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Abstract— This survey presents an overview of the autonomous
development of mental capabilities in computational agents. It
does so based on a characterization of cognitive systems as
systems which exhibit adaptive, anticipatory, and purposive goal-
directed behaviour. We present a broad survey of the various
paradigms of cognition, addressing cognitivist (physical symbol
systems) approaches, emergent systems approaches, encompass-
ing connectionist, dynamical, and enactive systems, and also
efforts to combine the two in hybrid systems. We then review
several cognitive architectures drawn from these paradigms. In
each of these areas, we highlight the implications and attendant
problems of adopting a developmental approach, both from
phylogenetic and ontogenetic points of view. We conclude with a
summary of the key architectural features that systems capable
of autonomous development of mental capabilities should exhibit.

I. INTRODUCTION

THE science and engineering of artificial systems that
exhibit mental capabilities has a long history, stretching

back over sixty years. The term mental is not meant to imply
any dualism of mind and body; we use the term in the
sense of the complement of physical to distinguish mental
development from physical growth. As such, mental faculties
entail all aspects of robust behaviour, including perception,
action, deliberation, and motivation. As we will see, the term
cognition is often used in a similar manner [1].

Cognition implies an ability to understand how things might
possibly be, not just now but at some future time, and to
take this into consideration when determining how to act.
Remembering what happened at some point in the past helps in
anticipating future events, so memory is important: using the
past to predict the future [2] and then assimilating what does
actually happen to adapt and improve the system’s anticipatory
ability in a virtuous cycle that is embedded in an on-going
process of action and perception. Cognition breaks free of the
present in a way that allows the system to act effectively, to
adapt, and to improve.

But what makes an action the right one to choose? What
type of behaviour does cognition enable? These questions
open up another dimension of the problem: what motivates
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cognition? How is perception guided? How are actions se-
lected? And what makes cognition possible? Cognitive skills
can improve, but what do you need to get started? What drives
the developmental process? In other words, in addition to
autonomous perception, action, anticipation, assimilation, and
adaptation, there are the underlying motivations to consider.
These motivations drive perceptual attention, action selection,
and system development, resulting in the long-term robust
behaviour we seek from such systems.

From this perspective, a cognitive system exhibits effective
behaviour through perception, action, deliberation, communi-
cation, and through either individual or social interaction with
the environment. The hallmark of a cognitive system is that it
can function effectively in circumstances that were not planned
for explicitly when the system was designed. That is, it has
some degree of plasticity and is resilient in the face of the
unexpected [3].

Some authors in discussing cognitive systems go even fur-
ther. For example, Brachman [4] defines a cognitive computer
system as one which — in addition to being able to reason, to
learn from experience, to improve its performance with time,
and to respond intelligently to things it’s never encountered
before — would also be able to explain what it is doing and
why it is doing it. This would enable it to identify potential
problems in following a given approach to carrying out a
task or to know when it needed new information in order
to complete it. Hollnagel [5] suggests that a cognitive system
is able to view a problem in more than one way and to use
knowledge about itself and the environment so that it is able
to plan and modify its actions on the basis of that knowledge.
Thus, for some, cognition also entails a sense of self-reflection
in addition to the characteristics of adaptation and anticipation.

Cognition then can be viewed as the process by which
the system achieves robust adaptive, anticipatory, autonomous
behaviour, entailing embodied perception and action. This
viewpoint contrasts with those who see cognition as a distinct
component or sub-system of the brain — a module of mind
— concerned with rational planning and reasoning, acting
on the representations produced by the perceptual apparatus
and ‘deciding’ what action(s) should be performed next.
The adaptive, anticipatory, autonomous viewpoint reflects the
position of Freeman and Núñez who, in their book Reclaiming
Cognition [6], re-assert the primacy of action, intention, and
emotion in cognition. In the past, as we will see, cognition
has been viewed by many as disembodied in principle and
a symbol-processing adjunct of perception and action in
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practice. However, this is changing and even proponents of
these early approaches now see a much tighter relationship
between perception, action, and cognition. For example, con-
sider Anderson et al. who say that “There is reason to suppose
that the nature of cognition is strongly determined by the
perceptual-motor systems, as the proponents of embodied and
situated cognition have argued” [7], and Langley who states
that “mental states are always grounded in real or imagined
physical states, and problem-space operators always expand
to primitive skills with executable actions” [8]. Our goal in
this paper is to survey the full spectrum of approaches to the
creation of artificial cognitive systems with a particular focus
on embodied developmental agents.

We begin with a review of the various paradigms of
cognition, highlighting their differences and common ground.
We then review several cognitive architectures drawn from
these paradigms and present a comparative analysis in terms
of the key characteristics of embodiment, perception, ac-
tion, anticipation, adaptation, motiviation, and autonomy. We
identify several core considerations shared by contemporary
approaches of all paradigms of cognition. We conclude with
a summary of the key features that systems capable of au-
tonomous development of mental capabilities should exhibit.

II. THE DIFFERENT PARADIGMS OF COGNITION

There are many positions on cognition, each taking a
significantly different stance on the nature of cognition, what
a cognitive system does, and how a cognitive system should
be analyzed and synthesized. Among these, however, we can
discern two broad classes: the cognitivist approach based
on symbolic information processing representational systems,
and the emergent systems approach, embracing connectionist
systems, dynamical systems, and enactive systems, all based
to a lesser or greater extent on principles of self-organization
[9], [10].

Cognitivist approaches correspond to the classical and still
common view that ‘cognition is a type of computation’ de-
fined on symbolic representations, and that cognitive systems
‘instantiate such representations physically as cognitive codes
and ����� their behaviour is a causal consequence of operations
carried out on these codes’ [11]. Connectionist, dynamical,
and enactive systems, grouped together under the general
heading of emergent systems, argue against the information
processing view, a view that sees cognition as ‘symbolic,
rational, encapsulated, structured, and algorithmic’, and argue
in favour of a position that treats cognition as emergent, self-
organizing, and dynamical [12], [13].

As we will see, the emphasis of the cognitivist and emergent
positions differ deeply and fundamentally, and go far beyond
a simple distinction based on symbol manipulation. Without
wishing to preempt what is to follow, we can contrast the cog-
nitivist and emergent paradigms on twelve distinct grounds:
computational operation, representational framework, seman-
tic grounding, temporal constraints, inter-agent epistemology,
embodiment, perception, action, anticipation, adaptation, mo-

The Cognitivist vs. Emergent Paradigms of Cognition
Characteristic Cognitivist Emergent
Computational Operation Syntactic manipulation of symbols Concurrent self-organization

of a network

Representational Framework Patterns of symbol tokens Global system states

Semantic Grounding Percept-symbol association Skill construction

Temporal Constraints Not entrained Synchronous real-time entrainment

Inter-agent epistemology Agent-independent Agent-dependent

Embodiment Not implied Cognition implies embodiment

Perception Abstract symbolic representations Response to perturbation

Action Causal consequence of Perturbation of the environment
symbol manipulation by the system

Anticipation Procedural or probabilistic reasoning Self-effected traverse of
typically using a priori models perception-action state space

Adaptation Learn new knowledge Develop new dynamics

Motivation Resolve impasse Increase space of interaction

Relevance of Autonomy Not necessarily implied Cognition implies autonomy

TABLE I

A COMPARISON OF COGNITIVIST AND EMERGENT PARADIGMS OF

COGNITION; REFER TO THE TEXT FOR A FULL EXPLANATION.

tivation, and autonomy.1 Let us look briefly at each of these
in turn.

Computational Operation. Cognitivist systems use rule-
based manipulation (i.e. syntactic processing) of symbol to-
kens, typically but not necessarily in a sequential manner.
Emergent systems exploit processes of self-organization, self-
production, self-maintenance, and self-development, through
the concurrent interaction of a network of distributed interact-
ing components.

Representational Framework. Cognitivist systems use pat-
terns of symbol tokens that refer to events in the external
world. These are typically the descriptive2 product of a
human designer, usually, but not necessarily, punctate and
local. Emergent systems representations are global system
states encoded in the dynamic organization of the system’s
distributed network of components.

Semantic Grounding. Cognitivist systems symbolic repre-
sentations are grounded through percept-symbol identication
by either the designer or by learned association. These repre-
sentations are accessible to direct human interpretation. Emer-
gent systems ground representations by autonomy-preserving
anticipatory and adaptive skill construction. These represen-
tations only have meaning insofar as they contribute to the
continued viability of the system and are inaccessible to direct
human interpretation.

Temporal Constraints. Cognitivist systems are not neces-
sarily entrained by the events in the external world. Emergent
systems are entrained and operate synchronously in real-time
with events in its environment.

Inter-agent Epistemology. For cognitivist systems an ab-
solute shared epistemology between agents is guaranteed by

1There are many possible definitions of autonomy, ranging from the ability
of a system to contribute to its own persistence [14] through to the self-
maintaining organizational characteristic of living creatures — dissipative far-
from equilibrium systems — that enables them to use their own capacities
to manage their interactions with the world, and with themselves, in order to
remain viable [15].

2Descriptive in the sense that the designer is a third-party observer of
the relationship between a cognitive system and its environment so that the
representational framework is how the designer sees the relationship.
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virtue of their positivist view of reality: each agent is embed-
ded in an environment, the structure and semantics of which
are independent of the system’s cognition. The epistemology
of emergent systems is the subjective outcome of a his-
tory of shared consensual experiences among phylogentically-
compatible agents.

Embodiment. Cognitivist systems do not need to be em-
bodied, in principle, by virtue of their roots in functionalism
(which states that cognition is independent of the physical
platform in which it is implemented [6]). Emergent systems
are intrinsically embodied and the physical instantiation plays
a direct constitutive role in the cognitive process [3], [16],
[17].

Perception. In cognitivist systems perception provides an
interface between the external world and the symbolic rep-
resentation of that world. Perception abstracts faithful spatio-
temporal representations of the external world from sensory
data. In emergent systems perception is a change in system
state in response to environmental perturbations in order to
maintain stability.

Action. In cognitivist systems actions are causal conse-
quences of symbolic processing of internal representations. In
emergent systems actions are perturbations of the environment
by the system.

Anticipation. In cognitivist systems anticipation typically
takes the form of planning using some form of procedural or
probabilistic reasoning with some a priori model. Anticipation
in the emergent paradigm requires the system to visit a number
of states in its self-constructed perception-action state space
without commiting to the associated actions.

Adaptation. For cognitivism, adaptation usually implies the
acquisition of new knowledge whereas in emergent systems,
it entails a structural alteration or re-organization to effect a
new set of dynamics [95].

Motivation. Motivations, which impinge on perception
(through attention), action (through action selection), and
adaptation (through the factors that govern change), such as
resolving an impasse in a cognitivist system or enlarging the
space of interaction in an emergent system [173], [174].

Relevance of Autonomy. Autonomy is not necessarily im-
plied by the cognitivist paradigm whereas it is crucial in the
emergent paradigm since cognition is the process whereby an
autonomous system becomes viable and effective.

Table I summarizes these points very briefly. The sections
that follow discuss the cognitivist and emergent paradigms, as
well as hybrid approaches, and draw out each of these issues
in more depth.

A. Cognitivist Models

1) An Overview of Cognitivist Models: Cognitive science
has its origins in cybernetics (1943-53) in the first efforts
to formalize what had up to that point been metaphysical
treatments of cognition [9]. The intention of the early cyber-
neticians was to create a science of mind, based on logic.
Examples of progenitors include McCulloch and Pitts and
their seminal paper ‘A logical calculus immanent in nervous
activity’ [18]. This initial wave in the development of a science

of cognition was followed in 1956 by the development of
an approach referred to as cognitivism. Cognitivism asserts
that cognition involves computations defined over internal
representations qua knowledge, in a process whereby in-
formation about the world is abstracted by perception, and
represented using some appropriate symbolic data-structure,
reasoned about, and then used to plan and act in the world. The
approach has also been labelled by many as the information
processing (or symbol manipulation) approach to cognition
[9], [12], [13], [19]–[23]

Cognitivism has undoubtedly been the predominant ap-
proach to cognition to date and is still prevalent. The discipline
of cognitive science is often identified with this particular
approach [6], [13]. However, as we will see, it is by no
means the only paradigm in cognitive science and there are
indications that the discipline is migrating away from its
stronger interpretations [10].

For cognitivist systems, cognition is representational in a
strong and particular sense: it entails the manipulation of
explicit symbolic representations of the state and behaviour
of the external world to facilitate appropriate, adaptive, an-
ticipatory, and effective interaction, and the storage of the
knowledge gained from this experience to reason even more
effectively in the future [5]. Perception is concerned with the
abstraction of faithful spatio-temporal representations of the
external world from sensory data. Reasoning itself is symbolic:
a procedural process whereby explicit representations of an
external world are manipulated to infer likely changes in the
configuration of the world (and attendant perception of that
altered configuration) arising from causal actions.

In most cognitivist approaches concerned with the creation
of artificial cognitive systems, the symbolic representations (or
representational frameworks, in the case of systems that are
capable of learning) are the descriptive product of a human
designer. This is significant because it means that they can
be directly accessed and understood or interpreted by humans
and that semantic knowledge can be embedded directly into
and extracted directly from the system. However, it has been
argued that this is also the key limiting factor of cogni-
tivist systems: these programmer-dependent representations
effectively bias the system (or ‘blind’ the system [24]) and
constrain it to an idealized description that is dependent on
and a consequence of the cognitive requirements of human
activity. This approach works as long as the system doesn’t
have to stray too far from the conditions under which these
descriptions were formulated. The further one does stray,
the larger the ‘semantic gap’ [25] between perception and
possible interpretation, a gap that is normally plugged by
the embedding of (even more) programmer knowledge or the
enforcement of expectation-driven constraints [26] to render a
system practicable in a given space of problems.

Cognitivism makes the positivist assumption that ‘the world
we perceive is isomorphic with our perceptions of it as a
geometric environment’ [27]. The goal of cognition, for a cog-
nitivist, is to reason symbolically about these representations
in order to effect the required adaptive, anticipatory, goal-
directed, behaviour. Typically, this approach to cognition will
deploy an arsenal of techniques including machine learning,
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probabilistic modelling, and other techniques in an attempt to
deal with the inherently uncertain, time-varying, and incom-
plete nature of the sensory data that is being used to drive
this representational framework. However, this doesn’t alter
the fact that the representational structure is still predicated
on the descriptions of the designers. The significance of this
will become apparent in later sections.

2) Cognitivism and Artificial Intelligence: Since cogni-
tivism and artificial intelligence research have very strong
links,3 it is worth spending some time considering the rela-
tionship between cognitivist approaches and classical artificial
intelligence, specifically the Newell’s and Simon’s ‘Physical
Symbol System’ approach to artificial intelligence [20] which
has been extraordinarily influential in shaping how we think
about intelligence, both natural and computational.

In Newell’s and Simon’s 1976 paper, two hypotheses are
presented:

1) The Physical Symbol System Hypothesis: A physical
symbol system has the necessary and sufficient means
for general intelligent action.

2) Heuristic Search Hypothesis. The solutions to problems
are represented as symbol structures. A physical-symbol
system exercises its intelligence in problem-solving by
search, that is, by generating and progressively mod-
ifying symbol structures until it produces a solution
structure.

The first hypothesis implies that any system that exhibits
general intelligence is a physical symbol system and any
physical symbol system of sufficient size can be configured
somehow (‘organized further’) to exhibit general intelligence.

The second hypothesis amounts to an assertion that symbol
systems solve problems by heuristic search, i.e. ‘successive
generation of potential solution structures’ in an effective and
efficient manner. ‘The task of intelligence, then, is to avert the
ever-present threat of the exponential explosion of search’.

A physical symbol system is equivalent to an automatic
formal system [21]. It is ‘a machine that produces through time
an evolving collection of symbol structures.’ A symbol is a
physical pattern that can occur as a component of another type
of entity called an expression (or symbol structure): expres-
sions/symbol structures are arrangements of symbols/tokens.
As well as the symbol structures, the system also comprises
processes that operate on expressions to produce other ex-
pressions: ‘processes of creation, modification, reproduction,
and destruction’. An expression can designate an object
and thereby the system can either ‘affect the object itself or
behave in ways depending on the object’, or, if the expression
designates a process, then the system interprets the expression
by carrying out the process (see Figure 1).

In the words of Newell and Simon,
‘Symbol systems are collections of patterns and

processes, the latter being capable of producing,
destroying, and modifying the former. The most

3Some view AI as the direct descendent of cognitivism: “ ... the positivist
and reductionist study of the mind gained an extraordinary popularity through
a relatively recent doctrine called Cognitivism, a view that shaped the creation
of a new field — Cognitive Science — and its most hard core offspring:
Artificial Intelligence” (emphasis in the original). [6]

Symbol Systems

Symbol Structures /
Expressions /

Patterns

Processes
Produce, destroy, modify

Objects

designate

Processes

designate

comprise comprise

Can be interpreted: 
carry out the designated process

Can affect objects
Can be affected by objects

designate

Fig. 1. The essence of a physical symbol system [20].

important properties of patterns is that they can
designate objects, processes, or other patterns, and
that when they designate processes, they can be
interpreted. Interpretation means carrying out the
designated process. The two most significant classes
of symbol systems with which we are acquainted are
human beings and computers.’

What is important about this explanation of a symbol system
is that it is more general than the usual portrayal of symbol-
manipulation systems where symbols designate only objects,
in which case we have a system of processes that produces,
destroys, and modifies symbols, and no more. Newell’s and
Simon’s original view is more sophisticated. There are two
recursive aspects to it: processes can produce processes, and
patterns can designate patterns (which, of course, can be
processes). These two recursive loops are closely linked. Not
only can the system build ever more abstract representations
and reason about those representation, but it can modify itself
as a function both of its processing, qua current state/structure,
and of its representations.

Symbol systems can be instantiated and the behaviour of
these instantiated systems depend on the details of the symbol
system, its symbols, operations, and interpretations, and not
on the particular form of the instantiation.

The physical symbol system hypothesis asserts that a phys-
ical symbol system has the necessary and sufficient means
for general intelligence. From what we have just said about
symbol systems, it follows that intelligent systems, either
natural or artificial ones, are effectively equivalent because the
instantiation is actually inconsequential, at least in principle.

To a very great extent, cognitivist systems are identically
physical symbol systems.

3) Some Cognitivist Systems: Although we will survey
cognitivist systems from an architectural point of view in
Section III, we mention here a sample of cognitivist systems
to provide a preliminary impression of the approach.

The use of explict symbolic knowledge has been used in
many cognitivist systems, e.g. a cognitive vision system [28]
developed for the interpretation of video sequences of traffic
behaviour and the generation of a natural language description
of the observed environment. It proceeds from signal repre-
sentations to symbolic representations through several layers
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of processing, ultimately representing vehicle behaviour with
situation graph trees (SGT). Automatic interpretation of this
representation of behaviour is effected by translating the SGT
into a logic program (based on fuzzy metric temporal Horn
logic). See also [29]–[33] for related work.

The cognitivist assumptions are also reflected well in the
model-based approach described in [34], [35] which uses
Description Logics, based on First Order Predicate Logic, to
represent and reason about high-level concepts such as spatio-
temporal object configurations and events.

Probabilistic frameworks have been proposed as an al-
ternative (or sometimes an adjunct [34]) to these types of
deterministic reasoning systems. For example, Buxton et al.
describe a cognitive vision system for interpreting the activ-
ities of expert human operators. It exploits dynamic decision
networks (DDN) — an extension of Bayesian belief networks
to incorporate dynamic dependencies and utility theory [36] —
for recognizing and reasoning about activities, and both time
delay radial basis function networks (TDRBFN) and hidden
markov models (HMM) for recognition of gestures. Although
this system does incorporate learning to create the gesture
models, the overall symbolic reasoning process, albeit a prob-
abilistic one, still requires the system designer to identify the
contextual constraints and their causal dependencies (for the
present at least: on-going research is directed at automatically
learning the task-based context dependent control strategies)
[37]–[39].4 Recent progress in autonomously constructing and
using symbolic models of behaviour from sensory input using
inductive logic programming is reported in [40].

The dependence of cognitivist approaches on designer-
oriented world-representations is also well exemplified by
knowledge-based systems such as those based on ontologies.
For example, Maillot et al. [41] describe a framework for
an ontology-based cognitive vision system which focusses on
mapping between domain knowledge and image processing
knowledge using a visual concept ontology incorporating
spatio-temporal, textural, and colour concepts.

Another architecture for a cognitive vision system is de-
scribed in [42]. This system comprises a sub-symbolic level,
exploiting a viewer-centred

���
� D representation based on

sensory data, an intermediate pre-linguistic conceptual level
based on object-centred 3D superquadric representations, and
a linguistic level which uses a symbolic knowledge base. An
attentional process links the conceptual and linguistic level.

An adaptable system architecture for observation and in-
terpretation of human activity that dynamically configures its
processing to deal with the context in which it is operating
is decribed in [43] while a cognitive vision system for au-
tonomous control of cars is described in [44].

Town and Sinclair present a cognitive framework that com-
bines low-level processing (motion estimation, edge tracking,
region classification, face detection, shape models, percep-
utal grouping operators) with high-level processing using a
language-based ontology and adaptive Bayesian networks. The
system is self-referential in the sense that it maintains an

4See [36] for a survey of probabilistic generative models for learning and
understanding activities in dynamic scenes.

internal representation of its goals and current hypotheses.
Visual inference can then be performed by processing sentence
structures in this ontological language. It adopts a quintessen-
tially cognitivist symbolic representationalist approach, albeit
that it uses probabilistic models, since it requires that a
designer identify the “right structural assumptions” and prior
probability distributions.

B. Emergent Approaches

Emergent approaches take a very different view of cogni-
tion. Here, cognition is the process whereby an autonomous
system becomes viable and effective in its environment. It
does so through a process of self-organization through which
the system is continually re-constituting itself in real-time
to maintain its operational identity through moderation of
mutual system-environment interaction and co-determination
[45]. Co-determination implies that the cognitive agent is
specified by its environment and at the same time that the
cognitive process determines what is real or meaningful for
the agent. In a sense, co-determination means that the agent
constructs its reality (its world) as a result of its operation in
that world. In this context, cognitive behaviour is sometimes
defined as the automatic induction of an ontology: such an
ontology will be inherently specific to the embodiment and
dependent on the systems history of interactions, i.e., its
experiences. Thus, for emergent approaches, perception is
concerned with the acquisition of sensory data in order to
enable effective action [45] and is dependent on the richness
of the action interface [46]. It is not a process whereby the
structure of an absolute external environment is abstracted and
represented in a more or less isomorphic manner.

Sandini et al. have argued that cognition is also the comple-
ment of perception [47]. Perception deals with the immediate
and cognition deals with longer timeframes. Thus cognition
reflects the mechanism by which an agent compensates for
the immediate nature of perception and can therefore adapt
to and anticipate environmental action that occurs over much
longer timescales. That is, cognition is intrinsically linked with
the ability of an agent to act prospectively: to operate in the
future and deal with what might be, not just what is.

In contrast to the cognitivist approach, many emergent
approaches assert that the primary model for cognitive learning
is anticipative skill construction rather than knowledge acqui-
sition and that processes that both guide action and improve
the capacity to guide action while doing so are taken to
be the root capacity for all intelligent systems [15]. While
cognitivism entails a self-contained abstract model that is
disembodied in principle, the physical instantiation of the
systems plays no part in the model of cognition [3], [48]. In
contrast, emergent approaches are intrinsically embodied and
the physical instantiation plays a pivotal role in cognition.

1) Connectionist Models: Connectionist systems rely on
parallel processing of non-symbolic distributed activation pat-
terns using statistical properties, rather than logical rules, to
process information and achieve effective behaviour [49]. In
this sense, the neural network instantiations of the connection-
ist model ‘are dynamical systems which compute functions
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that best capture the statistical regularities in training data’
[50].

A comprehensive review of connectionism is beyond the
scope of this paper. For an overview of the foundation of the
field and a selection of seminal papers on connectionism, see
Anderson’s and Rosenfeld’s Neurocomputing: Foundations of
Research [51] and Neurocomputing 2: Directions of Research
[52]. Medler provides a succinct survey of the development of
connectionism in [49], while Smolensky reviews the field from
a mathematical perspective, addressing computational, dynam-
ical, and statistical issues [50], [53]–[55]. Arbib’s Handbook
of Brain Theory and Neural Networks provides very accessible
summaries of much of the relevant literature [56].

The roots of connectionism reach back well before the
computational era. Although Feldman and Ballard [57] are
normally credited with the introduction of the term ‘connec-
tionist models’ in 1982, the term connectionism has been used
as early as 1932 in psychology by Thorndike [58], [59] to
signal an expanded form of associationism based, for example,
on the connectionist principles clearly evident in William
James’ model of associative memory,5 but also anticipating
such mechanisms as Hebbian learning. In fact, the introduction
to Hebb’s book The Organization of Behaviour [61], in which
he presents an unsupervised neural training algorithm whereby
the synaptic strength is increased if both the source and target
neurons are active at the same time, contains one of the first
usages of the term connectionism [51], p. 43.

We have already noted that cognitivism has some of its
roots in earlier work in cognitive science and in McCulloch
and Pitts seminal work in particular [18]. McCulloch and Pitts
showed that any statement within propositional logic could be
represented by a network of simple processing units and, fur-
thermore, that such nets have, in principle, the computational
power of a Universal Turing Machine. Depending on how you
read this equivalence, McCulloch and Pitts contributed to the
foundation of both cognitivism and connectionism.

The connectionist approach was advanced significantly in
the late 1950s with the introduction of Rosenblatt’s perceptron
[62] and Selfridge’s Pandemonium model of learning [63].
Rosenblatt showed that any pattern classification problem
expressed in binary notation can be solved by a perceptron
network. Although network learning advanced in 1960 with
the introduction of the Widrow-Hoff rule, or delta rule, for
supervised training in the Adeline neural model [64], the
problem with perceptron networks was that no learning al-
gorithm existed to allow the adjustment of the weights of the
connections between input units and hidden associative units.
Consequently, perceptron networks were effectively single-
layer networks since learning algorithms could only adjust the
connection strength between the hidden units and the output
units, the weights governing the connection strength between
input and hidden units being fixed by design.

In 1969, Minsky and Papert [65] showed that these percep-
trons can only be trained to solve linearly separable problems
and couldn’t be trained to solve more general problems. As a

5Anderson’s and Rosenfeld’s collection of seminal papers on neurocom-
puting [51] opens with Chapter XVI ‘Association’ from William James’ 1890
Psychology, Briefer Course [60].

result, research on neural networks and connectionist models
suffered.

With the apparent limitations of perceptions clouding work
on network learning, research focussed more on memory and
information retrieval and, in particular, on parallel models of
associative memory (e.g. see [66]). Landmark contributions
in this period include McClelland’s Interactive Activation and
Competition (IAC) model [67] which introduced the idea of
competitive pools of mutually-inhibitory neurons and demon-
strated the ability of connectionist systems to retrieve specific
and general information from stored knowledge about specific
instances.

During this period too alternative connectionist models were
being put forward in, for example, Grossberg’s Adaptive Reso-
nance Theory (ART) [68] and Kohonen’s self-organizing maps
(SOM) [69], often referred to simply as Kohonen networks.
ART, introduced in 1976, has evolved and expanded consid-
erably in the past 30 years to address real-time supervised
and unsupervised category learning, pattern classification,
and prediction (see [70] for a summary). Kohonen networks
produce topological maps in which proximate points in the
input space are mapped by an unsupervised self-organizing
learning process to an internal network state which preserves
this topology: that is, input points (points in pattern space)
which are close together are represented in the mapping
by points (in weight space) which are close together. Once
the unsupervised self-organization is complete, the Kohonen
network can be used as either an auto-associative memory or
a pattern classifier.

Perceptron-like neural networks underwent a resurgence
in the mid 1980s with the development of the parallel dis-
tributed processing (PDP) architecture [71] in general and with
the introduction by Rumelhart, Hinton, and Williams of the
back-propagation algorithm [72], [73]. The back-propagation
learning algorithm, also known as the generalized delta rule
or GDR as it is a generalization of the Widrow-Hoff delta
rule for training Adaline units, overcame the limitation cited
by Minsky and Papert by allowing the connections weights
between the input units and the hidden units be modified,
thereby enabling multi-layer perceptrons to learn solutions to
problems that are not linearly separable. Although the back-
propagation learning rule made its great impact through the
work of Rumelhart et al., it had previously been derived
independently by Werbos [74], among others [49].

In cognitive science, PDP made a significant contribution
to the move away from the sequential view of computational
models of mind, towards a view of concurrently-operating
networks of mutually-cooperating and competing units, and
also in raising an awareness of the importance of the structure
of the computing system on the computation.

The standard PDP model represents a static mapping be-
tween the input vectors as a consequence of the feed-forward
configuration. On the other hand, recurrent networks which
have connections that loop back to form circuits, i.e. networks
in which either the output or the hidden units’ activations
signals are fed back to the network as inputs, exhibit dynamic
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behaviour.6 Perhaps the best known type of recurrent network
is the Hopfield net [75]. Hopfield nets are fully recurrent
networks that act as auto-associative memory7 or content-
addressable memory that can effect pattern completion. Other
recurrent networks include Elman nets [76] (with recurrent
connections from the hidden to the input units) and Jordan
nets [77] (with recurrent connections from the output to the
input units). Boltzman machines [78] are variants of Hopfield
nets that use stochastic rather than deterministic weight update
procedures to avoid problems with the network becoming
trapped in local minima during learning.

Multi-layer perceptrons and other PDP connectionist net-
works typically use monotonic functions, such as hard-limiting
threshold functions or sigmoid functions, to activate neurons.
The use of non-monotonic activation functions, such as the
Gaussian function, can offer computational advantages, e.g.
faster and more reliable convergence on problems that are not
linearly separable.

Radial basis function (RBF) networks [79] also use Gaus-
sian functions but differ from multi-layer perceptrons in that
the Gaussian function is used only for the hidden layer, with
the input and output layers using linear activation functions.

Connectionist systems continue to have a strong influence
on cognitive science, either in a strictly PDP sense such as Mc-
Clelland’s and Rogers’ PDP approach to semantic cognition
[80]) or in the guise of hybrid systems such as Smolensky’s
and Legendre’s connectionist/symbolic computational archi-
tecture for cognition [81], [82].

One of the original motivations for work on emergent
systems was disaffection with the sequential, atemporal, and
localized character of symbol-manipulation based cognitivism
[9]. Emergent systems, on the other hand, depend on parallel,
real-time, and distributed architectures. Of itself, however,
this shift in emphasis isn’t sufficient to constitute a new
paradigm and, as we have seen, there are several other pivotal
characteristics of emergent systems. Indeed, Freeman and
Núñez have argued that more recent systems — what they
term neo-cognitivist systems — exploit parallel and distributed
computing in the form of artificial neural networks and asso-
ciative memories but, nonetheless, still adhere to the original
cognitivist assumptions [6]. A similar point was made by Van
Gelder and Port [83]. We discuss these hybrid systems in
Section II-C.

One of the key features of emergent systems, in general, and
connectionism, in particular, is that ‘the system’s connectivity
becomes inseparable from its history of transformations, and
related to the kind of task defined for the system’ [9].
Furthermore, symbols play no role.8 Whereas in the cognitivist
approach the symbols are distinct from what they stand for, in
the connectionist approach, “meaning relates to the global state

6This recurrent feed-back has nothing to do with the feed-back of error
signals by, for example, back-propagation to effect weight adjustment during
learning

7Hetero-associative memory — or simply associative memory — produces
an output vector that is different from the input vector

8It would be more accurate to say that symbols should play no role since
it has been noted that connectionist systems often fall back in the cognitivist
paradigm by treating neural weights as a distributed symbolic representation
[83].

of the system” [9]. Indeed, meaning is something attributed
by an external third-party observer to the correspondence of
a system state with that of the world in which the emergent
system is embedded. Meaning is a description attributed by
an outside agent: it is not something that is intrinsic to the
cognitive system except in the sense that the dynamics of the
system reflect the effectiveness of its ability to interact with
the world.

Examples of the application of associative learning systems
in robotics can be found in [84], [85] where hand-eye coor-
dination is learned by a Kohonen neural network from the
association of proprioceptive and exteroceptive stimuli. As
well as attempting to model cognitive behaviour, connectionist
systems can self-organize to produce feature-analyzing capa-
bilities similar to those of the first few processing stages of
the mammalian visual system (e.g. centre-surround cells and
orientation-selective cells) [86]. An example of a connectionist
system which exploits the co-dependency of perception and
action in a developmental setting can be found in [87]. This is a
biologically-motivated system that learns goal-directed reach-
ing using colour-segmented images derived from a retina-like
log-polar sensor camera. The system adopts a developmental
approach: beginning with innate inbuilt primitive reflexes, it
learns sensorimotor coordination. Radial basis function net-
works have also been used in cognitive vision systems, for
example, to accomplish face detection [38].

2) Dynamical Systems Models: Dynamical systems theory
has been used to complement classical approaches in artificial
intelligence [88] and it has also been deployed to model natural
and artificial cognitive systems [12], [13], [83]. Advocates
of the dynamical systems approach to cognition argue that
motoric and perceptual systems are both dynamical systems,
each of which self-organizes into meta-stable patterns of
behaviour.

In general, a dynamical system is an open dissipative non-
linear non-equilibrium system: a system in the sense of a
large number of interacting components with large number
of degrees of freedom, dissipative in the sense that it diffuses
energy (its phase space decreases in volume with time imply-
ing preferential sub-spaces), non-equilibrium in the sense that
it is unable to maintain structure or function without external
sources of energy, material, information (and, hence, open).
The non-linearity is crucial: as well as providing for complex
behaviour, it means that the dissipation is not uniform and
that only a small number of the system’s degrees of freedom
contribute to its behaviour. These are termed order parameters
(or collective variables). Each order parameter defines the
evolution of the system, leading to meta-stable states in a
multi-stable state space (or phase space). It is this ability
to characterize the behaviour of a high-dimensional system
with a low-dimensional model that is one of the features that
distinguishes dynamical systems from connectionist systems
[13].

Certain conditions must prevail before a system qualifies as
a cognitive dynamical system. The components of the system
must be related and interact with one another: any change in
one component or aspect of the system must be dependent on
and only on the states of the other components: ‘they must be
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interactive and self contained’ [83]. As we will see shortly, this
is very reminiscent of the requirement for operational closure
in enactive systems, the topic of the next section.

Proponents of dynamical systems point to the fact that
they provide one directly with many of the characteristics
inherent in natural cognitive systems such as multi-stability,
adaptability, pattern formation and recognition, intentionality,
and learning. These are achieved purely as a function of
dynamical laws and consequent self-organization. They require
no recourse to symbolic representations, especially those that
are the result of human design.

However, Clark [10] has pointed out that the antipathy
which proponents of dynamical systems approaches display
toward cognitivist approaches rests on rather weak ground
insofar as the scenarios they use to support their own case
are not ones that require higher level reasoning: they are not
‘representation hungry’ and, therefore, are not well suited
to be used in a general anti-representationalist (or anti-
cognitivist) argument. At the same time, Clark also notes
that this antipathy is actually less focussed on representations
per se (dynamical systems readily admit internal states that
can be construed as representations) but more on objectivist
representations which form an isomorphic symbolic surrogate
of an absolute external reality.

It has been argued that dynamical systems allow for the
development of higher order cognitive functions, such as
intentionality and learning, in a straight-forward manner, at
least in principle. For example, intentionality — purposive or
goal-directed behaviour — is achieved by the superposition
of an intentional potential function on the intrinsic potential
function [13]. Similarly, learning is viewed as the modification
of already-existing behavioural patterns that take place in a his-
torical context whereby the entire attractor layout (the phase-
space configuration) of the dynamical system is modified.
Thus, learning changes the whole system as a new attractor is
developed.

Although dynamical models can account for several non-
trivial behaviours that require the integration of visual stimuli
and motoric control, including the perception of affordances,
perception of time to contact, and figure-ground bi-stability
[13], [89]–[92], the principled feasibility of higher-order cog-
nitive faculties has yet to be validated.

The implications of dynamical models are many: as noted
in [12], ‘cognition is non-symbolic, nonrepresentational and
all mental activity is emergent, situated, historical, and embod-
ied’. It is also socially constructed, meaning that certain levels
of cognition emerge from the dynamical interaction between
cognitive agents. Furthermore, dynamical cognitive systems
are, of necessity, embodied. This requirement arises directly
from the fact that the dynamics depend on self-organizing
processes whereby the system differentiates itself as a distinct
entity through its dynamical configuration and its interactive
exploration of the environment.

With emergent systems in general, and dynamical systems
in particular, one of the key issues is that cognitive pro-
cesses are temporal processes that ‘unfold’ in real-time and
synchronously with events in their environment. This strong
requirement for synchronous development in the context of

its environment again echoes the enactive systems approach
set out in the next section. It is significant for two reasons.
First, it places a strong limitation on the rate at which the
ontogenetic9 learning of the cognitive system can proceed: it
is constrained by the speed of coupling (i.e. the interaction)
and not by the speed at which internal changes can occur
[24]. Natural cognitive systems have a learning cycle measured
in weeks, months, and years and, while it might be possible
to collapse it into minutes and hours for an artificial system
because of increases in the rate of internal adaptation and
change, it cannot be reduced below the time-scale of the
interaction (or structural coupling; see next section). If the
system has to develop a cognitive ability that, e.g., allows it
to anticipate or predict action and events that occur over an
extended time-scale (e.g. hours), it will take at least that length
of time to learn. Second, taken together with the requirement
for embodiment, we see that the consequent historical and
situated nature of the systems means that one cannot short-
circuit the ontogenetic development. Specifically, you can’t
bootstrap an emergent dynamical system into an advanced
state of learned behaviour.

With that said, recall from the Introduction that an impor-
tant characteristic of cognitive systems is their anticipatory
capability: their ability to break free of the present. There
appears to be a contradiction here. On the one hand, we
are saying that emergent cognitive systems are entrained by
events in the environment and that their development must
proceed in real-time synchronously with the environment,
but at the same time that they can break free from this
entrainment. In fact, as we will see in Section III, there isn’t
a contradiction. The synchronous entrainment is associated
with the system’s interaction with the environment, but the
anticipatory capability arises from the internal dynamics of the
cognitive system: its capacity for self-organization and self-
development involving processes for mirroring and simulating
events based on prior experience (brought about historically
by the synchronous interaction) but operating internally by
self-perturbation and free from the synchronous environmental
perturbations of perception and action.

Although dynamical systems theory approaches often differ
from connectionist systems on several fronts [12], [13], [83],
it is better perhaps to consider them complementary ways of
describing cognitive systems, dynamical systems addressing
macroscopic behaviour at an emergent level and connectionist
systems addressing microscopic behaviour at a mechanistic
level [93]. Connectionist systems themselves are, after all,
dynamical systems with temporal properties and structures
such as attractors, instabilities, and transitions [94]. Typically,
however, connectionist systems describe the dynamics in a
very high dimensional space of activation potentials and con-
nection strengths whereas dynamical systems theory models
describe the dynamics in a low dimensional space where
a small number of state variables capture the behaviour of
the system as a whole. Schöner argues that this is possible
because the macroscopic states of high-dimensional dynamics

9Ontogeny is concerned with the development of the system over its
lifetime.
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and their long-term evolution are captured by the dynamics
in that part of the space where instabilities occur: the low-
dimensional Center-Manifold [95]. Much of the power of dy-
namical perspectives comes from this higher-level abstraction
of the dynamics [54]. The complementary nature of dynam-
ical systems and connectionist descriptions is emphasized by
Schöner and by Kelso [13], [96] who argue that non-linear
dynamical systems should be modelled simultaneously at three
distinct levels: a boundary constraint level that determines the
task or goals (initial conditions, non-specific conditions), a
collective variables level which characterize coordinated states,
and a component level which forms the realized system (e.g.
nonlinearly coupled oscillators or neural networks). This is
significant because it contrasts strongly with the cognitivist
approach, best epitomized by David Marr’s advocacy of a
three-level hierarchy of abstraction (computational theory,
representations and algorithms, and hardware implementation),
with modelling at the computational theory level being ef-
fected without strong reference to the lower and less abstract
levels [97]. This complementary perspective of dynamical
systems theory and connectionism enables the investigation of
the emergent dynamical properties of connectionist systems in
terms of attractors, meta-stability, and state transition, all of
which arise from the underlying mechanistic dynamics, and,
vice versa, it offers the possibility of implementing dynamical
systems theory models with connectionist architectures.

3) Enactive Systems Models: Enactive systems take the
emergent paradigm even further. In contradistinction to cog-
nitivism, which involves a view of cognition that requires the
representation of a given objective pre-determined world [9],
[83], enaction [9], [24], [45], [98]–[101] asserts that cognition
is a process whereby the issues that are important for the con-
tinued existence of a cognitive entity brought out or enacted:
co-determined by the entity as it interacts with the environment
in which it is embedded. Thus, nothing is ‘pre-given’, and
hence there is no need for symbolic representations. Instead
there is an enactive interpretation: a real-time context-based
choosing of relevance.

For cognitivism, the role of cognition is to abstract objective
structure and meaning through perception and reasoning. For
enactive systems, the purpose of cognition is to uncover
unspecified regularity and order that can then be construed
as meaningful because they facilitate the continuing opera-
tion and development of the cognitive system. In adopting
this stance, the enactive position challenges the conventional
assumption that the world as the system experiences it is
independent of the cognitive system (‘the knower’). Instead,
knower and known ‘stand in relation to each other as mutual
specification: they arise together’ [9].

The only condition that is required of an enactive system
is effective action: that it permit the continued integrity of
the system involved. It is essentially a very neutral position,
assuming only that there is the basis of order in the environ-
ment in which the cognitive system is embedded. From this
point of view, cognition is exactly the process by which that
order or some aspect of it is uncovered (or constructed) by the
system. This immediately allows that there are different forms
of reality (or relevance) that are dependent directly on the

nature of the dynamics making up the cognitive system. This is
not a solipsist position of ungrounded subjectivism, but neither
is it the commonly-held position of unique — representable
— realism. It is fundamentally a phenomenological position.

The enactive systems research agenda stretches back to the
early 1970s in the work of computational biologists Maturana
and Varela and has been taken up by others, including some
in the main-stream of classical AI [9], [24], [45], [98]–[101].

The goal of enactive systems research is the complete treat-
ment of the nature and emergence of autonomous, cognitive,
social systems. It is founded on the concept of autopoiesis
– literally self-production – whereby a system emerges as
a coherent systemic entity, distinct from its environment, as
a consequence of processes of self-organization. However,
enaction involves different degrees of autopoeisis and three
orders of system can be distinguished.

First-order autopoietic systems correspond to cellular enti-
ties that achieve a physical identity through structural cou-
pling with their environment. As the system couples with
its environment, it interacts with it in the sense that the
environmental perturbations trigger structural changes ‘that
permit it to continue operating’.

Second-order systems are meta-cellular systems that engage
in structural coupling with their environment, this time through
a nervous system that enables the association of many internal
states with the different interactions in which the organism
is involved. In addition to processes of self-production, these
systems also have processes of self-development. Maturana
and Varela use the term operational closure for second-order
systems instead of autopoiesis to reflect this increased level of
flexibility [45].

Third-order systems exhibit coupling between second-order
(i.e. cognitive) systems, i.e. between distinct cognitive agents.
It is significant that second- and third-order systems possess
the ability to perturb their own organizational processes and
attendant structures. Third-order couplings allow a recur-
rent (common) ontogenetic drift in which the systems are
reciprocally-coupled. The resultant structural adaptation – mu-
tually shared by the coupled systems – gives rise to new phe-
nomonological domains: language and a shared epistemology
that reflects (but not abstracts) the common medium in which
they are coupled. Such systems are capable of three types
of behaviour: (i) the instinctive behaviours that derive from
the organizational principles that define it as an autopoietic
system (and that emerge from the phylogenetic evolution
of the system), (ii) ontogenetic behaviours that derive from
the development of the system over its lifetime, and (iii)
communicative behaviours that are a result of the third-order
structural coupling between members of the society of entities.

The core of the enactive approach is that cognition is a pro-
cess whereby a system identifies regularities as a consequence
of co-determination of the cognitive activities themselves, such
that the integrity of the system is preserved. In this approach,
the nervous system (and a cognitive agent) does not abstract
or ‘pick up information’ from the environment and therefore
the metaphor of calling the brain an information processing
device is ‘not only ambiguous but patently wrong’ [45]. On
the contrary, knowledge is the effective use of sensorimotor
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contingencies grounded in the structural coupling in which the
nervous system exists. Knowledge is particular to the system’s
history of interaction. If that knowledge is shared among a
society of cognitive agents, it is not because of any intrinsic
abstract universality, but because of the consensual history
of experiences shared between cognitive agents with similar
phylogeny and compatible ontogeny.

As with dynamical systems, enactive systems operate in
synchronous real-time: cognitive processes must proceed syn-
chronously with events in the systems environment as a direct
consequence of the structural coupling and co-determination
between system and environment. However, exactly the same
point we made about the complementary process of anticipa-
tion in dynamical systems applies equally here. And, again,
enactive systems are necessarily embodied systems. This is a
direct consequence of the requirement of structural coupling
of enactive systems. There is no semantic gap in emergent sys-
tems (connectionist, dynamical, or enactive): the system builds
its own understanding as it develops and cognitive understand-
ing emerges by co-determined exploratory learning. Overall,
enactive systems offer a framework by which successively-
richer orders of cognitive capability can be achieved, from
autonomy of a system through to the emergence of linguistic
and communicative behaviours in societies of cognitive agents.

The emergent position in general and the enactive position
in particular are supported by recent results which have
shown that a biological organism’s perception of its body
and the dimensionality and geometry of the space in which
it is embedded can be deduced (learned or discovered) by
the organism from an analysis of the dependencies between
motoric commands and consequent sensory data, without any
knowledge or reference to an external model of the world or
the physical structure of the organism [102], [103]. Thus, the
perceived structure of reality could therefore be a consequence
of an effort on the part of brains to account for the dependency
between their inputs and their outputs in terms of a small
number of parameters. Thus, there is in fact no need to rely on
the classical idea of an a priori model of the external world
that is mapped by the sensory apparatus to ‘some kind of
objective archetype’. The conceptions of space, geometry, and
the world that the body distinguishes itself from arises from
the sensorimotor interaction of the system, exactly the position
advocated in developmental psychology [12]. Furthermore,
it is the analysis of the sensory consequences of motor
commands that gives rise to these concepts. Significantly, the
motor commands are not derived as a function of the sensory
data. The primary issue is that sensory and motor information
are treated simultaneously, and not from either a stimulus
perspective or a motor control point of view. As we will see
in Section II-C and V-.3, this perception-action co-dependency
forms the basis of many artificial cognitive systems.

The enactive approach is mirrored in the work of others. For
example, Bickhard [14] introduces the ideas of self-maintenant
system and recursive self-maintenant systems. He asserts that

‘The grounds of cognition are adaptive far-
from-equilibrium autonomy — recursively self-
maintenant autonomy — not symbol processing nor
connectionist input processing. The foundations of

cognition are not akin to the computer foundations
of program execution, nor to passive connectionist
activation vectors.’

Bickhard defines autonomy as the property of a system to
contribute to its own persistence. Since there are different
grades of contribution, there are therefore different levels of
autonomy.

Bickhard introduces a distinction between two types of self-
organizing autonomous system:

1) Self-Maintenant Systems that make active contributions
to their own persistence but do not contribute to the
maintenance of the conditions for persistence. Bickhard
uses a lighted candle as an example. The flame vapour-
izes the wax which in turn combusts to form the flame.

2) Recursive Self-Maintenant Systems that do contribute
actively to the conditions for persistence. These sys-
tems can deploy different processes of self-maintenance
depending on environmental conditions: “they shift
their self-maintenant processes so as to maintain self-
maintenance as the environment shifts”.

He also distinguishes between two types of stability: (a)
energy well stability which is equivalent to the stability of
systems in thermodynamic equilibrium — no interaction with
its environment is required to maintain this equilibrium —
and (b) far from equilibrium stability which is equivalent to
non-thermodynamic equilibrium. Persistence of this state of
equilibrium requires that the process or system does not go
to thermodynamic equilibrium. These systems are completely
dependent for their continued existence on continued contribu-
tions of external factors: they require environmental interaction
and are necessarily open processes (which nonetheless exhibit
closed self-organization).

Self-maintenant and recursive self-maintenant systems are
both examples of far-from-equilibrium stability systems.

On the issue of representations in emergent systems, he
notes that recursive self-maintenant systems do in fact yield
the emergence of representation. Function emerges in self-
maintenant systems and representation emerges as a particular
type of function (‘indications of potential interactions’) in
recursively self-maintenant systems.

C. Hybrid Models

Considerable effort has also gone into developing ap-
proaches which combine aspects of the emergent systems
and cognitivist systems [46], [104], [105]. These hybrid
approaches have their roots in arguments against the use
of explicit programmer-based knowledge in the creation of
artificially-intelligent systems [106] and in the development of
active ‘animate’ perceptual systems [107] in which perception-
action behaviours become the focus, rather than the perceptual
abstraction of representations. Such systems still use represen-
tations and representational invariances but it has been argued
that these representations should only be constructed by the
system itself as it interacts with and explores the world rather
than through a priori specification or programming so that
objects should be represented as ‘invariant combinations of
percepts and responses where the invariances (which are not
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restricted to geometric properties) need to be learned through
interaction rather than specified or programmed a priori’ [46].
Thus, a system’s ability to interpret objects and the external
world is dependent on its ability to flexibly interact with it and
interaction is an organizing mechanism that drives a coherence
of association between perception and action. There are two
important consequences of this approach of action-dependent
perception. First, one cannot have any meaningful direct access
to the internal semantic representations, and second cognitive
systems must be embodied (at least during the learning phase)
[104]. According to Granlund, for instance, action precedes
perception and ‘cognitive systems need to acquire information
about the external world through learning or association’ �����

‘Ultimately, a key issue is to achieve behavioural plasticity,
i.e., the ability of an embodied system to learn to do a task
it was not explicitly designed for.’ Thus, hybrid systems are
in many ways consistent with emergent systems while still
exploiting programmer-centred representations (for example,
see [108]).

Recent results in building a cognitive vision system on
these principles can be found in [109]–[111]. This system ar-
chitecture combines a neural-network based perception-action
component (in which percepts are mediated by actions through
exploratory learning) and a symbolic component (based on
concepts — invariant descriptions stripped of unnecessary
spatial context — can be used in more prospective processing
such as planning or communication).

A biologically-motivated system, modelled on brain func-
tion and cortical pathways and exploiting optical flow as its
primary visual stimulus, has demonstrated the development of
object segmentation, recognition, and localization capabilities
without any prior knowledge of visual appearance though
exploratory reaching and simple manipulation [112]. This
hybrid extension of the connectionist system [87] also exhibits
the ability to learn a simple object affordance and use it to
mimic the actions of another (human) agent.

An alternative hybrid approach, based on subspace learning,
is used in [113] to build an embodied robotic system that can
achieve appearance-based self-localization using a catadioptric
panoramic camera and an incrementally-constructed robust
eigenspace model of the environment.

D. Relative Strengths

The foregoing paradigms have their own strengths and
weaknesses, their proponents and critics, and they stand at
different stages of scientific maturity. The arguments in favour
of dynamical systems and enactive systems are compelling but
the current capabilities of cognitivist systems are actually more
advanced. However, cognitivist systems are also quite brittle.

Several authors have provided detailed critiques of the
various approaches. These include, for example, Clark [10],
Christensen and Hooker [114], and Crutchfield [115].

Christiansen and Hooker argued [114] that cognitivist sys-
tems suffer from three problems: the symbol grounding prob-
lem, the frame problem (the need to differentiate the significant
in a very large data-set and then generalize to accommodate

new data),10 and the combinatorial problem. These problems
are one of the reasons why cognitivist models have difficulties
in creating systems that exhibit robust sensori-motor interac-
tions in complex, noisy, dynamic environments. They also have
difficulties modelling the higher-order cognitive abilities such
as generalization, creativity, and learning [114]. According to
the Christensen and Hooker, and as we have remarked on
several occasions, cognitivist systems are poor at functioning
effectively outside narrow, well-defined problem domains.

Enactive and dynamical systems should in theory be much
less brittle because they emerge through mutual specification
and co-development with the environment, but our ability to
build artificial cognitive systems based on these principles is
actually very limited at present. To date, dynamical systems
theory has provided more of a general modelling framework
rather than a model of cognition [114] and has so far been
employed more as an analysis tool than as a tool for the design
and synthesis of cognitive systems [114], [117]. The extent to
which this will change, and the speed with which it will do so,
is uncertain. Hybrid approaches appear to some to offer the
best of both worlds: the adaptability of emergent systems (be-
cause they populate their representational frameworks through
learning and experience) but the advanced starting point of
cognitivist systems (because the representational invariances
and representational frameworks don’t have to be learned but
are designed in). However, it is unclear how well one can
combine what are ultimately highly antagonistic underlying
philosophies. Opinion is divided, with arguments both for (e.g.
[10], [110], [115]) and against (e.g. [114]).

A cognitive system is inevitably going to be a complex
system and it will exhibit some form of organization, even if
it isn’t the organization suggested by cognitivist approaches.
Dynamical systems theory doesn’t, at present, offer much help
in identifying this organization since the model is a state-
space dynamic which is actually abstracted away from the
physical organization of the underlying system [114]. The
required organization may not necessarily follow the top-down
functional decomposition of AI but some appropriate form of
functional organization may well be required. We will return
to this issue and discuss it in some depth in Section III on
cognitive architectures.

Dynamical systems at present provides more of a general
modelling framework rather than a model of cognition is well
made and others have made a similar point that dynamical
systems approaches has so far been employed more as an
analysis tool than as a tool for the design and synthesis of
cognitive systems [114], [117].

Clark suggests that one way forward is the development of
a form of ‘dynamic computationalism’ in which dynamical
elements form part of an information-processing system [10].
This idea is echoed by Crutchfield [115] who, whilst agreeing
that dynamics are certainly involved in cognition, argues
that dynamics per se are “not a substitute for information
processing and computation in cognitive processes” but neither

10In the cognitivist paradigm, the frame problem has been expressed in
slightly different but essentially equivalent terms: how can one build a program
capable of inferring the effects of an action without reasoning explicitly about
all its perhaps very many non-effects? [116]
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are the two approaches incompatible. He holds that a synthesis
of the two can be developed to provide an approach that does
allow dynamical state space structures to support computa-
tion. He proposes ‘computational mechanics’ as the way to
tackle this synthesis of dynamics and computation. However,
this development requires that dynamics itself needs to be
extended significantly from one which is deterministic, low-
dimensional, and time asymptotic, to one which is stochastic,
distributed and high dimensional, and reacts over transient
rather than asymptotic time scales. In addition, the identifica-
tion of computation with digital or discrete computation has
to be relaxed to allow for other interpretations of what it is to
compute.

III. COGNITIVE ARCHITECTURES

Although used freely by proponents of the cognitivist, emer-
gent, and hybrid approaches to cognitive systems, the term
cognitive architecture originated with the seminal cognitivist
work of Newell et al. [118]–[120]. Consequently, the term
has a very specific meaning in this paradigm where cognitive
architectures represent attempts to create unified theories of
cognition [7], [119], [121], i.e. theories that cover a broad
range of cognitive issues, such as attention, memory, prob-
lem solving, decision making, learning, from several aspects
including psychology, neuroscience, and computer science.
Newell’s Soar architecture [120], [122]–[124], Anderson’s
ACT-R architecture [7], [125], and Minsky’s Society of Mind
[126] are all candidate unified theories of cognition. For emer-
gent approaches to cognition, which a focus on development
from a primitive state to a fully cognitive state over the life-
time of the system, the architecture of the system is equivalent
to its phylogenetic configuration: the initial state from which
it subsequently develops.

In the cognitivist paradigm, the focus in a cognitive ar-
chitecture is on the aspects of cognition that are constant
over time and that are relatively independent of the task
[8], [127], [128]. Since cognitive architectures represent the
fixed part of cognition, they cannot accomplish anything in
their own right and need to be provided with or acquire
knowledge to perform any given task. This combination of
a given cognitive architecture and a particular knowledge
set is generally referred to as a cognitive model. In most
cognitivist systems the knowledge incorporated into the model
is normally determined by the human designer, although there
is in increasing use of machine learning to augment and adapt
this knowledge. The specification of a cognitive architecture
consists of its representational assumptions, the characteristics
of its memories, and the processes that operate on those
memories. The cognitive architecture defines the manner in
which a cognitive agent manages the primitive resources at
its disposal [129]. For cognitivist approaches, these resources
are the computational system in which the physical symbol
system is realized. The architecture specifies the formalisms
for knowledge representations and the memory used to store
them, the processes that act upon that knowledge, and the
learning mechanisms that acquire it. Typically, it also provides
a way of programming the system so that intelligent systems
can be instantiated in some application domain [8].

For emergent approaches, the need to identify an architec-
ture arises from the intrinsic complexity of a cognitive system
and the need to provide some form of structure within which
to embed the mechanisms for perception, action, adaptation,
anticipation, and motivation that enable the ontogenetic de-
velopment over the system’s life-time. It is this complexity
that distinguishes an emergent developmental cognitive ar-
chitecture from a simple connectionist robot control system
that typically learns associations for specific tasks, e.g. the
Kohonen self-organized net cited in [84]. In a sense, the
cognitive architecture of an emergent system corresponds
to the innate capabilities that are endowed by the system’s
phylogeny and which don’t have to be learned but of course
which may be developed further. These resources facilitate
the system’s ontogensis. They represent the initial point of
departure for the cognitive system and they provide the basis
and mechanism for its subsequent autonomous development, a
development that may impact directly on the architecture itself.
As we have stated already, the autonomy involved in this de-
velopment is important because it places strong constraints on
the manner in which the system’s knowledge is acquired and
by which its semantics are grounded (typically by autonomy-
preserving anticipatory and adaptive skill construction) and by
which an inter-agent epistemology is achieved (the subjective
outcome of a history of shared consensual experiences among
phylogenetically-compatible agents); see Table I.

It is important to emphasize that the presence of innate
capabilities in emergent systems does not in any way imply
that the architecture is functionally modular: that the cognitive
system is comprised of distinct modules each one carrying
out a specialized cognitive task. If a modularity is present, it
may be because it develops this modularity through experience
as part of its ontogenesis or epigenesis rather than being
prefigured by the phylogeny of the system (e.g. see Karmiloff-
Smith’s theory of representational redescription, [130], [131]).
Even more important, it does not necessarily imply that the
innate capabilities are hard-wired cognitive skills as suggested
by nativist psychology (e.g. see Fodor [132] and Pinker
[133]).11 At the same time, neither does it necessarily imply
that the cognitive system is a blank slate, devoid of any innate
cognitive structures as posited in Piaget’s constructivist view
of cognitive development [135];12 at the very least there must
exist a mechanism, structure, and organization which allows
the cognitive system to be autonomous, to act effectively to
some limited extent, and to develop that autonomy.

Finally, since the emergent paradigm sits in opposition to the
two pillars of cognitivism — the dualism that posits the logical
separation of mind and body, and the functionalism that posits
that cognitive mechanisms are independent of the physical
platform [6] — it is likely that the architecture will reflect or
recognize in some way the morphology of the physical body

11More recently, Fodor [134] asserts that modularity applies only to local
cognition (e.g. recognizing a picture of Mount Whitney) but not global
cognition (e.g. deciding to trek the John Muir Trail).

12Piaget founded the constructivist school of cognitive development
whereby knowledge is not implanted a priori (i.e. phylogenetically) but is
discovered and constructed by a child through active maniulation of the
environment.
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Cognitivist Emergent Hybrid
Soar AAR HUMANOID
EPIC Global Workspace Cerebus
ACT-R I-C SDAL Cog: Theory of Mind
ICARUS SASE Kismet
ADAPT DARWIN

TABLE II

THE COGNITIVE ARCHITECTURES REVIEWED IN THIS SECTION.

of which it is embedded and of which it is an intrinsic part.
Having established these boundary conditions for cognitivist

and emergent cognitive architectures (and implicitly for hybrid
architectures), for the purposes of this review the term cogni-
tive architecture will the taken in the general and non-specific
sense. By this we mean the minimal configuration of a system
that is necessary for the system to exhibit cognitive capabilities
and behaviours: the specification of the components in a
cognitive system, their function, and their organization as a
whole. That said, we do place particular emphasis on the need
of systems that are developmental and emergent, rather than
pre-configured.

Below, we will review several cognitive architectures drawn
from the cognitivist, emergent, and hybrid traditions, begin-
ning with some of the best known cognitivist ones. Table
II lists the cognitive architectures reviewed under each of
these three headings. Following this review, we present a
comparative analysis of these architectures using a subset of
the twelve paradigm characteristics we discussed in Section II:
computational operation, representational framework, seman-
tic grounding, temporal constraints, inter-agent epistemology,
role of physical instantiation, perception, action, anticipation,
adaptation, motivation, embodiment, autonomy.

A. The Soar Cognitive Architecture

The Soar system [120], [122]–[124] is Newell’s candidate
for a Unified Theory of Cognition [119]. It is a production (or
rule-based) system13 that operates in a cyclic manner, with a
production cycle and a decision cycle. It operates as follows.
First, all productions that match the contents of declarative
(working) memory fire. A production that fires may alter the
state of declarative memory and cause other productions to
fire. This continues until no more productions fire. At this
point, the decision cycle begins in which a single action from
several possible actions is selected. The selection is based on
stored action preferences. Thus, for each decision cycle there
may have been many production cycles. Productions in Soar
are low-level; that is to say, knowledge is encapsulated at a
very small grain size.

One important aspect of the decision process concerns a
process known as universal sub-goaling. Since there is no
guarantee that the action preferences will be unambiguous or
that they will lead to a unique action or indeed any action, the
decision cycle may lead to an ‘impasse’. If this happens, Soar

13A production is effectively an IF-THEN condition-action pair. A pro-
duction system is a set of production rules and a computational engine for
interpreting or executing productions.

sets up an new state in a new problem space — sub-goaling —
with the goal of resolving the impasse. Resolving one impasse
may cause others and the sub-goaling process continues. It is
assumed that degenerate cases can be dealt with (e.g. if all
else fails, choose randomly between two actions). Whenever
an impasse is resolved, Soar creates a new production rule
which summarizes the processing that occurred in the sub-
state in solving the sub-goal. Thus, resolving an impasse alters
the system super-state, i.e. the state in which the impasse
originally occurred. This change is called a result and becomes
the outcome of the production rule. The condition for the
production rule to fire is derived from a dependency analysis:
finding what declarative memory items matched in the course
of determining the result. This change in state is a form of
learning and it is the only form that occurs in Soar, i.e. Soar
only learns new production rules. Since impasses occur often
in Soar, learning is pervasive in Soar’s operation.

B. EPIC — Executive Process Interactive Control

EPIC [136] is a cognitive architecture that was designed to
link high-fidelity models of perception and motor mechanisms
with a production system. An EPIC model requires both
knowledge encapsulated in production rules and perceptual-
motor parameters. There are two types of parameter: standard
or system parameters which are fixed for all tasks (e.g. the
duration of a production cycle in the cognitive processor: 50
ms) and typical parameters which have conventional values
but can vary between tasks (e.g. the time required to effect
recognition of shape by the visual processor: 250 ms).

EPIC comprises a cognitive processor (with a produc-
tion rule interpreter and a working memory), and auditory
processor, a visual processor, an oculo-motor processor, a
vocal motor processor, a tactile processor, and an manual
motor processor. All processors run in parallel. The perceptual
processors simply model the temporal aspects of perception:
they don’t perform any perceptual processing per se. For
example, the visual processor doesn’t do pattern recognition.
Instead, it only models the time it takes for a representation of
a given stimulus to be transferred to the declarative (working)
memory. A given sensory stimulus may have several possible
representations (e.g. colour, size, ... ) with each representation
possibly delivered to the working memory at different times.
Similarly, the motor processors are not concerned with the
torques required to produce some movement; instead, they are
only concerned with the time it takes for some motor output
to be produced after the cognitive processor has requested it.

There are two phases to movements: a preparation phase
and an execution phase. In the preparation phase, the timing is
independent of the number of features that need to be prepared
to effect the movement but may vary depending on whether the
features have already been prepared in the previous movement.
The execution phase is concerned with the timing for the
implementation of a movement and, for example, in the case
of hand or finger movements the time is governed by Fitt’s
Law.

Like Soar, the cognitive processor in EPIC is a production
system in which multiple rules can fire in one production cycle.
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However, the productions in EPIC have a much larger grain
size than Soar productions.

Arbitration of resources (e.g. when two tasks require a single
resource) is handled by ‘executive’ knowledge: productions
which implement executive knowledge do so in parallel with
productions for task knowledge.

EPIC does not have any learning mechanism.

C. ACT-R — Adaptive Control of Thought - Rational

The ACT-R [7], [125] cognitive architecture is another
approach to creating an unified theory of cognition. It focusses
on the modular decomposition of cognition and offers a theory
of how these modules are integrated to produce coherent cog-
nition. The architecture comprises five specialized modules,
each devoted to processing a different kind of information
(see Figure 2). There is a vision module for determining
the identity and position of objects in the visual field, a
manual module for controlling hands, a declarative module
for retrieving information from long-term information, and
a goal module for keeping track of the internal state when
solving a problem. Finally, it also has a production system
that coordinates the operation of the other four modules. It
does this indirectly via four buffers into which each module
places a limited amount of information.

Fig. 2. The ACT-R Cognitive Architecture (from [7]).

ACT-R operates in a cyclic manner in which the patterns
of information held in the buffers (and determined by external
world and internal modules) are recognized, a single produc-
tion fires, and the buffers are updated. It is assumed that this
cycle takes approximately 50 ms.

There are two serial bottle-necks in ACT-R. One is that the
content of any buffer is limited to a single declarative unit
of knowledge, called a ‘chunk’. This implies that only one
memory can be retrieved at a time and indeed that a single
object can be encoded in the visual field at any one time. The
second bottle-neck is that only one production is selected to
fire in any one cycle. This contrasts with both Soar and EPIC
both of which allow many productions to fire. When multiple

production rules are capable of firing, an arbitration procedure
called conflict resolution is activated.

Whilst early incarnations of ACT-R focussed primarily on
the production system, the importance of perceptuo-motor
processes in determining the nature of cognition is recognized
by Anderson et al. in more recent versions [7], [121]. That
said, the perceptuo-motor system in ACT-R is based on the
EPIC architecture [136] which doesn’t deal directly with
real sensors or motors but simply models the basic timing
behaviour of the perceptual and motor systems. In effect, it
assumes that the perceptual system has already parsed the
visual data into objects and associated sets of features for each
object [125]. Anderson et al. recognize that this is a short-
coming, remarking that ACT-R implements more a theory of
visual attention than a theory of perception, but hope that
the ACT-R cognitive architecture will be compatible with
more complete models of perceptual and motor systems. The
ACT-R visual module differs somewhat from the EPIC visual
system in that it is separated into two sub-modules, each
with its own buffer, one for object localization and associated
with the dorsal pathway, and the other for object recognition
and associated with the ventral pathway. Note that this sharp
separation of function between the ventral and dorsal pathways
has been challenged by recent neurophysiological evidence
which points to the interdependence between the two pathways
[137], [138]. When the production system requests information
from the localization module, it can supply constraints in
the form of attribute-value pairs (e.g. colour-red) and the
localization module will then place a chunk in its buffer with
the location of some object that satisfies those constraints. The
production system queries the recognition system by placing
a chunk with location information in its buffer; this causes the
visual system to subsequently place a chunk representing the
object at that location in its buffer for subsequent processing
by the production system. This is a significant idealization of
the perceptual process.

The goal module keeps track of what the intentions of
the system architecture (in any given application) so that the
behaviour of the system will support the achievement of that
goal. In effect, it ensures that the operation of the system
is consistent in solving a given problem (in the words of
Anderson et al. “it maintains local coherence in a problem-
solving episode”).

On the other hand, the information stored in the declarative
memory supports long-term personal and cultural coherence.
Together with the production system, which encapsulates pro-
cedural knowledge, it forms the core of the ACT-R cognitive
system. The information in the declarative memory augments
symbolic knowledge with subsymbolic representations in that
the behaviour of the declarative memory module is dependent
of several numeric parameters: the activation level of a chunk,
the probability of retrieval of a chunk, and the latency of
retrieval. The activation level is dependent on a learned base
level of activation reflecting its overall usefulness in the past,
and an associative component reflecting its general useful-
ness in the current context. This associative component is a
weighted sum of the element connected with the current goal.
The probability of retrieval is an inverse exponential function
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of the activation and a given threshold, while the latency of a
chunk that is retrieved (i.e. that exceeds the threshold) is an
exponential function of the activation.

Procedural memory is encapsulated in the production sys-
tem which coordinates the overall operation of the architecture.
Whilst several productions may qualify to fire, only one pro-
duction is selected. This selection is called conflict resolution.
The production selected is the one with the highest utility, a
factor which is a function of an estimate of the probability that
the current goal will be achieved if this production is selected,
the value of the current goal, and an estimate of the cost of
selecting the production (typically proportional to time), both
of which are learned in a Bayesian framework from previous
experience with that production. In this way, ACT-R can adapt
to changing circumstances [121].

Declarative knowledge effectively encodes things in the
environment while procedural knowledge encodes observed
transformations; complex cognition arises from the interaction
of declarative and procedureal knowledge [125]. A central
feature of the ACT-R cognitive architecture is that these
two types of knowledge are tuned in specific application by
encoding the statistics of knowledge. Thus, ACT-R learns sub-
symbolic information by adjusting or tuning the knowledge
parameters. This sub-symbolic learning distiguishes ACT-R
from the symbolic (production-rule) learning of Soar.

Anderson et al. suggest that four of these five modules and
all four buffers correspond to distinct areas in the human brain.
Specifically, the goal buffer corresponds to the dorsolateral
pre-frontal cortex (DLPFC), the declarative module to the
temporal hippocampus, the retrieval buffer (which acts as the
interface between the delarative module and the production
system) to the ventrolateral pre-frontal cortex (VLPFC), the
visual buffer to the parietal area, the visual module to the oc-
cipital area, the manual buffer to the motor system, the manual
module to the motor system and cerebellum, the production
system to the basal ganglia. The goal module is not associated
with a specific brain area. Anderson et al. hypothesize that
part of the basal ganglia, the striatum, performs a pattern
recognition function. Another part, the pallidium, performs
a conflict resolution function, and the thalamus controls the
execution of the productions.

Like Soar, ACT-R has evolved significantly over several
years [125]. It is currently in Version 5.0 [7].

D. The ICARUS Cognitive Architecture

The ICARUS cognitive architecture [8], [139]–[141] follows
in the tradition of other cognitivist architectures, such ACT-
R, Soar, and EPIC, exploiting symbolic representations of
knowledge, the use of pattern matching to select relevant
knowledge elements, operation according to the conventional
recognize-act cycle, and an incremental approach to learning.
In this, ICARUS adheres strictly to the Newell and Simon’s
physical symbol system hypothesis [20] which states that
symbolic processing is a necessary and sufficient condition
for intelligent behaviour. However, ICARUS goes further and
claims that mental states are always grounded in either real
or imagined physical states, and vice versa that problem-
space symbolic operators always expand to actions that can

be effected or executed. Langley refers to this as the symbolic
physical system hypothesis. This assertion of the importance
of action and perception is similar to recent claims by others
in the cognitivist community such as Anderson et al. [7].

There are also some other important difference between
ICARUS and other cognitivist architectures. ICARUS distin-
guishes between concepts and skills, and devotes two dif-
ferent types of representation and memory for them, with
both long-term and short-term variants of each. Conceptual
memory encodes knowledge about general classes of objects
and relations among them whereas skill memory encodes
knowledge about ways to act and achieve goals. ICARUS
forces a strong correspondence between short-term and long-
term memories, with the latter containing specific instances
of the long-term structures. Furthermore, ICARUS adopts a
strongly hierarchical organization for its long-term memory,
with conceptual memory directing bottom-up inference and
skill memory structuring top-down selection of actions.

Langley notes that incremental learning is central to most
cognitivist cognitive architectures, in which new cognitive
structures are created by problem solving when an impasse is
encountered. ICARUS adopts a similar stance so that when
an execution module cannot find an applicable skill that
is relevant to the current goal, it resolves the impasse by
backward chaining.

E. ADAPT — A Cognitive Architecture for Robotics

Some authors, e.g. Benjamin et al. [142], argue that exist-
ing cognitivist cognitive architectures such as Soar, ACT-R,
and EPIC, don’t easily support certain mainstream robotics
paradigms such as adaptive dynamics and active perception.
Many robot programs comprise several concurrent distributed
communicating real-time behaviours and consequently these
architectures are not suited since their focus is primarily on
“sequential search and selection”, their learning mechanisms
focus on composing sequential rather than concurrent actions,
and they tend to be hierarchically-organized rather than dis-
tributed. Benjamin et al. don’t suggest that you cannot address
such issues with these architectures but that they are not
central features. They present a different cognitive architecture,
ADAPT — Adaptive Dynamics and Active Perception for
Thought, which is based on Soar but also adopts features
from ACT-R (such as long-term declarative memory in which
sensori-motor schemas to control perception and action are
stored) and EPIC (all the perceptual processes fire in parallel)
but the low-level sensory data is placed in short-term working
memory where it is processed by the cognitive mechanism.
ADAPT has two types of goals: task goals (such as ‘find the
blue object’) and architecture goals (such as ‘start a schema to
scan the scene’). It also has two types of actions: task actions
(such as ‘pick up the blue object’) and architectural actions
(such as ‘initiate a grasp schema’). While the architectural
part is restricted to allow only one goal or action at any
one time, the task part has no such restrictions and many
task goals and actions — schemas — can be operational
at the same time. The architectural goals and actions are
represented procedurally (with productions) while the task
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goals and actions are represented declaratively in working
memory as well as procedurally.

F. Autonomous Agent Robotics

Autonomous agent robotics (AAR) and behaviour-based
systems represents an emergent alternative to cognitivist ap-
proaches. Instead of a cognitive system architecture that is
based on a decomposition into functional components (e.g.
representation, concept formation, reasoning), an AAR ar-
chitecture is based on interacting whole systems. Beginning
with simple whole systems that can act effectively in simple
circumstances, layers of more sophisticated systems are added
incrementally, each layer subsuming the layers beneath it.
This is the subsumption architecture introduced by Brooks
[143]. Christensen and Hooker [114] argue that AAR is not
sufficient either as a principled foundation for a general theory
of situated cognition. One limitation includes the explosion
of systems states that results from the incremental integra-
tion of sub-systems and the consequent difficulty in coming
up with an initial well-tuned design to produce coordinated
activity. This in turn imposed a need from some form of
self-management, something not included in the scope of the
original subsumption architecture. A second limitation is that
it becomes increasingly problematic to rely on environmental
cues to achieve the right sequence of actions or activities as
the complexity of the task rises. AAR is also insufficient
for the creation of a comprehensive theory of cognition:
as the subsumption architecture can’t be scaled to provide
higher-order cognitive faculties (it can’t explain self-directed
behaviour) and even though the behaviour of an AAR system
may be very complex it is still ultimately a reactive system.

Christensen and Hooker note that Brooks has identified
a number of design principles to deal with these problems.
These include motivation, action selection, self-adaption, and
development. Motivation provides context-sensitive selection
of preferred actions, while coherence enforces an element of
consistency in chosen actions. Self-adaption effects continuous
self-calibration among the sub-systems in the subsumption
architecture, while development offers the possibility of in-
cremental open-ended learning.

We see here a complementary set of self-management pro-
cesses, signalling the addition of system-initiated contributions
to the overall interaction process and complementing the envi-
ronmental contributions that are typical of normal subsumption
architectures. It is worth remarking that this quantum jump in
complexity and organization is reminiscent of the transition
from level one autopoietic systems to level two, where the
central nervous system then plays a role in allowing the system
to perturb itself (in addition to the environmental perturbations
of a level 1 system).

G. A Global Workspace Cognitive Architecture

Shanahan [116], [144]–[146] proposes a biologically-
plausible brain-inspired neural-level cognitive architecture in
which cognitive functions such as anticipation and planning
are realized through internal simulation of interaction with
the environment. Action selection, both actual and internally

simulated, is mediated by affect. The architecture is based on
an external sensori-motor loop and an internal sensori-motor
loop in which information passes though multiple competing
cortical areas and a global workspace.

In contract to manipulating declarative symbolic represen-
tations as cognitivist architectures do, cognitive function is
achieved here through topographically-organized neural maps
which can be viewed as a form of analogical or iconic
representation whose structure is similar to the sensory input
of the system whose actions they mediate.

Shanahan notes that such analogical representations are
particularly appropriate in spatial cognition which is a crucial
cognitive capacity but which is notoriously difficult with
traditional logic-based approaches. He argues that the semantic
gap between sensory input and analogical representations is
much smaller than with symbolic language-like representations
and, thereby, minimize the difficulty of the symbol grounding
problem.

Fig. 3. The Global Workspace Theory cognitive architecture:
’winner-take-all’ coordination of competing concurrent processes
(from [144]).

Shanahan’s cognitive architecture is founded also upon
the fundamental importance of parallelism as a constituent
component in the cognitive process as opposed to being a
mere implementation issue. He deploys the global workspace
model [147], [148] of information flow in which a sequence
of states emerges from the interaction of many separate
parallel processes (see Figure 3). These specialist processes
compete and co-operate for access to a global workspace.
The winner(s) of the competition gain(s) controlling access
to the global access and can then broadcast information back
to the competing specialist processes. Shanahan argues that
this type of architecture provides an elegant solution to the
frame problem.

Shanahan’s cognitive architecture is comprised of the fol-
lowing components: a first-order sensori-motor loop, closed
externally through the world, and a higher-order sensori-
motor loop, closed internally through associative memories
(see Figure 3). The first-order loop comprises the sensory
cortex and the basal ganglia (controlling the motor cortex),
together providing a reactive action-selection sub-system. The
second-order loop comprises two associative cortex elements
which carry out off-line simulations of the system’s sensory
and motor behaviour, respectively. The first associative cortex
simulates a motor output while the second simulates the
sensory stimulus expected to follow from a given motor output.
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SC Sensory Cortex

MC Motor Cortex

BG Basal Ganglia (action selection)

AC Association Cortex

Am Amygdala (affect)

Fig. 4. The Global Workspace Theory cognitive architecture: achiev-
ing prospection by sensori-motor simulation (from [144]).

The higher-order loop effectively modulates basal ganglia
action selection in the first-order loop via an affect-driven
amygdala component. Thus, this cognitive architecture is able
to anticipate and plan for potential behaviour through the ex-
ercise of its “imagination” (i.e. its associative internal sensori-
motor simulation. The global workspace doesn’t correspond
to any particular localized cortical area. Rather, it is a global
communications network.

The architecture is implemented as a connectionist system
using G-RAMs: generalized random access memories [149].
Interpreting its operation in a dynamical framework, the global
workspace and competing cortical assemblies each define
an attractor landscape. The perceptual categories constitute
attactors in a state space that reflects the structure of the
raw sensory data. Prediction is achieved by allowing the
higher-order sensori-motor loop to traverse along a simulated
trajectory in that state space so that the global workspace visits
a sequence of attractors. The system has been validated in a
Webot [150] simulation environment.

H. Self-Directed Anticipative Learning

Christensen and Hooker propose a new emergent
interactivist-constructivist (I-C) approach to modelling
intelligence and learning: self-directed anticipative learning
(SDAL) [15]. This approach falls under the broad heading
of dynamical embodied approaches in the non-cognitivist
paradigm. They assert first the primary model for cognitive
learning is anticipative skill construction and that processes
that both guide action and improve the capacity to guide
action while doing so are taken to be the root capacity
for all intelligent systems. For them, intelligence is a
continuous management process that has to support the need
to achieve autonomy in a living agent, distributed dynamical
organization, and the need to produce functionally coherent
activity complexes that match the constraints of autonomy
with the appropriate organization of the environment across

space and time through interaction. In presenting their
approach they use the term “explicit norm signals” for the
signals that a system uses to differentiate an appropriate
context performing an action. These norm signals reflect
conditions for the (maintenance) of the system’s autonomy
(e.g. hunger signals depleted nutritional levels). The complete
set of norm signals is termed the norm matrix. They then
distinguish between two levels of management: low-order
and high-order. Low-order management employs norm
signals which differentiate only a narrow band of the overall
interaction process of the system (e.g. a mosquito uses heat
tracking and ��� � gradient tracking to seek blood hosts).
Since it uses only a small number of parameters to direct
action, success ultimately depends on simple regularity
in the environment. These parameters also tend to be
localized in time and space. On the other hand, high-order
management strategies still depend to an extent on regularity
in the environment but exploit parameters that are more
extended in time and space and use more aspects of the
interactive process, including the capacity to anticipate and
evaluate the system’s performance, to produce effective
action (and improve performance). This is the essence
of self-directedness. “Self-directed systems anticipate and
evaluate the interaction process and modulate system action
accordingly”. The major features of self-directedness are
action modulation (“generating the right kind of extended
interaction sequences”), anticipation (“who will/should the
interaction go?”, evaluation (“how did the evaluation go?”),
and constructive gradient tracking (“learning to improve
performance”).

I. A Self-Affecting Self-Aware (SASE) Cognitive Architecture

Weng [151]–[153] introduced an emergent cognitive archi-
tecture that is specifically focussed on the issue of development
by which he means that the processing accomplished by the
architecture is not specified (or programmed) a priori but is
the result of the real-time interaction of the system with the
environment including humans. Thus, the architecture is not
specific to tasks, which are unknown when the architecture
is created or programmed, but is capable of adapting and
developing to learn both the tasks required of it and the manner
in which to achieve the tasks.

Weng refers to his architecture as a Self-Aware Self-
Effecting (SASE) system (see Figure 5). The architecture
entails an important distinction between the sensors and ef-
fectors that are associated with the environment (including the
system’s body and thereby including proprioceptive sensing)
and those that are associated with the system’s ‘brain’ or
central nervous system (CNS). Only those systems that have
explicit mechanisms for sensing and affecting the CNS qualify
as SASE architectures. The implications for development
are significant: the SASE architecture is configured with no
knowledge of the tasks it will ultimately have to perform,
its brain or CNS are not directly accessible to the (human)
designers once it is launched, and after that the only way a
human can affect the agent is through the external sensors
and effectors. Thus, the SASE architecture is very faithful to
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Fig. 5. The Self-Aware Self-Effecting (SASE) architecture (from
[153]).

the emergent paradigms of cognition, especially the enactive
approach: its phylogeny is fixed and it is only through on-
togenetic development that the system can learn to operate
effectively in its environment.

The concept of self-aware self-effecting operation is similar
to the level 2 autopoietic organizational principles introduced
by Matura and Varela [45] (i.e. both self-production and
self-development) and is reminiscent of the recursive self-
maintenant systems principles of Bickhard [14] and Chris-
tensen’s and Hooker’s interactivist-constructivist approach to
modelling intelligence and learning: self-directed anticipative
learning (SDAL) [15]. Weng’s contribution differs in that
he provides a specific computational framework in which
to implement the architecture. Weng’s cognitive architecture
is based on Markov Decision Processes (MDP), specifically
a developmental observation-driven self-aware self-effecting
Markov Decision Process (DOSASE MDP). Weng places this
particular architecture in a spectrum of MDPs of varying
degrees of behavioural and cognitive complexity [152]; the
DOSASE MDP is type 5 of six different types of architecture
and is the first type in the spectrum that provides for a
developmental capacity. Type 6 builds on this to provide addi-
tional attributes, specifically greater abstraction, self-generated
contexts, and a higher degree of sensory integration.

The example DOSASE MDP vision system detailed in [151]
further elaborates on the cognitive architecture, detailing three
types of mapping in the information flow within the archi-
tecture: sensory mapping, cognitive mapping, and motor map-
ping. It is significant that there is more than one cognitive path-
way between the sensory mapping and the motor mapping, one
of which encapsulates innate behaviours (and the phylogically-
endowed capabilities of the system) while the other encapsu-
lates learned behaviours (and the ontogenetically-developed
capabilities of the system). These two pathways are mediated
by a subsumption-based motor mapping which accords higher
priority to the ontogenetically-developed pathway. A second
significant feature of the architecture is that it facilitates
what Weng refers to as “primed sensations” and “primed
action”. These correspond to predicitive sensations and actions
and thereby provide the system with the anticipative and

prospective capabilities that are the hallmark of cognition.
The general SASE schema, including the associated con-

cept of Autonomous Mental Development (AMD), has been
developed and validated in the context of two autonomous
developmental robotics systems, SAIL and DAV [151], [152],
[154], [155].

J. Darwin: Neuromimetic Robotic Brain-Based Devices

Kirchmar et al. [16], [156]–[160] have developed a series
of robot platforms called Darwin to experiment with develop-
mental agents. These systems are ‘brain-based devices’ BBDs
which that exploit a simulated nervous system that can develop
spatial and episodic memory as well as recognition capabilities
through autonomous experiential learning. As such, BDDs are
a neuromimetic approach in the emergent paradigm that is
most closely aligned with the enactive and the connectionist
models. It differs from most connectist approaches in that the
architecture is much more strongly modelled on the structure
and organization of the brain than are conventional artificial
neural networks, i.e. they focus on the nervous system as a
whole, its constituent parts, and their interaction, rather than on
a neural implementation of some individual memory, control,
or recognition function.

The principal neural mechanisms of the BDD approach
are synaptic plasticity, a reward (or value) system, reentrant
connectivity, dynamic synchronization of neuronal activity,
and neuronal units with spatiotemporal response properties.
Adaptive behaviour is achieved by the interaction of these
neural mechanisms with sensorimotor correlations (or con-
tingencies) which have been learned autonomously by active
sensing and self-motion.

Darwin VIII is capable of discriminating reasonably simple
visual targets (coloured geometric shapes) by associating it
with an innately preferred auditory cue. Its simulated ner-
vous system contains 28 neural areas, approximately 54,000
neuronal units, and approximately 1.7 million synaptic con-
nections. The architecture comprises regions for vision (V1,
V2, V4, IT), tracking (C), value or saliency (S), and au-
dition (A). Gabor filtered images, with vertical, horizontal,
and diagonal selectivity, and red-green colour filters with on-
centre off-surround and off-centre on-surround receptive fields,
are fed to V1. Sub-regions of V1 project topographically to
V2 which in turn projects to V4. Both V2 and V4 have
excitatory and inhibitory reentrant connections. V4 also has
a non-topographical projection back to V2 as well as a
non-topographical projection to IT, which itself has reentrant
adaptive connections. IT also projects non-toographically back
to V4. The tracking area (C) determines the gaze direction of
Darwin VIII’s camera based on excitatory projections from
the auditory region A. This causes Darwin to orient toward a
sound source. V4 also projects topographically to C causing
Darwin VIII to centre its gaze on a visual object. Both IT
and the value system S have adaptive connections to C which
facilitates the learned target selection. Adaptation is effected
using the Hebbian-like Bienenstock-Cooper-Munroe (BCM)
rule [161]. From a behavioural perspective, Darwin VIII is
conditioned to prefer one target over others by associating it
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with the innately peferred auditory cue and to demonstrate this
preference by orienting towards the target.

Darwin IX can navigate and categorize textures using arti-
ficial whiskers based on a simulated neuroanatomy of the rat
somatosensory system, comprising 17 areas, 1101 neuronal
units, and approximately 8400 synaptic connections.

Darwin X is capable of developing spatial and episodic
memory based on a model of the hippocampus and sur-
rounding regions. Its simulated nervous system contains 50
neural areas, 90,000 neural units, and 1.4 million synaptic
connections. It includes a visual system, head direction system,
hippocampal formation, basal forebrain, a value/reward system
based on dopaminegic function, and an action selection sys-
tem. Vision is used to recognize objects and then compute their
position, while odometry is used to develop head direction
sensitivity.

K. A Humanoid Robot Cognitive Architecture

Burghart et al. [162] present a hybrid cognitive architecture
for a humanoid robot. It is based on interacting parallel
behaviour-based components, comprising a three-level hierar-
chical perception sub-system, a three-level hierarchical task
handling system, a long-term memory sub-system based on
a global knowledge database (utilizing a variety of represen-
tational schemas, including object ontologies and geometric
models, Hidden Markov Models, and kinematic models), a
dialogue manager which mediates between perception and
task planning, an execution supervisor, and an ‘active models’
short-term memory sub-system to which all levels of percep-
tion and task management have access. These active models
play a central role in the cognitive architecture: they are
initialized by the global knowledge database and updated by
the perceptual sub-system and can be autonomously actualized
and reorganized. The perception sub-system comprises a three-
level hierarchy with low, mid, and high level perception
modules. The low-level perception module provides sensor
data interpretation without accessing the central system knowl-
edge database, typically to provide reflex-like low-level robot
control. It communicates with both the mid-level perception
module and the task execution module. The mid-level per-
ception module provides a variety of recognition components
and communicates with both the system knowledge database
(long-term memory) as well as the active models (short-
term memory). The high-level perception module provides
more sophisticated interpretation facilities such as situation
recognition, gesture interpretation, movement interpretation,
and intention prediction.

The task handling sub-system comprises a three-level hier-
archy with task planning, task coordination, and task execution
levels. Robot tasks are planned on the top symbolic level using
task knowledge. A symbolic plan consists of a set of actions,
represented either by XML-files or Petri nets, and acquired
either by learning (e.g. through demonstration) or by program-
ming. The task planner interacts with the high-level perception
module, the (long-term memory) system knowledge database,
the task coordination level, and an execution supervisor. This
execution supervisor is responsible for the final scheduling of

the tasks and resource management in the robot using Petri
nets. A sequence of actions is generated and passed down to
the task coordination level which then coordinates (deadlock-
free) tasks to be run a the lowest task execution (control) level.
In general, during the execution of any given task, the task
coordination level works independently of the task planning
level.

A dialogue manager, which coordinates communication
with users and interpretation of communication events, pro-
vides a bridge between the perception sub-system and the task
sub-system. Its operation is effectively cognitive in the sense
that it provides the functionality to recognize the intentions
and behaviours of users.

A learning sub-system is also incorporated with the robot
currently learning tasks and action sequences off-line by pro-
gramming by demonstration or tele-operation; on-line learning
based on imitation are envisaged. As such, this key component
represents work in progress.

L. The Cerebus Architecture

Horswill [163], [164] argues that classical artificial intelli-
gence systems such as those in the tradition of Soar, ART-R,
and EPIC, are not well suited for use with robots. Traditional
systems typically store all knowledge centrally in a symbolic
database of logical assertions and reasoning is concerned
mainly with searching and sequentially updating that database.
However, robots are distributed systems with multiple sensory,
reasoning, and motor control proceses all running in parallel
and often only loosely coupled with one another. Each of these
processes maintains its own separate and limited representation
of the world and the task at hand and he argues that it is
not realistic to require them to constantly synchronize with a
central knowledge base.

Recently, much the same argument has been made by
neuroscientists about the structure and operation of the brain.
For example, evidence suggest that space perception is not
the result of a single circuit, and in fact derives from the
joint activity of several fronto-parietal circuits, each of which
encodes the spatial location and transforms it into a potential
action in a distinct and motor-specific manner [137], [138]. In
other words, the brain encodes space not in a single unified
manner — there is no general purpose space map — but in
many different ways, each of which is specifically concerned
with a particular motor goal. Different motor effectors need
different sensory input: derived in different ways and dif-
ferently encoded in ways that are particular to the different
effectors. Conscious space perception emerges from these
different pre-existing spatial maps.

Horswill contends also that the classical reasoning systems
don’t have any good way of directing perceptual attention:
they either assume that all the relevant information is already
stored in the database or they provide a set of actions that fire
task-specific perceptual operators to update specific parts of
the database (just as, for example, happens in ACT-R). Both
of these approaches are problematic: the former fall foul of
the frame problem (the need to differentiate the significant in
a very large data-set and then generalize to accommodate new
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data) and the second requires that the programmer design the
rule based to ensure that the appropriate actions are fired in
the right circumstances and at the right time; see also similar
arguments by Christensen and Hooker [114].

Horswill argues that keeping all of the distinct models or
representations in the distributed processes or sub-systems
consistent needs to be a key focus of the overall architecture
and that is should be done without sychronizing with a central
knowledge base. They propose a hybrid cognitive architec-
ture, Cerebus, that combines the tenets of behaviour-based
architectures with some features of symbolic AI (forward-
and backward-chaining inference using predicate logic). It
represents an attempt to scale behaviour-based robots (e.g.
see Brooks [143] and Arkin [165]) without resorting to a
traditional central planning system. It combines a set of
behaviour-based sensory-motor systems with a marker-passing
semantic network and an inference network. The semantic
network effects long-term declarative memory, providing re-
flective knowledge about its own capabilities, and the inference
network allows it to reason about its current state and control
processes. Together they implement the key feature of the
Cerebus architecture: the use of reflective knowledge about its
perceptual-motor systems to perform limited reasoning about
its own capabilities.

M. Cog: Theory of Mind

Cog [166] is an upper-torso humanoid robot platform for
research on developmental robotics. Cog has a pair of six
degree-of-freedom arms, a three degree-of-freedom torso, and
a seven degree-of-freedom head and neck. It has a narrow and
wide angle binocular vision system (comprising four colour
cameras), an auditory system with two microphones, a three-
degree of freedom vestibular system, and a range of haptic
sensors.

As part of this project, Scassellati has put forward a proposal
for a Theory of Mind for Cog [167] that focusses on social
interaction as a key aspect of cognitive function in that social
skills require the attribution of beliefs, goals, and desires to
other people.

A robot that possesses a theory of mind would be capable
of learning from an observer using normal social signals and
would be capable of expressing its internal state (emotions,
desires, goals) though social (non-linguistic) interactions. It
would also be capable of recognizing the goals and desires of
others and, hence, would be able to anticipate the reactions of
the observer and modify its own behaviour accordingly.

Scassellati’s proposed architecture is based on Leslie’s
model of Theory of Mind [168] and Baron-Cohen’s model of
Theory of Mind [169] both of which decompose the problem
into sets of precursor skills and developmental modules,
albeit in a different manner. Leslie’s Theory of Mind em-
phasizes independent domain specific modules to distinguish
(a) mechanical agency, (b) actional agency, and (c) attitudinal
agency; roughly speaking the behaviour of inanimate objects,
the behaviour of animate objects, and the beliefs and intentions
of animate objects. Baron-Cohen’s Theory of Mind comprises
three four modules, one of which is concerned with the in-
terpretation of perceptual stimuli (visual, auditory, and tactile)

associated with self-propelled motion, and one of which is
concerned with the interpretation of visual stimuli associated
with eye-like shapes. Both of these feed a shared attention
module which in turn feed a Theory of Mind module that
represents intentional knowledge or ‘epistemic mental states’
of other agents.

The focus Scassellati’s Theory of Mind for Cog, at least
initially, is on the creation of the precursor perceptual and
motor skills upon which more complex theory of mind ca-
pabilities can be built: distinguishing between inanimate and
animate motion and identifying gaze direction. These exploit
several built-in visual capabilities such as colour saliency de-
tection, motion detection, skin colour detection, and disparity
estimation, a visual search and attention module, and visuo-
motor control for saccades, smooth-pursuit, vestibular-ocular
reflex, as well as head and neck movement and reaching. The
primitive visuo-motor behaviours, e.g. for finding faces and
eyes, are based on embedded motivational drives and visual
search strategies.

N. Kismet

The role of emotion and expressive behaviour in regulat-
ing social interaction between humans and robots has been
examined by Breazeal using an articulated anthropomorphic
robotic head called Kismet [170], [171]. Kismet has a total
of 21 degree-of-freedom, three to control the head orientation,
three to direct the gaze, and fifteen to control the robots facial
features (e.g. eye-lids, eyebrows, lips, and ears). Kismet has
a narrow and wide angle binocular vision system (comprising
four colour cameras), and two microphones, one mounted in
each ear. Kismet is designed to engage people in natural and
expressive face-to-face interaction, perceiving a natural social
cues and responding through gaze direction, facial expression,
body posture, and vocal babbling.

Breazeal argues that emotions provide an important mech-
anism for modulating system behaviour in response to envi-
ronmental and internal states. They prepare and motivate a
system to respond in adaptive ways and serve as reinforcers
in learning new behaviour, and act as a mechanism for
behavioural homeostasis. The ultimate goal of Kismet is to
learn from people though social engagement, although Kismet
does not yet have any adaptive (i.e. learning or developmental)
or anticipatory capabilites.

Kismet has two types of motivations: drives and emotions.
Drives establish the top-level goals of the robot: to engage
people (social drive), to engage toys (stimulation drive), and
to occasionally rest (fatigue drive). The robot’s behaviour is
focussed on satiating its drives. These drives have a longer
time constant compared with emotions. and they operate
cyclically: increasing in the absence of satisfying interaction
and diminishing with habituation. The goal is to keep the drive
level somewhere in a homeostatic region between under stim-
ulation and over stimulation. Emotions — anger & frustration,
disgust, fear & distress, calm, joy, sorrow, surprise, interest,
boredom — elicit specific behavioural responses such as
complain, withdraw, escape, display pleasure, display sorrow,
display startled response, re-orient, and seek, in effect tending
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to cause the robot to come into contact with things that
promote its “well-being” and avoid those that don’t. Emotions
are triggered by pre-specified antecedent conditions which are
based on perceptual stimuli as well as the current drive state
and behavioural state.

Kismet has five distinct modules in its cognitive architec-
ture: a perceptual system, an emotion system, a behaviour
system, a drive system, and a motor system (see Figure 6).

The perceptual system comprises a set of low-level pro-
cesses which sense visual and auditory stimuli, perform feature
extraction (e.g. colour, motion, frequency), extract affective
descriptions from speech, orient visual attention, and localize
relevant features such as faces, eyes, objects, etc.. These are
input to a high level perceptual system where, together with
affective input from the emotion system, input from the drive
system and the behaviour system, they are bound by releaser
processes ‘that encode the robot’s current set of beliefs about
the state of the robot and its relation to the world. There are
many different kinds of releasers, each of which is ‘hand-
crafted’ by the system designer. When the activation level of
a releaser exceeds a given threshold (based on the perceptual,
affective, drive, and behavioural inputs) it is output to the
emotion system for appraisal. Breazeal says that ‘each releaser
can be thought of as a simple “cognitive” assessment that
combines lower-level perceptual features with measures of
its internal state into behaviorally significant perceptual cat-
egories’ [171]. The appraisal process tags the releaser output
with pre-specified (i.e. designed-in) affective information on
their arousal (how much it stimulates the system), valence
(how much it is favoured), and stance (how approachable
it is). These are then filtered by ‘emotion elicitor’ to map
each AVS (arousal, valence, stance) triple onto the individual
emotions. A single emotion is then selected by a winner-take-
all arbitration process, and output to the behaviour system
and the motor system to evoke the appropriate expression and
posture.

Kismet is a hybrid system in the sense that it uses
quintessentially cognitivist rule-based schemas to determine,
e.g., the antecedent conditions, the operation of the emotion
releasers, the affective appraisal, etc. but allows the system
behaviour to emerge from the dynamic interaction between
these sub-systems.

IV. COMPARISON

Table III shows a summary of all the architectures reviewed
vis-à-vis a subset of the twelve characteristics of cognitive
systems which we discussed in Section II. We have omit-
ted the first five characteristics — Computation Operation,
Representational Framework, Semantic Grounding, Temporal
Constraints, and Inter-agent Epistemology — because these
can be inferred directly by the paradigm in which the system
is based: cognitivist, emergent, or hybrid, denoted by a C, E,
or H in in Table III. A ‘ � ’ indicates that the characteristic
is strongly addressed in the architecture, ‘ � ’ indicates that
it is weakly addressed, and a space indicates that it is not
addressed at all in any substantial manner. A ‘ � ’ is assigned
under the heading of Adaptation only if the system is capable
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Fig. 6. The Kismet cognitive architecture (from [171]).
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Cog: Theory of Mind H � � � �
Kismet H � � � �

TABLE III

COGNITIVE ARCHITECTURES vis-à-vis THE SEVEN OF THE TWELVE

CHARACTERISTICS OF COGNITIVE SYSTEMS.

of development (in the sense of creating new representational
frameworks or models) rather than simple learning (in the
sense of model parameter estimation) [151].

V. THE DEVELOPMENTAL STANCE: AUTONOMY,
ADAPTATION, LEARNING, AND MOTIVATION

1) Development: Development implies the progressive ac-
quisition of predictive anticipatory capabilities by a system
over its lifetime through experiential learning. As we have
seen, development requires some ground from which to de-
velop — a phylogenetic configuration — as well as motiva-
tions to drive the development.

In the emergent paradigm, the phylogeny must facilitate
the autonomy of the system and, in particular, the coupling
of the system with its environment, through perception and
action, and the self-organization of the system as a distinct en-
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tity. This complementary perception/action coupling and self-
organization is termed co-determination. Co-determination
arises from the autonomous nature of a cognitive system and
it reflects the fact that an autonomous system defines itself
through a process of self-organization and subjugates all other
processes to the preservation of that autonomy [101]. However,
it also reflects the fact that all self-organizing systems have
an environment in which they are embedded, from which
they make themselves distinct, and which is conceived by
the autonomous system in whatever way is supportive of this
autonomy-preserving process. In this way, the system and the
environment are co-specified: the cognitive agent is determined
by its environment by its need to sustain its autonomy in the
face of environmental perturbations and at the same time the
cognitive process determines what is real or meaningful for the
agent, for exactly the same reason. In a sense, co-determination
means that the agent constructs its reality (its world) as a result
of its operation in that world.

Maturana and Varela introduced a diagrammatic way of
conveying the self-organized autonomous nature of a co-
determined system, perturbing and being perturbed by its
environment [45]: see figure 7. The arrow circle denotes the
autonomy and self-organization of the system, the rippled line
the environment, and the bi-directional half-arrows the mutual
perturbation.

Fig. 7. Maturana and Varela’s ideograms to denote autopoietic and
operationally-closed systems. These systems exhibit co-determination
and self-development, respectively. The diagram on the left denotes
an autopoietic system: the arrow circle denotes the autonomy, self-
organization, and self-production of the system, the rippled line the
environment, and the bi-directional half-lines the mutual perturbation
— structural coupling — between the two. The diagam on the right
denotes an operationally-closed autonomous system with a central
nervous system. This system is capable of development by means of
self-perturbation — self-modification — of its the nervous system,
so that it can accommodate a much larger space of effective system
action.

Co-determination requires then that the system is capable of
being autonomous as an entity. That is, it has a self-organizing
process that is capable of coherent action and perception: that
it possesses the essentials of survival and development. This
is exactly what we mean by the phylogenetic configuration
of a system: the innate capabilities of an autonomous system
with which it is equipped at the outset. This, then, forms
the ground for subsequent self-development. A co-determined
autonomous system has a restricted range of behavioural
capabilities and hence a limited degree of autonomy.

Self-development is identically the cognitive process of
establishing and enlarging the possible space of mutually-

consistent couplings in which a system can engage or with-
stand whilst maintaining (or increasing) its autonomy. It is
the development of the system over time in an ecological and
social context as it expands its space of structural couplings
that nonetheless must be consistent with the maintenance of
self-organization. Self-development requires additional plastic-
ity of the self-organizational processes. The space of percep-
tual possibilities is predicated not on an absolute objective
environment, but on the space of possible actions that the
system can engage in whilst still maintaining the consistency
of the coupling with the environment. These environmental
perturbations don’t control the system since they are not
components of the system (and, by definition, don’t play
a part in the self-organization) but they do play a part in
the ontogenetic development of the system. Through this
ontogenetic development, the cognitive system develops its
own epistemology, i.e. its own system-specific history- and
context-dependent knowledge of its world, knowledge that
has meaning exactly because it captures the consistency and
invariance that emerges from the dynamic self-organization
in the face of environmental coupling. Put simply, the sys-
tem’s actions define its perceptions but subject to the strong
constraints of continued dynamic self-organization. Again, it
comes down to the preservation of autonomy, but this time
doing so in an every increasing space of autonomy-preserving
couplings.

This process of development is achieved through self-
modification by virtue of the presence of a central nervous
system: not only does environment perturb the system (and
vice versa) but the system also perturbs itself and the central
nervous system adapts as a result. Consequently, the system
can develop to accommodate a much larger space of effective
system action. This is captured in a second ideogram of
Maturana and Varela (see figure 7) which adds a second arrow
circle to the autopoiesis ideogram to depict the process of self-
perturbation and self-modification.

Self-development and co-determination together correspond
to Thelen’s view that perception, action, and cognition form
a single process of self-organization in the specific context of
environmental perturbations of the system [172]. Thus, we can
see that, from this perspective, cognition is inseparable from
‘bodily action’ [172]: without physical embodied exploration,
a cognitive system has no basis for development. Emergent
systems, by definition, must be embodied and embedded
in their environment in a situated historical developmental
context [12].

It is important to emphasize that development occurs in
a very special way. Action, perception, and cognition are
tightly coupled in development: not only does action organize
perception and cognition, but perception and cognition are
also essential for organizing action. Actions systems do not
appear ready-made. Neither are they primarily determined
by experience. They result from both the operation of the
central nervous system and the subject’s dynamic interactions
with the environment. Perception, cognition, and motivations
develop at the interface between brain processes and actions.
Consequently, cognition can be viewed as the result of a
developmental process through which the system becomes
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progressively more skilled and acquires the ability to un-
derstand events, contexts, and actions, initially dealing with
immediate situations and increasingly acquiring a predictive
or prospective capability. This dependency on exploration and
development is one of the reasons why some argue that the
embodied system requires a rich space of manipulation and
locomotion actions [47].

We note in passing that the concept of co-determination
is rooted in the Maturana’s and Varela’s idea of structural
coupling of level one autopoietic systems14 [45], is similar
to Kelso’s circular causality of action and perception each
a function of the other as the system manages its mutual
interaction with the world [13], and reflect’s the organizational
principles inherent in Bickhard’s self-maintenant systems [14].
The concept of self-development is mirrored in Bickhard’s
concept of recursive self-maintenance [14] and has its roots in
Maturana’s and Varela’s level two and level three autopoietic
systems [45].

In summary, the development of action and perception,
the development of the nervous system, and the develop-
ment (growth) of the body, all mutually influence each
other as increasingly-sophisticated and increasingly prospec-
tive (future-oriented) capabilities in solving action problems
are learned [173].

2) Learning and Motivation: Development depends cru-
cially on motivations which define the goals of actions. The
two most important motives that drive actions and devel-
opment are social and explorative. Social motives include
comfort, security, and satisfaction. There are at least two
exploratory motives, one involving the discovery of novelty
and regularities in the world, and one involving finding out
about the potential of one’s own actions.

Expanding one’s repertoire of actions is a powerful mo-
tivation, overriding efficacy in achieving a goal (e.g. the
development of bi-pedal walking, and the retention of head
motion in gaze even in circumstances when ocular control
would be more effective). Equally, the discovery of what
objects and events afford in the context of new actions is a
strong motivation.

The view that exploration is crucial to ontogenetic devel-
opment is supported by research findings in developmental
psychology. For example, von Hofsten has pointed out that it
isn’t necessarily success at achieving task-specific goals that
drives development in neonates but rather the discovery of
new modes of interaction: the acquisition of a new way of
doing something through exploration [173], [174]. In order to
facilitate exploration of new ways of doing things, one must
suspend current skills. Consequently, ontogenetic development
differs from learning in that (a) it must inhibit existing abilities,
and (b) it must be able to cater for (and perhaps effect)
changes in the morphology or structure of the system [175].
The inhibition does not imply a loss of learned control but an
inhibition of the link between a specific sensory stimulus and
a corresponding motor response.

14Autopoiesis is a special type of self-organization: an autopoietic system
is a homeostatic system (i.e. self-regulating system) but one in which the
regulation applies not to some system parameter but to the organization of
the system itself [45], [101].

In addition to the development of skills through exploration
(reaching, grasping, and manipulating what’s around it), there
are two other very important ways in which cognition devel-
ops. These are imitation [176], [177] and social interaction,
including teaching [178].

Unlike other learning methods such as reinforcement learn-
ing, imitation — the ability to learn new behaviours by
observing the actions of others — allows rapid learning [177].
Metzoff and Moore [179], [180] suggest that infants learn
through imitation in four phases:

1) body babbling, involving playful trial-and-error move-
ments;

2) imitation of body movements;
3) imitation of actions on objects;
4) imitation based on inferring intentions of others.

Neonates use body babbling to learn a rich “act space” in
which new body configurations can be interpolated although
its significant that even at birth newborn infants can imitiate
body movements [177]. The developmental progress of imita-
tion follows tightly that of the development of other interactive
and communicative skills, such as joint attention, turn taking
and language [181]–[183]. Imitation is one of the key stages
in the development of more advanced cognitive capabilities.

It is important to understand what exactly we mean here
by the term ‘interaction’. Interaction is a shared activity in
which the actions of each agent influence the actions of the
other agents engaged in the same interaction, resulting in a
mutually constructed pattern of shared behavior [184]. This
definition is consistent with the emergent cognition paradigm
discussed above, especially the co-constructed nature of the
interaction, inspired by concepts of autopoiesis and structural
coupling [100]. This aspect of mutually constructed patterns of
complementary behavior is also emphasized in Clark’s notion
of joint action [185]. According to this definition explicit
meaning is not necessary for anything to be communicated
in an interaction, it is simply important that the agents are
mutually engaged in a sequence of actions. Meaning emerges
through shared consensual experience mediated by interation.

Development and motivation aside, mechanisms to effect
self-modification — or learning — are still required.

Three types of learning can be distinguished: supervised
learning in which the teaching signals are directional error
signals, reinforcement learning in which the teaching signals
are scalar rewards or reinforcement signals, and unsuper-
vised learning with no teaching signals. Doya argues that
the cerebellum is specialized for supervised learning, basal
ganglia for reinforcement learning, and the cerebral cortex for
unsupervised learning [186]. He suggests that in developing
(cognitive) architectures, the supervised learning modules in
the cerebellum can be used as an internal model of the
environment and as short-cut models of input-output mappings
that have been acquired elsewhere in the brain. Reinforcement
learning modules in the basal ganglia are used to evaluate a
given state and thereby to select an action. The unsupervised
modules in the cerebral cortex represent the state of the
external environment as well as internal context, providing also
a common representational framework for the cerebellum and
the basal ganglia which have no direct anatomical connections.
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Irrespective of the exact details of Doya’s model, what is
significant is that different regions facilitate different types of
learning and that these regions and the learning processes are
interdependent. For example, McClelland et al. have suggested
that the hippocampal formation and the neo-cortex form a
complementary system for learning [187]. The hippocampus
facilitates rapid auto- and hetero-associative learning which
is used to reinstate and consolidate learned memories in the
neo-cortex in a gradual manner. In this way, the hippocampal
memory can be viewed not just as a memory store but as
a ‘teacher of the neo-cortical processing system’. Note also
that the reinstatement can occur on-line, thereby enabling the
overt control of behavioural responses, as well as off-line in,
e.g. active rehearsal, reminiscence, and sleep.

In a similar vein, Rougier has proposed and validated an
architecture for an auto-associative memory based on the
organization of the hippocampus, involving the entorhinal
cortex, the dentate gyrus, CA3, and CA1 [188]. A feature of
this architecture is that it avoids the catastrophic interference
problem normally linked to associative memories through
the use of redundancy, orthogonalization, and coarse coding
representations. Rougier too notes that the hippocampus plays
a role in ‘teaching’ the neo-cortex, i.e. in the formation of
neocortical representations.

Different types of development require different learning
mechanisms. Innate behaviours are honed through continu-
ous knowledge-free reinforcement-like learning in a process
somewhat akin to parameter estimation. On the other hand,
new skills develop through a different form of learning, driven
not just by conventional reward/punishment cost functions
(positive and negative feedback) but through spontaneous
unsupervised play and exploration which are not directly
reinforced [189], [190].

In summary, cognitive skills emerge progressively through
ontogenetic development as it learns to make sense of its world
through exploration, through manipulation, imitation, and so-
cial interaction, including communication [47]. Proponents of
the enactive approach would add the additional requirement
that this development take place in the context of a circular
causality of action and perception, each a function of the other
as the system manages its mutual interaction with the world:
essentially self-development of action and perception, and co-
determination of the system through self-organization in an
ecological and social context.

To conclude, Winograd and Flores [24] capture the essence
of developmental emergent learning very succinctly:

‘Learning is not a process of accumulation of rep-
resentations of the environment; it is a continu-
ous process of transformation of behaviour through
continuous change in the capacity of the nervous
system to synthesize it. Recall does not depend on
the indefinite retention of a structural invariant that
represents an entity (an idea, image, or symbol),
but on the functional ability of the system to cre-
ate, when certain recurrent conditions are given, a
behaviour that satisfies the recurrent demands or
that the observer would class as a reenacting of a
previous one’.

3) Perception/Action Co-Dependency: An Example of Self-
Development: It has been shown that perception and action
in biological systems are co-dependent. For example, spatial
attention is dependent on oculomotor programming: when the
eye is positioned close to the limit of its rotation, and therefore
cannot saccade in any further in one direction, visual attention
in that direction is attenuated [191]. This premotor theory
of attention applies not only to spatial attention but also to
selective attention in which some object rather than others are
more apparent. For example, the ability to detect an object
is enhanced when features or the appearance of the object
coincide with the grasp configuration of a subject preparing
to grasp an object [192]. In other words, the subject’s actions
conditions its perceptions. Similarly, the presence of a set of
neurons — mirror neurons — is often cited as evidence of
the tight relationship between perception and action [193],
[194]. Mirror neurons are activated both when an action is
performed and when the same or similar action is observed
being performed by another agent. These neurons are specific
to the goal of the action and not the mechanics of carrying it
out [173]. Furthermore, perceptual development is determined
by the action capabilities of a developing child and on what
observed objects and events afford in the context of those
actions [173], [195].

A practical example of a system which exploits this co-
dependency in a developmental setting can be found in [87].
This is a biologically-motivated system that learns goal-
directed reaching using colour-segmented images derived from
a retina-like log-polar sensor camera. The system adopts a de-
velopmental approach: beginning with innate inbuilt primitive
reflexes, it learns sensorimotor coordination. The system oper-
ates as follows. By assuming that a fixation point represents the
object to be reached for, the reaching is effected by mapping
the eye-head proprioceptive data to the arm control parameters.
The control itself is implemented as a multi-joint synergy by
using the control parameters to modulate a linear combination
of basis torque fields, each torque field describing the torque to
be applied to an actuator or group of actuators to achieve some
distinct equilibrium point where the acuator position is stable.
That is, the eye-hand motor commands which direct the gaze
towards a fixation point are used to control the arm motors,
effecting what is referred to in the paper as “motor-motor
coordination”. The mapping between eye-head proprioceptive
data (joint angular positions) and the arm control parameters is
learned by fixating on the robot hand during a training phase.

A similar but more extensive biologically-motivated system,
modelled on brain function and cortical pathways and exploit-
ing optical flow as its primary visual stimulus, demonstrates
the development of object segmentation, recognition, and
localization capabilities without any prior knowledge of visual
appearance though exploratory reaching and simple manipu-
lation [112]. The system also exhibits the ability to learn a
simple object affordance and use it to mimic the actions of
another (human) agent. The working hypothesis is that action
is required for object recognition in cases where the system
has to develop the object classes or categories autonomously.
The inherent ambiguity in visual perception can be resolved by
acting upon the environment that is perceived. Development
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starts with reaching, and proceeds through grasping, and ulti-
mately to object recognition. Training the arm-gaze controller
is effected in much the same way as in [87] but in this case,
rather than using colour segmentation, the arm is segmented
by seeking optical flow that is correlated with arm movements
(specifically, during training, by correlating discontinuities in
arm movement as it changes direction of motion with temporal
discontinuities in the flow field. Segmentation of (movable)
objects is effected also by optical flow by poking the object
and detecting regions in the flow field that are also correlated
with arm motion, but which can’t be attributed to the arm itself.
Objects that are segmented by poking can them be classified
using colour histograms of the segmented regions. A simple
affordance — rolling behaviour when poked — is learned by
computing the probability of a normalized direction of motion
when the object is poked (normalization is effected by taking
the difference between the principal axis of the object and
the angle of motion). The effect of different poking gestures
on objects is then learned for each gesture by computing the
probability density function (a histogram, in effect) of the
direction of motions averaged over all objects. There are four
gestures in all: pull in, push away, backslap, and side tap.
When operating in a non-exploratory mode, object recognition
is effected by colour histogram matching, localization by
histogram back-projection, and orientation by estimating the
principal axis by comparison of the segmented object with
learned prototypes. The robot then selects an action (one of the
four gestures) by finding the preferred rolling direction (from
its learned affordances) adding it to the current orientation and
then choosing the gesture which has the highest probability
associated with resultant direction. Mimicry (which differs
from imitation, the latter being associated with learning new
behaviour, and the former with repeating known behaviour
[176]) is effected by presenting the robot with an object and
performing an action on it. This “action to be imitated” activity
is flagged by detecting motion in the neighbourhood of the
fixation point, reaching by the robot is then inhibited, and the
effect of the action of the object is observed using optical flow
and template matching. When the object is presented again a
second time, the poking action that is most likely to reproduce
the rolling affordance is selected. It is assumed that this is
exactly what one would expect of a mirror-neuron type of
representation of perception and action. Mirror neurons can
be thought of as an “associative map that links together the
observation of a manipulative action performed by someone
else with the neural representation of one’s own actions”.

VI. IMPLICATIONS FOR THE AUTONOMOUS

DEVELOPMENT OF MENTAL CAPABILITIES IN

COMPUTATIONAL SYSTEMS

We finish this survey by drawing together the main issues
raised in the foregoing and we summarize some of the key
features that a system capable of autonomous mental develop-
ment, i.e. an artificial cognitive system, should exhibit, espe-
cially those that adhere to a developmental approach. However,
before doing this, it might be opportune to remark first on
the dichotomy between cognitivist and emergent systems. As

we have seen, there are some fundamental differences these
two general paradigms — the principalled disembodiment
of physical symbol systems vs. the mandatory embodiment
of emergent developmental systems [48], and the manner in
which cognitivist systems often preempt development by em-
bedding externally-derived domain knowledge and processing
structures, for example — but the gap between the two shows
some signs of narrowing. This is mainly due (i) to a fairly
recent movement on the part of proponents of the cognitivist
paradigm to assert the fundamentally important role played by
action and perception in the realization of a cognitive system;
(ii) to the move away from the view that internal symbolic
representations are the only valid form of representation [10];
and (iii) to the weakening of the dependence on embedded
a priori knowledge and the attendant increased reliance on
machine learning and statistical frameworks both for tuning
system parameters and the acquisition of new knowledge both
for the representation of objects and the formation of new
representations. However, cognitivist systems still have some
way to go to address the issue of true ontogenetic development
with all that it entails for autonomy, embodiment, architecture
plasticity, and system-centred construction of knowledge me-
diated by exploratory and social motivations and innate value
systems.

Krichmar et al. identify six design principles for systems
that are capable of development [16], [156], [159]. Although
they present these principles in the context of their brain-based
devices, most are directly applicable to emergent systems in
general. First, they suggest that the architecture should address
the dynamics of the neural element in different regions of
the brain, the structure of these regions, and especially the
connectivity and interaction between these regions. Second,
they note that the system should be able to effect perceptual
categorization: i.e. to organize unlabelled sensory signals of
all modalities into categories without a priori knowledge or
external instruction. In effect, this means that the system
should be autonomous and, as noted by Weng [151], p. 206,
a developmental system should be a model generator, rather
than a model fitter (e.g. see [196]). Third, a developmental
system should have a physical instantiation, i.e. it should be
embodied, so that it is tightly coupled with its own morphology
and so that it can explore its environment. Fourth, the system
should engage in some behavioural task and, consequently, it
should have some minimal set of innate behaviours or reflexes
in order to explore and survive in its initial environmental
niche. From this minimum set, the system can learn and
adapt so that it improves15 its behaviour over time. Fifth,
developmental systems should have a means to adapt. This
implies the presence of a value system (i.e. a set of motivations
that guide or govern its development). These should be non-
specific16 modulatory signals that bias the dynamics of the
system so that the global needs of the system are satisfied:
in effect, so that its autonomy is preserved or enhanced. Such
value systems might possibly be modelled on the value system
of the brain: dopaminergic, cholinergic, and noradrenergic

15Krichmar et al. say ‘optimizes’ rather than ’improves’.
16Non-specific in the sense that they don’t specify what actions to take.
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systems signalling, on the basis of sensory stimuli, reward
prediction, uncertainty, and novelty. Krichmar et al. also note
that brain-based devices should lend themselves to comparison
with biological systems.

And so, with both the foregoing survey and these design
principles, what conclusions can we draw?

First, a developmental cognitive system will be constituted
by a network of competing and cooperating distributed multi-
functional sub-systems (or cortical circuits), each with its
own limited encoding or representational framework, together
achieving the cognitive goal of effective behaviour, effected
either by some self-synchronizing mechanism or by some
modulation circuit. This network forms the system’s phylo-
genetic configuration and its innate abilities.

Second, a developmental cognitive architecture must be ca-
pable of adaptation and self-modification, both in the sense of
parameter adjustment of phylogenetic skills through learning
and, more importantly, through the modification of the very
structure and organization of the system itself so that it is
capable of altering its system dynamics based on experience,
to expand its repertoire of actions, and thereby adapt to
new circumstances. This development should be driven by
both explorative and social motives, the first concerned with
both the discovery of novel regularities in the world and the
potential of the system’s own actions, the second with inter-
agent interaction, shared activities, and mutually-constructed
pattern’s of shared behaviour. A variety of learning paradigms
will need to be recruited to effect development, including, but
not necessarily limited to, unsupervised, reinforcement, and
supervised learning.

Third, and because cognitive systems are not only adaptive
but also anticipatory and prospective, it is crucial that they
have (by virtue of their phylogeny) or develop (by virtue
of their ontogeny) some mechanism to rehearse hypothetical
scenarios — explicitly like Anderson’s ACT-R architecture
[7] or implicitly like Shanahan’s global workspace dynamical
architecture [144] — and a mechanism to then use this to
modulate the actual behaviour of the system.

Finally, developmental cognitive systems have to be embod-
ied, at the very least in the sense of stuctural coupling with
the environment and probably in some stronger organismoid
form [197], [198], if the epistemological understanding of the
developed systems is required to be consistent with that of
other cognitive agents such as humans [3]. What is clear,
however, is that the complexity and sophistication of the
cognitive behaviour is dependent on the richness and diversity
of the coupling and therefore the potential richness of the
system’s actions.

Ultimately, for both cognitivist and emergent paradigms,
development (i.e. ontogeny), is dependent on the system’s phy-
logenetic configuration as well as its history of interactions and
activity. Exactly what phylogenetic configuration is required
for the autonomous development of mental capabilities —
i.e. for the construction of artificial cognitive systems with
mechanisms for perception, action, adaptation, anticipation,
and motivation that enable its ontogenetic development over its
life-time — remains an open question. Hopefully, this survey
will go some way towards answering it.
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