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This paper reports about our investigation on action understanding in the 
brain. We review recent results of the neurophysiology of the mirror system 
in the monkey. Based on these observations we propose a model of this 
brain system which is responsible for action recognition. The link between 
object affordances and action understanding is considered. To support our 
hypothesis we describe two experiments where some aspects of the model 
have been implemented. In the first experiment an action recognition system 
is trained by using data recorded from human movements. In the second 
experiment, the model is partially implemented on a humanoid robot which 
learns to mimic simple actions performed by a human subject on different 
objects. These experiments show that motor information can have a signifi-
cant role in action interpretation and that a mirror-like representation can be 
developed autonomously as a result of the interaction between an individual 
and the environment.
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. Introduction

Animals continuously act on objects, interact with other individuals, clean their 
fur or scratch their skin and, in fact, actions represent the only way they have to 
manifest their desires and goals. However, actions do not constitute a semantic 
category such as trees, objects, people or buildings: the best way to describe a 
complex act to someone else is to demonstrate it directly (Jeannerod, 1988). 
This is not true for objects such as trees or buildings that we describe by using 
size, weight, color, texture, etc. In other words we describe ‘things’ by using 
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visual categories and ‘actions’ by using motor categories. Actions are defined 
as ‘actions’ because they are external, physical expressions of our intentions. 
It is true that often actions are the response to external contingencies and/or 
stimuli but it is also certainly true that — at least in the case of human beings 
— actions can be generated on the basis of internal aims and goals; they are 
possibly symbolic and not related to immediate needs. Typical examples of this 
last category include most communicative actions.

Perhaps one of the first attempts of modeling perception and action as a 
whole was started decades ago by Alvin Liberman who initiated the construc-
tion of a ‘speech understanding’ machine (Liberman, Cooper, Shankweiler, & 
Studdert-Kennedy, 1967; Liberman & Mattingly, 1985; Liberman & Wahlen, 
2000). As one can easily imagine, the first effort of Liberman’s team was di-
rected at analyzing the acoustic characteristics of spoken words, to investigate 
whether the same speech event, as uttered by different subjects in different 
contexts, possessed any common invariant phonetic percept.1 Soon Liberman 
and his colleagues realized that speech recognition on the basis of acoustic 
cues alone was beyond reach with the limited computational power available 
at that time. Somewhat stimulated by the negative result, they put forward the 
hypothesis that the ultimate constituents of speech (the events of speech) are 
not sounds but rather articulatory gestures that have evolved exclusively at the 
service of language. As Liberman states:

“A result in all cases is that there is not, first, a cognitive representation of the 
proximal pattern that is modality-general, followed by a translation to a par-
ticular distal property; rather, perception of the distal property is immediate, 
which is to say that the module2 has done all the hard work (Liberman & Mat-
tingly, 1985, page 7)”.

This elegant idea was however strongly debated at the time mostly because 
it was difficult to test, validation through the implementation on a computer 
system was impossible, and in fact only recently has the theory gained support 
from experimental evidence (Fadiga, Craighero, Buccino, & Rizzolatti, 2002; 
Kerzel & Bekkering, 2000).

Why is it that, normally, humans can visually recognize actions (or, acous-
tically, speech) with a recognition rate of about 99–100%? Why doesn’t the 
inter-subject variability typical of motor behavior pose a problem for the brain 
while it is troublesome for machines? Sadly, if we had to rank speech recogni-
tion software by human standards, even our best computers would be regarded 
at the level of an aphasic patient. One possible alternative is for Liberman to be 
right and that speech perception and speech production use a common reper-
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toire of motor primitives that during production are at the basis of the genera-
tion of articulatory gestures, and during perception are activated in the listener 
as the result of an acoustically-evoked motor “resonance” (Fadiga, Craighero, 
Buccino, & Rizzolatti, 2002; Wilson, Saygin, Sereno, & Iacoboni, 2004).

Perhaps it is the case that if the acoustic modality were replaced, for ex-
ample, by vision then this principle would still hold. In both cases, the brain 
requires a “resonant” system that matches the observed/heard actions to the 
observer/listener motor repertoire. It is interesting also to note that an animal 
equipped with an empathic system of this sort would be able to automatically 
“predict”, to some extent, the future development of somebody else’s action on 
the basis of the onset of the action and the implicit knowledge of its dynam-
ics. Recent neurophysiological experiments show that such a motor resonant 
system indeed exists in the monkey’s brain (Gallese, Fadiga, Fogassi, & Riz-
zolatti, 1996). Most interesting, this system is located in a premotor area where 
neurons not only discharge during action execution but to specific visual cues 
as well.

The remainder of the paper is organized to lead the reader from the ba-
sic understanding of the physiology of the mirror system, to a formulation of 
a model whose components are in agreement with what we know about the 
neural response of the rostroventral premotor area (area F5), and finally to the 
presentation of a set of two robotic experiments which elucidate several aspects 
of the model. The model presented in this paper is used to lay down knowledge 
about the mirror system rather than being the subject of direct neural network 
modelling. The two experiments cover different parts of the model but there is 
not a full implementation as such yet. The goal of this paper is that of present-
ing these results, mainly robotics, into a common context.

2. Physiological properties of monkey rostroventral premotor area (F5)

Area F5 forms the rostral part of inferior premotor area 6 (Figure 1). Elec-
trical microstimulation and single neuron recordings show that F5 neurons 
discharge during planning/execution of hand and mouth movements. The two 
representations tend to be spatially segregated with hand movements mostly 
represented in the dorsal part of F5, whereas mouth movements are mostly 
located in its ventral part. Although not much is known about the functional 
properties of “mouth” neurons, the properties of “hand” neurons have been 
extensively investigated.
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2. Motor neurons

Rizzolatti and colleagues (Rizzolatti et al., 1988) found that most of the hand-
related neurons discharge during goal-directed actions such as grasping, ma-
nipulating, tearing, and holding. Interestingly, they do not discharge during 
finger and hand movements similar to those effective in triggering them, when 
made with other purposes (e.g., scratching, pushing away). Furthermore, many 
F5 neurons are active during movements that have an identical goal regardless 
of the effector used to attain them. Many grasping neurons discharge in as-
sociation with a particular type of grasp. Most of them are selective for one of 
the three most common monkey grasps: precision grip, finger prehension, and 
whole hand grasping. Sometimes, there is also specificity within the same gen-
eral type of grip. For instance, within the whole hand grasping, the prehension 
of a sphere is coded by neurons different from those coding the prehension of 
a cylinder. The study of the temporal relation between the neural discharge 
and the grasping movement showed a variety of behaviors. Some F5 neurons 
discharge during the whole action they code; some are active during the open-
ing of the fingers, some during finger closure, and others only after the contact 
with the object. A typical example of a grasping neuron is shown in Figure 2. In 
particular, this neuron fires during precision grip (Figure 2, top) but not dur-
ing whole hand grasping (Figure 2, bottom). Note that the neuron discharges 
both when the animal grasps with its right hand and when the animal grasps 
with its left hand.
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Taken together, these data suggest that area F5 forms a repository (a “vo-
cabulary”) of motor actions. The “words” of the vocabulary are represented by 
populations of neurons. Each indicates a particular motor action or an aspect 
of it. Some indicate a complete action in general terms (e.g., take, hold, and 
tear). Others specify how objects must be grasped, held, or torn (e.g., precision 
grip, finger prehension, and whole hand prehension). Finally, some of them 
subdivide the action in smaller segments (e.g., fingers flexion or extension).

2.2 Visuomotor neurons

Some F5 neurons in addition to their motor discharge, respond also to the 
presentation of visual stimuli. F5 visuomotor neurons pertain to two com-
pletely different categories. Neurons of the first category discharge when the 
monkey observes graspable objects (“canonical” F5 neurons, (Murata et al., 

Figure 2.
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1997; Rizzolatti et al., 1988; Rizzolatti & Fadiga, 1998)). Neurons of the second 
category discharge when the monkey observes another individual making an 
action in front of it (Di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; 
Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Rizzolatti, Fadiga, Gallese, & Fo-
gassi, 1996). For these peculiar “resonant” properties, neurons belonging to the 
second category have been named “mirror” neurons (Gallese, Fadiga, Fogassi, 
& Rizzolatti, 1996).

The two categories of F5 neurons are located in two different sub-regions 
of area F5: “canonical” neurons are mainly found in that sector of area F5 bur-
ied inside the arcuate sulcus, whereas “mirror” neurons are almost exclusively 
located in the cortical convexity of F5 (see Figure 1).

2.2. Canonical neurons
Recently, the visual responses of F5 “canonical” neurons have been re-exam-
ined using a formal behavioral paradigm, which allowed testing the response 
related to object observation both during the waiting phase between object 
presentation and movement onset and during movement execution (Murata 
et al., 1997). The results showed that a high percentage of the tested neurons, 
in addition to the “traditional” motor response, responded also to the visual 
presentation of 3D graspable object. Among these visuomotor neurons, two 
thirds were selective to one or few specific objects.

Figure 3A shows the responses of an F5 visually selective neuron. While 
observation and grasping of a ring produced strong responses, responses to 
the other objects were modest (sphere) or virtually absent (cylinder). Figure 3B 
(object fixation) shows the behavior of the same neuron of Figure 3A during 
the fixation of the same objects. In this condition the objects were presented 
as during the task in Figure 2A, but grasping was not allowed and, at the go-
signal, the monkey had simply to release a key. Note that, in this condition, 
the object is totally irrelevant for task execution, which only requires the de-
tection of the go-signal. Nevertheless, the neuron strongly discharged at the 
presentation of the preferred object. To recapitulate, when visual and motor 
properties of F5 neurons are compared, it becomes clear that there is a strict 
congruence between the two types of responses. Neurons that are activated 
when the monkey observes small sized objects discharge also during precision 
grip. In contrast, neurons selectively active when the monkey looks at large 
objects discharge also during actions directed towards large objects (e.g. whole 
hand prehension).
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2.2.2 Mirror neurons
Mirror neurons are F5 visuomotor neurons that activate when the monkey 
both acts on an object and when it observes another monkey or the experi-
menter making a similar goal-directed action (Di Pellegrino, Fadiga, Fogassi, 
Gallese, & Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). Re-
cently, mirror neurons have been found also in area PF of the inferior pari-
etal lobule, which is bidirectionally connected with area F5 (Fogassi, Gallese, 
Fadiga, & Rizzolatti, 1998). Therefore, mirror neurons seem to be identical to 
canonical neurons in terms of motor properties, but they radically differ from 
the canonical neurons as far as visual properties are concerned (Rizzolatti & 
Fadiga, 1998). The visual stimuli most effective in evoking mirror neurons dis-
charge are actions in which the experimenter’s hand or mouth interacts with 
objects. The mere presentation of objects or food is ineffective in evoking mir-
ror neurons discharge. Similarly, actions made by tools, even when conceptu-
ally identical to those made by hands (e.g. grasping with pliers), do not activate 
the neurons or activate them very weakly. The observed actions which most 
often activate mirror neurons are grasping, placing, manipulating, and hold-
ing. Most mirror neurons respond selectively to only one type of action (e.g. 
grasping). Some are highly specific, coding not only the type of action, but 

Figure 3.
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also how that action is executed. They fire, for example, during observation of 
grasping movements, but only when the object is grasped with the index finger 
and the thumb.

Typically, mirror neurons show congruence between the observed and ex-
ecuted action. This congruence can be extremely precise: that is, the effective 
motor action (e.g. precision grip) coincides with the action that, when seen, 
triggers the neurons (e.g. precision grip). For other neurons the congruence 
is somehow weaker: the motor requirements (e.g. precision grip) are usually 
stricter than the visual ones (any type of hand grasping). One representative of 
the highly congruent mirror neurons is shown in Figure 4.

3. A model of area F5 and the mirror system

The results summarized in the previous sections tell us of the central role of F5 
in the control and recognition of manipulative actions: the common interpre-
tation proposed by (Luppino & Rizzolatti, 2000) and (Fagg & Arbib, 1998) con-
siders F5 a part of a larger circuit comprising various areas in the parietal lobe 
(a large reciprocal connection with AIP), indirectly from STs (Perrett, Mistlin, 
Harries, & Chitty, 1990) and other premotor and frontal areas (Luppino & Riz-
zolatti, 2000). Certainly F5 is strongly involved in the generation and control of 
action indirectly through F1, and directly by projecting to motor and medullar 
interneurons in the spinal cord (an in-depth study is described in (Shimazu, 
Maier, Cerri, Kirkwood, & Lemon, 2004)). A good survey of the physiology of 
the frontal motor cortex is given in (Rizzolatti & Luppino, 2001).

A graphical representation of the F5 circuitry is shown in Figure 5. In par-
ticular, we can note how the response of F5 is constructed of various elements 
these being the elaboration of object affordances (canonical F5 neurons and 
AIP), of the visual appearance of the hand occurring in the Superior Temporal 
sulcus region (STs), and of the timing, synchronization of the action (Luppino 
& Rizzolatti, 2000). Parallel to F5-AIP, we find the circuit formed by F4-VIP 
that has been shown to correlate to the control of reaching. Further, a degree 
of coordination between these circuits is needed since manipulation requires 
both a transport and a grasping ability (Jeannerod, Arbib, Rizzolatti, & Sakata, 
1995).

In practice, the parieto-frontal circuit can be seen as the transformation 
of the visual information about objects into its motor counterpart, and with 
the addition of the Inferior Temporal (IT) and Superior Temporal Sulcus (STs) 
areas, this description is completed with the semantic/identity of objects and 
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the state of the hand. This description is also in good agreement with previous 
models such as the FARS (Fagg, Arbib, Rizzolatti, and Sakata model) and MN1 
(Mirror Neuron model 1) (Fagg & Arbib, 1998). Our model is different in try-
ing to explicitly identify a developmental route to mirror neurons by looking at 
how these different transformations could be learned without posing implau-
sible constraints.

The model of area F5 we propose here revolves around two concepts that 
are likely related to the development of this unique area of the brain. The mir-
ror system has a double role being both a controller (70% of the neurons of 
F5 are pure motor neurons) and a “classifier” system (being activated by the 
sight of specific grasping actions). If we then pose the problem in terms of un-
derstanding how such a neural system might actually autonomously develop 
(be shaped and learned by/through experience during ontogenesis), the role of 
canonical neurons — and in general that of contextual information specifying 
the goal of the action — has to be reconsidered. Since purely motor, canonical, 
and mirror neurons are found together in F5, it is very plausible that local con-
nections determine part of the activation of F5.

3. Controller–predictor formulation

For explanatory purpose, the description of our model of the mirror system 
can be divided in two parts. The first part describes what happens in the actor’s 
brain, the second what happens in the observer’s brain when watching the ac-
tor (or another individual). As we will see the same structures are used both 
when acting and when observing an action.

Figure 5.
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We consider first what happens from the actor’s point of view (see Figure 6): 
in her/his perspective, the decision to undertake a particular grasping action is 
attained by the convergence in area F5 of many factors including context and 
object related information. The presence of the object and of contextual infor-
mation bias the activation of a specific motor plan among many potentially 
relevant plans stored in F5. The one which is most fit to the context is then 
enacted through the activation of a population of motor neurons. The motor 
plan specifies the goal of the motor system in motoric terms and, although not 
detailed here, we can imagine that it also includes temporal information. Con-
textual information is represented by the activation of F5’s canonical neurons 
and by additional signals from parietal (AIP for instance) and other frontal 
areas (mesial or dorsal area 6) as in other models of motor control systems 
(Fagg & Arbib, 1998; Haruno, Wolpert, & Kawato, 2001; Oztop & Arbib, 2002). 
For example, the contextual information required to switch from one model to 
another (determining eventually the grasp type) is represented exactly by the 
detection of affordances performed by AIP-F5.

With reference to Figure 6, our model hypothesizes that the intention to 
grasp is initially “described” in the frontal areas of the brain in some internal 
reference frame and then transformed into the motor plan by an appropriate 
controller in premotor cortex (F5). The action plan unfolds mostly open loop 
(i.e. without employing feedback). A form of feedback (closed loop) is required 
though to counteract disturbances and to learn from mistakes. This is obtained 
by relying on a forward or direct model that predicts the outcome of the action 
as it unfolds in real-time. The output of the forward model can be compared 
with the signals derived from sensory feedback, and differences accounted for 
(the cerebellum is believed to have a role in this (Miall, Weir, Wolpert, & Stein, 
1993; Wolpert & Miall, 1996)). A delay module is included in the model to take 
into account the different propagation times of the neural pathways carrying 
the predicted and actual outcome of the action. Note that the forward model 
is relatively simple, predicting only the motor output in advance: since motor 
commands are generated internally it is easy to imagine a predictor for these 
signals. The inverse model (indicated with VMM for Visuo-Motor Map), on 
the other hand, is much more complicated since it maps sensory feedback (vi-
sion mainly) back into motor terms. Visual feedback clearly includes both the 
hand-related information (STs response) and the object information (AIP, IT, 
F5 canonical). Finally the predicted and the sensed signals arising from the 
motor act are compared and their difference (feedback error) sent back to the 
controller.
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There are two ways of using the mismatch between the planned and ac-
tual action: (i) compensate on the fly by means of a feedback controller, and 
(ii) adjust over longer periods of time through learning (Kawato, Furukawa, & 
Suzuki, 1987).

The output of area F5, finally activates the motor neurons in the spinal cord 
(directly or indirectly through medullar circuits) to produce the desired action. 
This is indicated in the schematics by a connection to appropriate muscular 
synergies representing the spinal cord circuits.

Learning of the direct and inverse models can be carried out during onto-
genesis by a procedure of self-observation and exploration of the state space of 
the system: grossly speaking, simply by “detecting” the sensorial consequences 
of motor commands — examples of similar procedures are well known in the 
literature of computational motor control (Jordan & Rumelhart, 1992; Kawato, 
Furukawa, & Suzuki, 1987; Wolpert, 1997). Learning of the affordances of ob-
jects with respect to grasping can also be achieved autonomously by a trial and 
error procedure, which explores the consequences of many different actions 
of the agent’s motor repertoire (different grasp types) to different objects. This 
includes things such as discovering that small objects are optimally grasped by 
a pinch or precision grip, while big and heavy objects require a power grasp.

In the observer situation (see Figure 7) motor and proprioceptive informa-
tion is not directly available. The only readily available information is vision or 
sound. The central assumption of our model is that the structure of F5 could be 
co-opted in recognizing the observed actions by transforming visual cues into 
motor information as before. In practice, the inverse model is accessed by visu-
al information and since the observer is not acting herself, visual information 

Figure 6.
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is directly reaching in parallel the sensorimotor primitives in F5. Only some 
of them are actually activated because of the “filtering” effect of the canonical 
neurons and other contextual information (possibly at a higher level, knowl-
edge of the actor, etc.). A successive filtering is carried out by considering the 
actual visual evidence of the action being watched (implausible hand postures 
should be weighed less than plausible ones). This procedure could be used then 
to recognize the action by measuring the most active motor primitive. It is im-
portant to note that canonical neurons are known to fire when the monkey is 
fixating an object irrespective of the actual context (tests were performed with 
the object behind a transparent screen or the monkey restrained to the chair).

Comparison is theoretically done, in parallel, across all the active motor 
primitives (actions); the actual brain circuitry is likely to be different with 
visual information setting the various F5 populations to certain equilibrium 
states. The net effect can be imagined as that of many comparisons being per-
formed in parallel and one motor primitive resulting predominantly activated 
(plausible implementations of this mechanism by means of a gating network is 
described in (Y. Demiris & Johnson, 2003; Haruno, Wolpert, & Kawato, 2001). 
While the predictor–controller formulation is somewhat well-established and 
several variants have been described in the literature (Wolpert, Ghahramani, & 
Flanagan, 2001), the evidence on the mirror system we reviewed earlier seems 
to support the idea that many factors, including the affordances of the target 
object, determine the recognition and interpretation of the observed action.

The action recognition system we have just outlined can be interpreted by 
following a Bayesian approach (Lopes & Santos-Victor, 2005). The details of 
the formulation are reported in the Appendix I.

3.2 Ontogenesis of mirror neurons

The presence of a goal is fundamental to elicit mirror neuron responses (Gal-
lese, Fadiga, Fogassi, & Rizzolatti, 1996) and we believe it is also particularly 

Figure 7.
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important during the ontogenesis of the mirror system. Supporting evidence 
is described in the work of Woodward and colleagues (Woodward, 1998) who 
have shown that the identity of the target is specifically encoded during reach-
ing and grasping movements: in particular, already at nine months of age, in-
fants recognized as novel an action directed toward a novel object rather than 
an action with a different kinematics, thus showing that the goal is more fun-
damental than the enacted trajectory.

The Bayesian interpretation we detail in Appendix I is substantially a su-
pervised learning model. To relax the hypothesis of having to “supervise” the 
machine during training by indicating which action is which, we need to re-
mind ourselves of the significance of the evidence on mirror neurons. First of 
all, it is plausible that the ‘canonical’ representation is acquired by self explora-
tion and manipulation of a large set of different objects. F5 canonical neurons 
represent an association between objects’ physical properties and the actions 
they afford: e.g. a small object affords a precision grip, or a coffee mug affords 
being grasped by the handle. This understanding of object properties and the 
goal of actions is what can be subsequently factored in while disambiguating 
visual information. There are at least two levels of reasoning: i) certain actions 
are more likely to be applied to a particular object — that is, probabilities can 
be estimated linking each action to every object, and ii) objects are used to 
perform actions — e.g. the coffee mug is used to drink coffee. Clearly, we tend 
to use actions that proved to lead to certain results or, in other words, we trace 
backward the link between action and effects: to obtain the effects apply the 
same action that earlier led to those effects.

Bearing this is mind, when observing some other individual’s actions; our 
understanding can be framed in terms of what we already know about actions. 
In short, if I see someone drinking from a coffee mug then I can hypothesize 
that a particular action (that I know already in motor terms) is used to obtain 
that particular effect (of drinking). This link between mirror neurons and the 
goal of the motor act is clearly present in the neural responses observed in the 
monkey. It is a plausible way of autonomously learning a mirror representation. 
The learning problem is still a supervised3 one but the information can now be 
collected autonomously through a procedure of exploration of the environ-
ment. The association between the canonical response (object-action) and the 
mirror one (including vision) is made when the observed consequences (or 
goal) are recognized as similar in the two cases — self or the other individual 
acting. Similarity can be evaluated following different criteria ranging from 
kinematic (e.g. the object moving along a certain trajectory) to very abstract 
(e.g. social consequences such as in speech).
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Finally, also the Visuo-Motor Map (VMM) as already mentioned can be 
learned through a procedure of self exploration. Motor commands and corre-
lated visual information are two quantities that are readily available to the de-
veloping infant. It is easy to imagine a procedure that learns the inverse model 
on the basis of this information.

4. A machine with hands

The simplest way of confirming the hypothesis that motor gestures are the basis 
of action recognition, as amply discussed in the previous sections, is to equip a 
computer with means of “acting” on objects, collect visual and motor data and 
build a recognition system that embeds some of the principles of operation 
that we identified in our model (see Figure 8). In particular, the hypothesis we 
would like to test is whether the extra information available during learning 
(e.g. kinesthetic and tactile) can improve and simplify the recognition of the 
same actions when they are just observed: i.e. when only visual information is 
available. Given the current limitations of robotic systems the simplest way to 
provide “motor awareness” to a machine is by recording grasping actions of 
human subjects from multiple sources of information including joint angles, 
spatial position of the hand/fingers, vision, and touch. In this sense we speak of 
a machine (the recognition system) with hands.

For this purpose we assembled a computerized system composed of a cy-
ber glove (CyberGlove by Immersion), a pair of CCD cameras (Watek 202D), 
a magnetic tracker (Flock of birds, Ascension), and two touch sensors (FSR). 
Data was sampled at frame rate, synchronized, and stored to disk by a Pentium 
class PC. The cyber glove has 22 sensors and allows recording the kinematics 
of the hand at up to 112Hz. The tracker was mounted on the wrist and provides 
the position and the orientation of the hand in space with respect to a base 
frame. The two touch sensors were mounted on the thumb and index finger to 
detect the moment of contact with the object. Cameras were mounted at ap-
propriate distance with respect to their focal length to acquire the execution of 
the whole grasping action with maximum possible resolution.

The glove is lightweight and does not limit in any way the movement of the 
arm and hand as long as the subject is sitting not too far from the glove interface. 
Data recording was carried out with the subject sitting comfortably in front of a 
table and performing grasping actions naturally toward objects approximately 
at the center of the table. Data recording and storage were carried out through 
a custom-designed application; Matlab was employed for post-processing.
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We collected a large data set and processing was then performed off-line. 
The selected grasping types approximately followed Napier’s taxonomy (Na-
pier, 1956) and for our purpose they were limited to only three types: power 
grasp (cylindrical), power grasp (spherical), and precision grip. Since the goal 
was to investigate to what extent the system could learn invariances across dif-
ferent grasping types by relying on motor information for classification, the 
experiment included gathering data from a multiplicity of viewpoints. The da-
tabase contains objects which afford several grasp types to assure that recogni-
tion cannot simply rely on exclusively extracting object features. Rather, ac-
cording to our model, this is supposed to be a confluence of object recognition 
with hand visual analysis. Two exemplar grasp types are shown in Figure 9: on 
the left panel a precision grip using all fingers; on the right one a two-finger 
precision grip.

A set of three objects was employed in all our experiments: a small glass 
ball, a rectangular solid which affords multiple grasps, and a large sphere re-
quiring power grasp. Each grasping action was recorded from six different sub-
jects (right handed, age 23–29, male/female equally distributed), and moving 

Figure 8.
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the cameras to 12 different locations around the subject including two different 
elevations with respect to the table top which amounts to 168 sequences per 
subject. Each sequence contains images of the scene from the two cameras syn-
chronized with the cyber glove and the magnetic tracker data. This is the data 
set that is used for building the Bayesian classifier outlined in the Appendix I 
(Lopes & Santos-Victor, 2005).

The visual features were extracted from pre-processed image data. The 
hand was segmented from the images through a simple color segmentation 
algorithm. The bounding box of the segmented region was then used as a refer-
ence to map the view of the hand to a standard reference size. The orientation 
of the color blob in the image was also used to rotate the hand to a standard ori-
entation. This data set was then filtered through Principal Component Analy-
sis (PCA) by maintaining only a limited set of eigenvectors corresponding to 
the first 2 to 15 largest eigenvalues.

One possibility to test the influence of motor information in learning ac-
tion recognition is to contrast the situation where motor-kinesthetic informa-
tion is available in addition to visual information with the control situation 
where only visual information is available.

The first experiment uses the output of the VMM as shown in Section 3.1 
and thus employed motor features for classification. The VMM was approxi-
mated from data by using a simple backpropagation neural network with 

Figure 9.
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sigmoidal units. The input of the VMM was the vector of the mapping of the 
images onto the space spanned by the first N PCA vectors; the output was the 
vector of joint angles acquired from the data glove.

As a control, a second experiment employed the same procedure but the 
VMM, and thus the classification was performed in visual space. The result of 
the two experiments is reported in the following Table 2.

The experiments were set up by dividing the database in two parts and train-
ing the classifier on one half and testing on the other. The number of training 
sequences is different since we chose to train the classifier with the maximum 
available data but from all points of view only in the control experiment. The 
clearest result of this experiment is that the classification in motor space is easier 
and thus the classifier performs better on the test set. Also, the number of Gauss-
ians required by the EM algorithm to approximate the likelihood as per equation 
(1) within a given precision is smaller for the experiment than the control (1–2 
vs. 5–7): that is, the distribution of data is more “regular” in motor space than in 
visual space. This is to be expected since the variation of the visual appearance of 
the hand is larger and depends strongly on the point of view, while the sequence 
of joint angles tends to be the same across repetitions of the same action. It is 
also clear that in the experiment the classifier is much less concerned with the 
variation of the data since this variation has been taken out by the VMM.

Overall, our interpretation of these results is that by mapping in motor 
space we are allowing the classifier to choose features that are much better 
suited for performing optimally, which in turn facilitates generalization. The 
same is not true in visual space.

Table . Summary of the results of the experiments. Left: motor information is avail-
able to the classifier. Right: only visual information is used by the classifier. Training 
was always performed with all available sequences after partitioning the data into 
equally-sized training and test set.

Experiment (motor space) Control (visual space)
Training

# of sequences 24 (+ VMM) 64
# of points of view  1  4
Classification rate (on the 
training set)

98% 97%

Test
# of sequences 96 32
# of points of view  4  4
Classification rate 97% 80%
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5. Robotic experiment

Following the insight that it might be important to uncover the sequence of de-
velopmental events that moves either the machine or humans to a motoric rep-
resentation of observed actions, we set forth to the implementation of a complete 
experiment on a humanoid robot called Cog (Brooks, Breazeal, Marjanović, & 
Scassellati, 1999). This is an upper-torso human shaped robot with 22 degrees of 
freedom distributed along the head, arms and torso (Figure 10). It lacks hands, 
it has instead simple flippers that could use to push and prod objects. It cannot 
move from its stand so that the objects it interacted with had to be presented 
to the robot by a human experimenter. The robot is controlled by a distributed 
parallel control system based on a real-time operating system and running on 
a set of Pentium based computers. The robot is equipped with cameras (for 
vision), gyroscopes simulating the human vestibular system, and joint sensors 
providing information about the position and torque exerted at each joint.

The aim of experimenting on the humanoid robot was that of showing that 
a mirror neuron-like representation could be acquired by simply relying on the 
information exchanged during the robot-environment interaction. This proof 
of concept can be used to analyze the gross features of our model or evidence 

Figure 0.
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any lacuna in it. We were especially interested in determining a plausible se-
quence that starting from minimal initial hypotheses steers the system toward 
the construction of units with responses similar to mirror neurons. The re-
sulting developmental pathway should gently move the robot through probing 
different levels of the causal structure of the environment. Table 2 shows four 
levels of this causal structure and some intuition about the areas of the brain 
related to these functions. It is important to note as the complexity of causation 
evolves from strict synchrony to more delayed effects and thus it becomes more 
difficult to identify and learn anything from. Naturally, this is not to say that 
the brain develops following this step-like progression. Rather, brain develop-
ment is thought to be fluidic, messy, and above all dynamic (Thelen & Smith, 
1998); the identification of “developmental levels” here simplifies though our 
comprehension of the mechanisms of learning and development.

The first level in Table 2 suggests that learning to reach for externally iden-
tified objects requires the identification of a direct causal chain linking the gen-
eration of action to its immediate and direct visual consequences. Clearly, in 
humans the development of full-blown reaching requires also the simultaneous 
development of visual acuity, binocular vision and, as suggested by Bertenthal 
and von Hofsten (Bertenthal & von Hofsten, 1998), the proper support of the 
body freeing the hand and arm from its supporting role.

Only when reaching has developed then the interaction between the hand 
and the external world might start generating useful and reliable responses 
from touch and grasp. This new source of information requires simultaneously 

Table 2. degrees of causal indirection, brain areas and function in the brain (this table 
has been compiled from the data in (Rizzolatti & Luppino, 2001).

Level Nature of 
causation

Brain areas Function and 
behavior

Time profile

1 Direct causal chain VC-(VIP/7b)-F4-F1 Reaching Strict synchrony
2 On level of 

indirection
VC-AIP-F5-F1 Object affor-

dances, grasping 
(rolling in this 
experiment)

Fast onset upon 
contact, potential 
for delayed effects

3 Complex causation 
involving multiple 
causal chains

VC-AIP-F5-F1-STs-IT Mirror neurons, 
mimicry

Arbitrarily 
delayed onset and 
effects

4 Complex causation 
involving multiple 
instances of ma-
nipulative acts

STs-TE-TEO-F5-AIP Object recogni-
tion

Arbitrarily 
delayed onset and 
effects
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new means of detecting causally connected events since the initiation of an 
action causes certain delayed effects. The payoff is particularly rich, since in-
teraction with objects leads to the formation of a “well defined” concept of 
objecthood — this, in robotics, is a tricky concept as it has been discussed for 
example in (Metta & Fitzpatrick, 2003).

It is interesting to study subsequently whether this same knowledge about 
objects and the interaction between the hand and objects could be exploited in 
interpreting actions performed by others. It leads us to the next level of causal 
understanding where the delay between the acquisition of object knowledge 
and the exploitation of this knowledge when observing someone else might be 
very large. If any neural unit is active in these two situations (both when acting 
and observing) then it can be regarded in all respects as a “mirror” unit.

Finally we mention object recognition as belonging to an even higher level 
of causal understanding where object identity is constructed by repetitive ex-
posure and manipulation of the same object. In the following experiments we 
concentrate on step 2 and 3 assuming step 1 is already functional. We shall not 
discuss about step 4 any longer since it is relatively more advanced with respect 
to the scope of this paper. The robot also possesses, and we are not going to 
enter much into the details here, some basic attention capabilities that allows 
selecting relevant objects in the environment and tracking them if they move, 
binocular disparity which is used to control vergence and estimate distances, 
and enough motor control abilities to reach for an object. In a typical experi-
ment, the human operator waves an object in front of the robot which reacts by 
looking at it; if the object is dropped on the table, a reaching action is initiated, 
and the robot possibly makes a contact with the object. Vision is used during 
the reaching and touching movement for guiding the robot’s flipper toward 
the object, to segment the hand from the object upon contact, and to collect 
information about the behavior of the object caused by the application of a 
certain action.

6. Learning object affordances

Since the robot does not have hands, it cannot really grasp objects from the ta-
ble. Nonetheless there are other actions that can be employed in exploring the 
physical properties of objects. Touching, poking, prodding, and sweeping form 
a nice class of actions that can be used for this purpose. The sequence of images 
acquired during reaching for the object, the moment of impact, and the effects 
of the action are measured following the approach of Fitzpatrick (Fitzpatrick, 
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2003a). An example of the quality of segmentation obtained is shown in Fig-
ure 11. Clearly, having identified the object boundaries allows measuring any 
visual feature about the object, such as color, shape, texture, etc.

Unfortunately, the interaction of the robot’s flipper (the manipulator end-
point) with objects does not result in a wide class of different affordances. In 
practice the only possibility was to employ objects that show a characteristic 
behavior depending on how they are approached. This possibility is offered 
by rolling affordances: in our experiments we used a toy car, an orange juice 
bottle, a ball, and a colored toy cube.

The robot’s motor repertoire besides reaching consists of four different 
stereotyped approach movements covering a range of directions of about 180 
degrees around the object.

The experiment consisted in presenting repetitively each of the four objects 
to the robot. During this stage also other objects were presented at random; the 
experiment ran for several days and sometimes people walked by the robot and 
managed to make it poke (and segment) the most disparate objects. The robot 
“stored” for each successful trial the result of the segmentation, the object’s 
principal axis which was selected as representative shape parameter, the action 
— initially selected randomly from the set of four approach directions —, and 
the movement of the center of mass of the object for some hundreds millisec-
onds after the impact was detected. We grouped (clustered) data belonging 
to the same object by employing a color based clustering technique similar to 
Crowley et al. (Schiele & Crowley, 2000). In fact in our experiments the toy car 
was mostly yellow in color, the ball violet, the bottle orange, etc. In different 
situations the requirements for the visual clustering might change and more 
sophisticated algorithms could be used (Fitzpatrick, 2003b).

Figure 12 shows the results of the clustering, segmentation, and examina-
tion of the object behavior procedure. We plotted here an estimation of the 
probability of observing object motion relative to the object’s own principal 
axis. Intuitively, this gives information about the rolling properties of the dif-
ferent objects: e.g. the car tends to roll along its principal axis, the bottle at 

Figure .
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right angle with respect to the axis. The training set for producing the graphs in 
Figure 12 consisted of about 100 poking actions per object. This “description” 
of objects is fine in visual terms but does not really bear any potential for action 
since it does not yet contain information about what action to take if the robot 
happens to see one of the objects.

For the purpose of generating actions a description of the geometry of 
poking is required. This can be easily obtained by collecting many samples of 
generic poking actions and estimating the average direction of displacement of 
the object. Figure 13 shows the histograms of the direction of movement aver-
aged for each possible action. About 700 samples were used to produce the four 
plots. Note, for example, that the action labeled as “backslap” (moving the ob-
ject with the flipper outward from the robot) gives consistently a visual object 
motion upward in the image plane (corresponding to the peak at −100 degrees, 
0 degrees being the direction parallel to the image x axis; the y axis pointing 
downward). A similar consideration applies to the other actions.

Having built this, the first interesting question is then whether this infor-
mation (summarized collectively in Figure 12 and Figure 13) can be re-used 
when acting to generate anything useful showing exploitation of the object af-
fordances. In fact, it is now possible to make the robot “optimally” poke (i.e. se-
lecting an action that causes maximum displacement) an observed and known 
object. In practice the same color clustering procedure is used for localizing 

Figure 2.
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and recognizing the object, to determine its orientation on the table, its affor-
dance, and finally to select the action that it is most likely to elicit the principal 
affordance (roll).

A simple qualitative test of the performance determined that out of 100 
trials the robot made 15 mistakes. Further analysis showed that 12 of the 15 
mistakes were due to poor control of reaching (e.g. the flipper touched the 
object too early bringing it outside the field of view), and only three to a wrong 
estimate of the orientation.

Although crude, this implementation shows that with little pre-existing 
structure the robot could acquire the crucial elements for building knowledge 
of objects in terms of their affordances. Given a sufficient level of abstraction, 
our implementation is close to the response of canonical neurons in F5 and 
their interaction with neurons observed in AIP that respond to object orienta-
tion (Sakata, Taira, Kusunoki, Murata, & Tanaka, 1997). Another interesting 
question is whether knowledge about object directed actions can be reused in 
interpreting observed actions performed perhaps by a human experimenter. It 
leads directly to the question of how mirror neurons can be developed from the 
interaction of canonical neurons and some additional processing.

Figure 3.
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To link with the concept of feedback from the action system, here, after 
the actual action has unfolded, the robot applied exactly the same procedure 
employed to learn the object affordances to measure the error between the 
planned and executed action. This feedback signal could then be exploited to 
incrementally update the internal model of the affordances. This feedback sig-
nal is fairly similar to the feedback signal identified in our conceptual model in 
Section 3 (Figure 6).

7. Developing mirror neurons

In answering the question of what is further required for interpreting observed 
actions, we could reason backward through the chain of causality employed 
in the previous section. Whereas the robot identified the motion of the object 
because of a certain action applied to it, here it could backtrack and derive the 
type of action from the observed motion of the object. It can further explore 
what is causing motion and learn about the concept of manipulator in a more 
general setting (Fitzpatrick & Metta, 2003).

In fact, the same segmentation procedure cited in Section 6 could visually 
interpret poking actions generated by a human as well as those generated by 
the robot. One might argue that observation could be exploited for learning 
about object affordances. This is possibly true to the extent passive vision is 
reliable and action is not required. In the architecture proposed by Demiris 
and Hayes (J. Demiris & Hayes, 2002), the authors make a distinction between 
active and passive imitation. In the former case the agent is already capable of 
imitating the observed action and recognizes it by simulating it (a set of inverse 
and forward models are simultaneously activated). In the latter case the agent 
passively observes the action and memorizes the set of postures that character-
izes it. This view is not in contrast with our approach. In Demiris and Hayes, 
in fact, the system converts the available visual information and estimates the 
posture of the demonstrator (joint angles). Learning this transformation dur-
ing ontogenesis is indeed an active process which requires access to both visual 
and proprioceptive information. The advantage of the active approach, at least 
for the robot, is that it allows controlling the amount of information impinging 
on the visual sensors by, for instance, controlling the speed and type of action. 
This strategy might be especially useful given the limitations of artificial per-
ceptual systems.

Thus, observations can be converted into interpreted actions. The action 
whose effects are closest to the observed consequences on the object (which 
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we might translate into the goal of the action) is selected as the most plausible 
interpretation given the observation. Most importantly, the interpretation re-
duces to the interpretation of the “simple” kinematics of the goal and conse-
quences of the action rather than to understanding the “complex” kinematics 
of the human manipulator. The robot understands only to the extent it has 
learned to act.

One might note that a refined model should probably include visual cues 
from the appearance of the manipulator into the interpretation process. This is 
possibly true for the case of manipulation with real hands where the configu-
ration of fingers might be important. Given our experimental setup the sole 
causal relationship was instantiated between the approach/poking direction 
and the object behavior; consequently there was not any apparent benefit in 
including additional visual cues.

The last question we propound to address is whether the robot can imitate 
the “goal” of a poking action. The step is indeed small since most of the work is 
actually in interpreting observations. Imitation was generated in the following 
by replicating the latest observed human movement with respect to the object 
and irrespective of its orientation. For example, in case the experimenter poked 
the toy car sideways, the robot imitated him/her by pushing the car sideways. 
Figure 14 shows an extended mimicry experiment with different situations 
originated by playing with a single object.

In humans there is now considerable evidence that a similar strict interac-
tion of visual and motor information is at the basis of action understanding 
at many levels, and if exchanging vision for audition, it applies unchanged to 
speech (Fadiga, Craighero, Buccino, & Rizzolatti, 2002). This implementation, 
besides serving as a sanity check to our current understanding of the mirror 
system, provides hints that learning of mirror neurons can be carried out by a 
process of autonomous development.

However, these results have to be considered at the appropriate level of 
abstraction and comparing too closely to neural structure might even be mis-
leading: simply this implementation was not meant to reproduce closely the 
neural substrate (the neural implementation) of imitation. Robotics, we be-
lieve, might serve as a reference point from which to investigate the biological 
solution to the same problem — and although it cannot provide the answers, it 
can at least suggest useful questions.
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8. Conclusions

This paper put forward a model of the functioning of the mirror system which 
considers at each stage plausible unsupervised learning mechanisms. In addi-
tion, the results from our experiments seem to confirm two facts of the pro-
posed model: first, that motor information plays a role in the recognition pro-
cess — as would be following the hypothesis of the implication of feedback 
signals into recognition — and, second, that a mirror-like representation can 
be developed autonomously on the basis of the interaction between an indi-
vidual and the environment.

Other authors have proposed biologically inspired architectures for im-
itation and learning in robotics (Y. Demiris & Johnson, 2003; Y. Demiris & 
Khadhouri, 2005; Haruno, Wolpert, & Kawato, 2001). In (J. Demiris & Hayes, 
2002) a set of forward-inverse models coupled with a selection mechanism is 
employed to control a dynamical simulation of a humanoid robot which learns 
to perform and imitate gestures. A similar architecture is employed on a planar 
robot manipulator (Simmons & Demiris, 2004) and on a mobile robot with a 
gripper (Johnson & Demiris, 2005).

Although with some differences, in all these examples the forward-inverse 
model pairs are activated both when the robot is performing a motor task and 
when the robot is attending the demonstrator. During the demonstration of an 
action, the perceptual input from the scene is fed in parallel to all the inverse 
models. In turn, the output of the inverse models is sent to the forward models 
which act as simulators (at the same time the output of the inverse models is 
inhibited, so no action is actually executed by the robot). The idea is that the 
predictions of all the forward models are compared to the next state of the 
demonstrator and the resulting error taken as a confidence measure to select 
the appropriate action for imitation. In these respects, these various imple-
mentations are very similar to the one presented in this paper. Each inverse-
forward model pair gives a hypothesis to recognize the observed action. The 
confidence measure that is accumulated during action observation can be in-
terpreted as an estimation of the probability that that hypothesis is true, given 
the perceptual input. More recently the same architecture has been extended 
to cope with the obvious differences in human versus robot morphology, and 
applied to an object manipulation task (Johnson & Demiris, 2005). In the ar-
chitecture, in this case, the set of coupled internal inverse and forward models 
are organized hierarchically, from the higher level, concerned with actions and 
goals in abstract terms, to the lower level, concerned with the motoric conse-
quences of each action.
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The MOSAIC model by Haruno, Wolpert and Kawato (Haruno, Wolpert, 
& Kawato, 2001) is also close to our model in the sense of explicitly considering 
the likelihood and priors in deciding which of the many forward-inverse pairs 
to activate for controlling the robot. In this case no explicit imitation schema is 
considered, but the context is properly accounted for by the selection mecha-
nism (a Hidden Markov Model).

Our proposal of the functioning of the mirror system includes aspects of 
both solutions by considering the forward-inverse mapping and the contribu-
tion of the contextual information. In our model, and in contrast with Demiris’ 
architecture, the goal of the action is explicitly taken into account. As we dis-
cussed in Section 2 the mirror system is activated only when a goal-directed 
action is generated or observed. Recognizing the goal is also the key aspect of 
the learning process and subsequently it works as a prior to bias recognition by 
filtering out actions that are not applicable or simply less likely to be executed, 
given the current context. This is related to what happens in the (Johnson & 
Demiris, 2005) paper where the architecture filters out the actions that can-
not be executed. In our model, however, the affordances of a given object are 
specified in terms of the probabilities of all actions that can be performed on 
the object (estimated from experience). These probabilities do not only filter 
out impossible actions, but bias the recognition toward the action that is more 
plausible given the particular object. The actions considered in this paper are 
all transitive (i.e. directed towards objects), coherently with the neurophysi-
ological view on the mirror system. In the same paper (Johnson & Demiris, 
2005), moreover, the recognition of the action is performed by comparing the 
output of the forward models to the state of the demonstrator. In our model 
this is always performed in the motor space. In the experiments reported in 
this paper we show that this simplifies the classification problem and leads to 
better generalization.

The outcome from a first set of experiments using the data set collected 
with the cyber glove setup has shown that there are at least two advantages 
whether the action classification is performed in visual rather than motor 
space: i) simpler classifier, since the classification or clustering is much simpler 
in motor space, and ii) better generalization, since motor information is invari-
ant to changes of the point of view. Some of these aspects are further discussed 
in (Lopes & Santos-Victor, 2005).
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[Figure 14 about here]

The robotic experiment shows, on the other hand, that indeed only minimal 
initial skills are required in learning a mirror neuron representation. In prac-
tice, we only had to assume reaching to guarantee interaction with objects and a 
method to visually measure the results of this interaction. Surely, this is a gross 
simplification in many respects since, for example, aspects of the development 
of grasping per se were not considered at this stage and aspects of agency were 
neglected (the robot was not measuring the posture and behavior of the hu-
man manipulator). Though, this shows that, in principle, the acquisition of the 
mirror neuron structure is the almost natural outcome of the development of 
a control system for grasping. Also, we have put forward a plausible sequence 
of learning phases involving the interaction between canonical and mirror 
neurons. This, we believe, is well in accordance with the evidence gathered by 
neurophysiology. In conclusion, we have embarked in an investigation that is 
somewhat similar to the already cited Liberman’s speech recognition attempts. 
Perhaps, also this time, the mutual rapprochement of neural and engineering 
sciences might lead to a better understanding of brain functions.
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Notes

. (Liberman & Mattingly, 1985)

2. The module of language perception.

3. In supervised learning, training information is previously labeled by an external teacher 
or a set of correct examples are available.
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Appendix I

The role of the mirror system during action recognition can be framed in a Bayesian context 
(Lopes & Santos-Victor, 2005). In the Bayesian formulation the posterior probabilities can 
be written as:

Posterior =
Likelihood × Prior

(1)
Normalization

and the classification is performed by looking at the maximum of the posterior probabilities 
with respect to the set of available actions. The normalization factor can be neglected since 
it does not influence the determination of the maximum. We equated the prior probabilities 
with the object affordances and estimated them by counting the occurrences of the grasp 
types vs. the object type. In this interpretation, in fact, the affordances of an object identify 
the set of actions that are most likely to be executed. The likelihood was approximated by a 
mixture of Gaussians whose number and parameters were estimated with the Expectation 
Maximization (EM) algorithm.
More specifically the mirror activation of F5 can be thought as:

 p(Ai | F, Ok) (2)

where Ai is the ith action from a motor repertoire of I actions, F are the features determining 
the activation of this particular action and Ok is the target object of the grasping action out 
of a set of K possible objects. This probability can be computed from Bayes rule as:

 p(Ai | F, Ok) = p(F | Ai, Ok) p(Ai | Ok) / p(F | Ok) (3)

and a classifier can be constructed by taking the maximum over the possible actions as fol-
lows:

 Â = ma
i
x p(Ai | F, Ok) (4)

The term p(F | Ok) can be discarded since it does not influence the maximization. For the 
other terms we can give the following interpretation:

p(Ai | F, Ok) Mirror neurons responses, obtained by a combination of the informa-
tion as in equation 1.

p(F | Ai, Ok) The activity of the F5 motor neurons generating certain motor patterns 
given the selected action and the target object

p(Ai | Ok) Canonical neurons responses, that is the probability of invoking a cer-
tain action given an object

The feature vector F can also be considered over a certain time period and thus we should 
apply the following substitution to equations 1 to 3:

 F = Ft, …, Ft−N (5)

which takes into account the temporal evolution of the action.

The posterior probability distribution can be estimated using a naive approach, assuming 
independence between the observations at different time instants. The justification for this 
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assumption is that recognition does not necessarily require the accurate modelling of the 
probability density functions. We have:

p(Ai | Fi, … Ft−N, Ok) =
N

∏
j=0

p(Ft−j | Ai, Ok) p(Ai | Ok)
(6)

p(Ft−j | Ok)

This clearly does not have to be close to the actual brain responses but it was considered 
since it simplifies computation if compared to the full joint probabilities.

 




	Understanding mirror neurons
	1. Introduction
	2. Physiological properties of monkey rostroventral premotor area (F5)
	2.1 Motor neurons
	2.2 Visuomotor neurons
	2.2.1 Canonical neurons
	2.2.2 Mirror neurons


	3. A model of area F5 and the mirror system
	3.1 Controller-predictor formulation
	3.2 Ontogenesis of mirror neurons

	4. A machine with hands
	5. Robotic experiment
	6. Learning object affordances
	7. Developing mirror neurons
	8. Conclusions
	Authors’ addresses
	About the authors


