.0571	0.123	0.203	0.0878
Back EMF constant	Kb	V/KRPM	2.47	3.43	1.92	4.29	6.88	2.75	6.28	10.1	4.03	7.41	10.7	4.81	8.36	13.8	5.97	12.9	21.2	9.19
Motor Resistance	Rm	Ohms	0.698	1.38	0.431	0.664	1.75	0.276	0.803	2.11	0.334	0.733	1.55	0.307	0.666	1.82	0.336	0.890	2.43	0.450
Motor Inductance	Lm	mH	0.280	0.54	0.17	0.32	0.83	0.13	0.44	1.1	0.18	0.47	0.97	0.20	0.48	1.3	0.25	0.71	1.9	0.36

*Rth assumes a housed motor mounted to a 4.0" x 3.75" x 0.25" aluminum heatsink or equivalent

Continuous Duty Capability for 130°C Rise - RBE - 01210 Series

Low inertia brushless from faulhaber..

Туре	Commutation	Outer Ø (mm)	Length (mm)	Shaft Ø (mm)	Nominal voltage (Volt)	No-load speed (rpm)	Starting torque (mNm)	Output power (Watt)
<u>1525 BRC</u>	Electronic*	15	25	2	9 15	16 000	3,6	2,3
<u> 1935 BRE</u>	Electronic *	19	35	3	6 12	7 650	4,4	1,8
<u>3153 BRC</u>	Electronic *	31	53	4	9 24	5 200	33	15,5

Download > Technical information (.pdf 350 Kb)	English	Deutsch	Français	Italiano
Brushless DC-Motors	<u> • </u>	<u> • </u>	<u> • </u>	<u> • </u>

Brushless D(-Servomotors							
Туре	Commutation	Outer Ø (mm)	Length (mm)	Shaft Ø (mm)	Nominal voltage (Volt)	No-load speed (rpm)	Starting torque (mNm)	Output power (Watt)
<u>0620 B</u>	Electronic	06	20	1	6 12	47 000	0,73	1,58
<u>1628 B</u>	Electronic	16	28	1,5	12 24	29 900	12	11
<u>2036 B</u>	Electronic	20	36	2	12 48	19 500	23	20
<u>2444 B</u>	Electronic	24	44	3	24 48	23 000	115	37
<u>3056 B</u>	Electronic	30	56	4	12 48	8 840	100	49
<u>3564 B</u>	Electronic	35	64	4	12 48	12 200	401	109
<u>4490 B</u>	Electronic	44	90	6	24 48	11 000	2 758	201
<u>4490 BS</u>	Electronic	44	90	6	24 48	6 060	1 689	212

Download > Technical information (.pdf 750 Kb)	English	Deutsch	Français	Italiano
Brushless DC-Servomotors	I •1	•	<u> • </u>	<u> • </u>

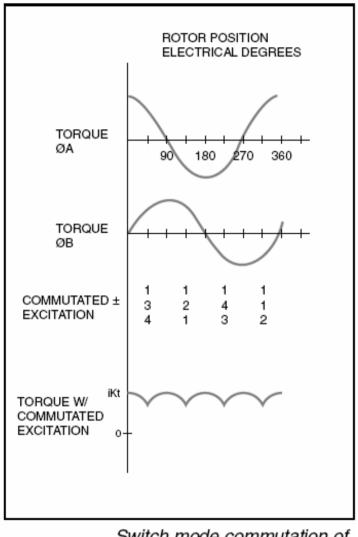
Brushless D	Brushless DC-Servomotors with integrated Motion Controller *										
Туре	Commutation	Outer Ø (mm)	Length (mm)	Shaft Ø (mm)	Nominal voltage (√olt)	No- load speed (rpm)	Starting torque (mNm)	(Watt)	Instruction manual Download		
<u>3564 BC</u>	Electronic *	35	83	4	24	9 000	160	70	🔀 (1208 KB)		

Typical industrial range..

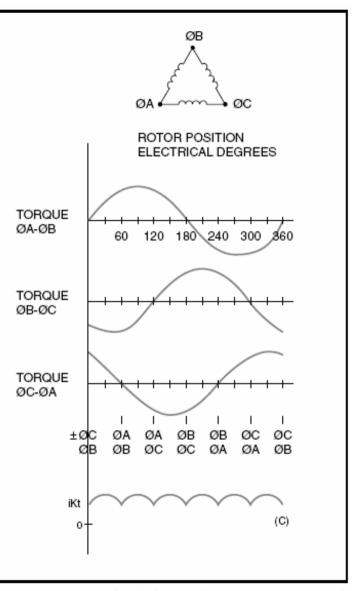
				Winding	A (230V)	Winding 4	(400¥)		
	Stall	Peak	Stall	Peak	Peak	Stall	Peak	Length	Flange
	Torque	Torque	Current	Speed	Speed	Current	Speed	without	Size
	[Nm]	[Nm]	[Arms]	[rpm]	[rpm]	[Arms]	[rpm]	Brake	[mm]
				@230V	@400¥		@400¥	[mm]	
BL 040	0.3	1.3	1.02	10000	-	-	-	112	41
BL 055	0.68	2.8	1.36	7700	11000	0.76	7000	140	57
BL 071	0.8	4.8	2.23	8200	11000	1.27	10000	100	70
BL 072	1.85	11.1	4.12	7600	11000	2.17	7800	120	70
BL 073	2.72	16.3	3.83	5300	8200	2.26	5500	138	70
BL 074	3.43	20.6	4.34	4600	7100	2.32	4500	156	70
BL 111	2.9	17.3	3.6	4300	6900	2.13	4400	124	106
BL 112	5.0	30.1	6.4	4400	7100	3.52	4400	149	106
BL 113	8.4	50.4	10.4	4700	7400	5.99	4400	174	106
BL 114	10.6	63.7	13.1	4900	7900	7.53	4400	199	106
BL 115	13.9	83.1	17.1	4700	7700	9.89	4400	224	106
BL 141	13.6	81.6	13.7	3700	6000	7.46	3500	193	140
BL 142	17.4	104.6	15.2	3300	5400	8.17	3000	214	140
BL 143	26.8	160.5	19.4	2750	4500	10.68	2500	258	140
BL 144	33.0	198.2	18.3	2300	3700	9,90	1900	300	140

Generally industrial range motors are defined in terms of nominal torque at nominal speed (look at the flange sizes)

Brushless motor PROS/CONS


PROS: High performance High efficency CONS: Higher cost Requires commutation control A torque motor is generically defined as a motor optimized to give high torques at low speed with low cog

Torque motor can be both brushed or brushless



Torque motors

Switch mode commutation of a two phase brushless DC motor.

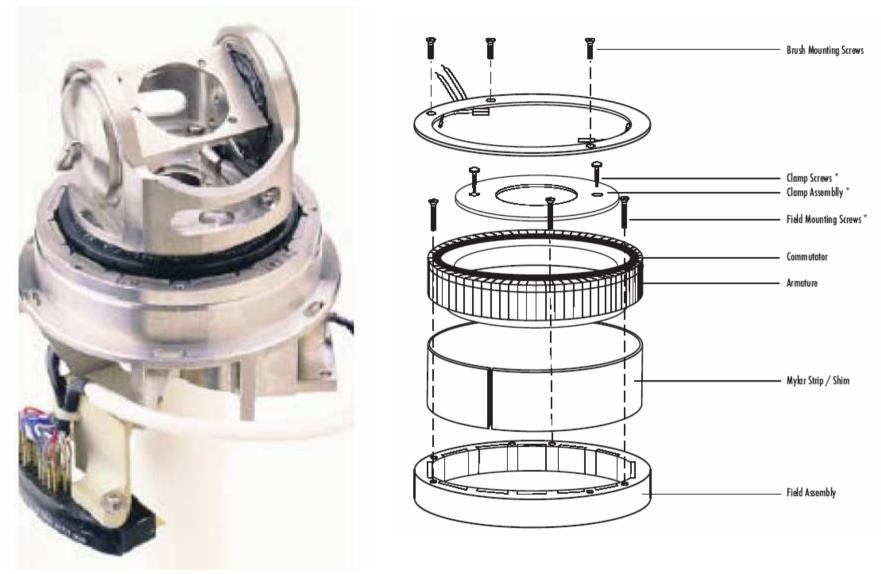
Switch mode commutation of a three phase delta wound brushless DC motor.

Increasing the number of phases from 2 to 3 decrease the torque ripple form 17% to 7% of nominal torque

In a torque motor the number of poles per phase can be tipically 12 or 16 with <1% of torque ripple

RBE(H) Motor Series

RBE(H) 01210 MOTOR SERIES PERFORMANCE DATA


Motor Para	meters	Symbols	Units	01210	01211	01212	01213	01214	01215
Max Cont. O	utput Power	HP Rated	HP	0.142	0.204	0.243	0.272	0.290	0.310
at 25°C an	nb.	P Rated	Watts	106	152	181	203	216	231
Speed at Rate	ed Power	N Rated	RPM	13800	9680	8100	7152	6230	5100
Max Mechan	ical Speed	N Max	RPM	18000	18000	180 As e	xample the i	cub motor b	as 8 nole
Continuous S	Stall Torque	Tc	oz-in	16.4	31.6	42	and the tor		
at 25°C an	nb.		N-m	0.115	0.223	0.20	it 2% of nor		
Peak Torque		Тр	oz-in	48.4	114	161 000			
			N-m	0.342	0.806	1.18	1.57	1.99	3.07
Max Torque		Tsl	oz-in	48.4	114	168	222	282	435
for Linear l	KT		N-m	0.342	0.806	1.18	1.57	1.99	3.07
Motor Const	ant	Tm	oz-in/√W	4.00	7.12	9.50	11.7	13.9	18.4
			N-m/√W	0.028	0.050	0.067	0.083	0.098	0.130
Thermal Res	istance*	Rth	°C/Watt	4.25	3.86	3.68	3.55	3.44	3.27
Viscous Damping		Fi	oz-in/RPM	1.30E-04	2.96E-04	4.46E-04	5.97E-04	7.78E-04	1.20E-03
			N-m/RPM	9.18E-07	2.09E-06	3.15E-06	4.22E-06	5.49E-06	8.48E-06
Max Static F	riction	Tf	oz-in	1.70	2.13	2.53	2.92	3.40	4.50
			N-m	0.0120	0.015	0.018	0.021	0.024	0.032
Max Cogging	g Torque	Tcog	oz-in	0.41	0.66	0.88	1.10	1.37	2.00
Peak to Pe	eak		N-m	0.0029	0.0046	0.0062	0.0078	0.0097	0.014
	Inertia	Jmf	oz-in-sec2	7.30E-04	1.20E-03	1.70E-03	2.10E-03	2.70E-03	4.00E-03
Frameless			Kg-m ²	5.15E-06	8.47E-06	1.20E-05	1.48E-05	1.91E-05	2.82E-05
Motor	Weight	Wtf	0Z	4.5	7.2	9.6	12.1	15.1	22.0
			Kg	1.26E-01	2.03E-01	2.74E-01	3.44E-01	4.28E-01	6.24E-01
	Inertia	Jmh	oz-in-sec2	7.60E-04	1.30E-03	1.80E-03	2.20E-03	2.80E-03	4.20E-03
Housed			Kg-m ²	5.37E-06	9.18E-06	1.27E-05	1.55E-05	1.98E-05	2.97E-05
Motor	Weight	Wth	ΟZ	11.3	14.2	16.8	19.5	22.6	30.0
			Kg	3.20E-01	4.02E-01	4.77E-01	5.52E-01	6.41E-01	8.50E-01
No. of poles		Р		8	8	8	8	8	8

Advantage of the torque motor is that it can DIRECT DRIVE the load with no need of mechanical reduction

High torques generally requires high current and high weight (strong magnet and lot of copper!)

Direct drive motor are tipically used where high precison high control bandwith with no backlash is required

Altought the efficency is high direct drive motors are generally liquid cooled..

Direct drive two axis stabilized platform for traking (military application – exploded view of a brushed DC torque motor)

Typical torque motor (ETEL)

TMB torque motor's advantages:

- Designed for the most demanding applications
- Liquid cooling channels
- 600VDC bus voltage
- Very high continuous torque
- Very high peak torque

TMB torque motors main features:

- More than 50 standard models available
- External diameters from 160 to 1'260 mm
- Large hollow shaft: 60 to 1'100 mm
- Peak torque from 38 to 31'000 Nm
- Maximum rated speed up to 5'000 rpm
- Low torque ripple

Motor type	Ext. Ø [mm]	Int. Ø [mm]	Stator length [mm]	Cont. torque [Nm]	Cont. torque water cooled [Nm]	Peak torque [Nm]
TMB0140-030	160	60	70	7	19	38
TMB0140-050	160	60	90	14	33	64
TMB0140-070	160	60	110	19	48	89
TMB0140-100	160	60	140	28	70	127
TMB0140-150	160	60	190	44	107	191
TMB0175-030	198	90	80	15	32	68
TMB0175-050	198	90	100	27	57	113
TMB0175-070	198	90	120	37	82	158
TMB0175-100	198	90	150	52	119	226
TMB0175-150	198	90	200	82	184	339
TMB0210-030	230	140	70	30	68	121
TMB0210-050	230	140	90	53	123	206
TMB0210-070	230	140	110	73	177	292
TMB0210-100	230	140	140	101	259	420
TMB0210-150	230	140	190	157	400	633
TMB0291-030	310	200	80	60	139	249
TMB0291-050	310	200	100	106	242	416
TMB0291-070	310	200	120	147	345	582
TMB0291-100	310	200	150	207	500	831
TMB0291-150	310	200	200	324	765	1'250
ТМВ0360-030	385	265	90	106	213	424
TMB0360-050	385	265	110	182	377	707
TMB0360-070	385	265	130	246	539	990
TMB0360-100	385	265	160	345	791	1'410
TMB0360-150	385	265	210	531	1'200	2'120
TMB0450-030	485	345	90	178	368	699
TMB0450-050	485	345	110	306	634	1'160
TMB0450-070	485	345	130	416	898	1'630
TMB0450-100	485	345	160	578	1'290	2'330
TMB0450-150	485	345	210	893	1'970	3'490
ТМВ0530-030	565	420	90	253	512	997
TMB0530-050	565	420	110	437	898	1'660
TMB0530-070	565	420	130	596	1'280	2'330
TMB0530-100	565	420	160	828	1'870	3'320
TMB0530-150	565	420	210	1'280	2'860	4'990

Some reference data

Check difference between dry and liquid cooled performances

Motor type	Ext. Ø [mm]	Int. Ø [mm]	Stator length [mm]	Cont. torque [Nm]	Cont. torque water cooled [Nm]	Peak torque [Nm]
TMB0760-030	795	650	110	630	1'180	2'240
TMB0760-050	795	650	130	1'160	2'060	3'740
TMB0760-070	795	650	150	1'430	2'950	5'240
TMB0760-100	795	650	180	1'970	4'290	7'480
TMB0760-150	795	650	230	3'120	6'730	11'200
ТМВ0990-030	1030	870	110	1'020	2'050	3'990
TMB0990-050	1030	870	130	1'870	3'600	6'650
TMB0990-070	1030	870	150	2'530	5'160	9'310
TMB0990-100	1030	870	180	3'480	7'500	13'300
TMB0990-150	1030	870	230	5'290	11'500	19'900
TMB1220-030	1260	1100	110	1'690	3'150	6'230
TMB1220-050	1260	1100	130	2'840	5'530	10'400
TMB1220-070	1260	1100	150	3'830	7'920	14'500
TMB1220-100	1260	1100	180	5'460	11'800	20'800
TMB1220-150	1260	1100	230	8'020	17'600	31'200

Linear motor

A linear motor is a torque motor that is opened and flattened (!)

Main advantage of the linear motor is that most of the actuation are linear

As other torque motors linear motors are generally high power..

Linear motor ref. data

Thrust/weight ratio 10:20

Motor type	Length LM [mm]	Width WM [mm]	Height H [mm]	Cont. force [N]	Peak force [N]	Motor mass (kg)
LMP07-050	228	102	72.6	621	1070	5.2
LMP07-100	228	152	72.6	1220	2140	8.8
LMP14-050	382	102	72.6	1200	1990	9.5
LMP14-100	382	152	72.6	2410	3980	15.8
LMP14-150	382	203	74.6	3570	5780	22.2
LMP14-200	382	253	78.6	4740	7970	28.6
LMP21-050	536	102	72.6	1850	2920	13.6
LMP21-100	536	152	72.6	3620	5830	22.8
LMP21-150	536	203	74.6	5380	8750	32.0
LMP21-200	536	253	78.6	7130	11700	41.2
LMP28-050	705	102	72.6	2460	3840	17.8
LMP28-100	705	152	72.6	4820	7680	29.8
LMP28-150	705	203	74.6	7160	11520	41.9
LMP28-200	705	253	78.6	9490	15360	53.9
LMP28-250	705	304	82.6	11800	19200	65.9

Motor type	GL [mm]	GD [mm]	GW [mm]	GH [mm]	Cont. force [N]	Peak force [N]	Motor mass (kg)
ILM03-040	136	13	8	95	84	412	0.41
ILM03-060	136	15	8	125	139	625	0.55
ILM06-040	264	13	8	95	167	823	0.77
ILM06-060	264	15	8	125	277	1247	1.03
ILM09-040	392	13	8	95	250	1234	1.13
ILM09-060	392	15	8	125	416	1871	1.51
ILM12-040	520	13	8	95	334	1646	1.54
ILM12-060	520	15	8	125	555	2494	2.06

Thrust/weight ratio 20:100

(fine !)