Electron Beam Lithography

Marco Salerno

general lithographic concepts

- EBL extensions to SEM
- SEM imaging issues
- EBL stage motion & calibration
- EBL exposure & specific issues

Types of conventional lithography

Technical setup of EBL tools

Types of Electron Beam Columns

Typical Electron Beam Column

Zeiss Gemini[™] column

- Operating principle of the LEO 1500 series with GEMINI column. V_1 - extractor voltage at first anode V_0 - accelerator voltage at second anode
- V_B booster voltage.
- no e- cross over \rightarrow no Boersch-effect (additional energy spread)
- beam booster voltage of 8 kV for E<20 kV (+ final retardation) \rightarrow no stray field effects
- sample is not part of the column e-optics \rightarrow feels low em field (ok for e.g. magnetic samples)

good in EBL means good in SEM!

adjust alignment – astigmatism by wobbling in-out of focus

Mag = 15.05 K X WD = 7 mm EHT = 10.00 kV

Focussing - contamination dots

Source Source Source Source

side view

(far – but not too much far – from the region of exposure: 0.5-1 mm)

Fundamental rule for SEM imaging

Take always the LOW MAG images FIRST!!!

Types of coordinate systems

 ...why?
 → wrong beam movement, new calibration required stage movement

→ 4. Beam (zoom, shift, rot.)

Procedure:

 move stage so that particle appears in next corner of write field

- take small image with SEM

measure offset

→ 4. Beam (zoom, shift, rot.)

Procedure:

- move stage so that particle appears in next corner of write field
- take small image with SEM
- measure offset

Transformations

→ 4. Beam (zoom, shift, rot.)

Procedure:

 move stage so that particle appears in next corner of write field

- take small image with SEM
- measure offset
 → calculate
 rotation, zoor

Stage Movement methods

write "on-the-fly"

step & write

Writing methods

Settling and flyback time

Settling time = waiting period at beginning of each element **Flyback time** = waiting period between lines.

Flyback time = settling time × flyback factor

Different Strategies

		scan	
company	beam	mode	stage
Raith	gaussian	vector	fixed
Etec	gaussian	raster	moving
Leica	shaped		fixed

1st Strategy (Raith)

gaussian beam, vector scan, fixed stage

+ fast writing of sparse patterns (unwritten areas are skipped)
+ easy dose variation from shape to shape
- settling time &

- settling time & hysteresis
- \rightarrow calibration
- overhead time
 caused by
 stage settling

Apps: nano litho, R&D, ...

2nd Strategy (Etec)

gaussian beam, raster scan, moving stage

- + very simple
- very repeatable
- calibration possible
- sparse patterns take as long as dense patterns
- difficult to adjust dose during writing

Apps: mask making

(e.g. used by MEBES (Etec Systems Inc.))

3rd Strategy (Leica)

shaped beam, moving stage

~ Gaussian vector scan, but : an entire rectangle (up to 2x2 µm²) in a single "flash"

- + ≈ 10 x faster than
 equivalent gaussian
 beam machines
- extremely complex
 electron optical columr
- complicated calibration routines
- resolution and focus
 varies with shape size

Apps: mask making, advanced chip development

Process steps

Resist polarity

EBL resist contrast

Hurter-Driffield contrast curve (1890)

Contrast $\gamma = [\log_{10}(D_1) - \log_{10}(D_T)]^{-1}$

COP copolimero glicedil metacrilatoetil acrilato (neg.)

PMMA PoliMetil-MetAcrilato (pos.)

High contrast: + Steeper side walls

- + Greater process latitude
- + Better resolution (not always)
- + Less sensitivity to proximity effects

Low contrast: + 3d lithography

Which resist for which application?

- positive or negative: depends on which will give a minimum area to be exposed
- literature and resist suppliers for resist performance with respect to e.g. resolution, sensitivity, etching stability
- check suitability for your lab,
 e.g. required baking steps and chemicals

Forward scattering events

Properties

- very often
- small angles
- hence very inelastic
- generation of SE with a few eV

Backscattering events

Properties

- occasionally
- large angles
- hence mainly elastic
- high kinetic energy, range of the PE

What leads to an exposure?

SE with few eV kinetic energy are responsible for most of the resist exposure

Hence forward scattering within the resist is responsible for exposure

And backscattering is responsible for exposure far from incidence

Effect of Voltage on Dose

Y. Lee, W. Lee, and K. Chun 1998/9,"A new 3 D simulator for low energy (~1keV) Electron-Beam Systems"

At small kVs one should keep an eye on the penetration depth

 → resist sensitivity increases when one goes down in kV
 → can do faster exposures (but may loose resolution !)

Dose definition for different CAD elements

number of electrons $\propto T_{dwell} \times I_{beam}$

Structure size and step size

Important note:

The used exposure step size has to be fit to the structure definition in the layout!

Example:

Exposure of gratings: step size (s) does not match grating period (g)

e.g. s = 8 nm, g = 10 nm

Dose table for PMMA (950k)

	10 kV	20 kV	30 kV
Areas	100 µC/cm²	200 µC/cm²	300 µC/cm²
Lines	300 pC/cm	600 pC/cm	900 pC/cm
Dots	0.1 pC	0.2 pC	0.3 pC
		(dev	eloper: MIBK + IPA, 1::

Above values are good starting points.
Best way to get optimum results:
→ Dose Scaling:
SPL Dose Factor 0.5 – 5, (for Dots: 0.1 – 10)

Dose scaling

test structures with different Dose Factors

(or e.g. taxi-checkers)

Influence of operating parameters

	Low	High Higher resolution	
	+ Clear surface structures	+ Higher resolution	
Acceleration) + Less damage		
(penetration depth)	+ Less charge up		
	+ Less edge effect		
Aperture (I _{beam})	+ Higher resolution	+ Smooth image	
	+ Less damage (heating)	+ Good Signal to noise	
	- Grainy image	 Lower resolution 	
		 Smaller depth of focus 	
WD			
	 Smaller depth of focus 	 Lower resolution 	
	(A guide to Scanning Microscope Observation, Jeol web page 1999)		

Resolution limits

beam:

- Thick resists (forward scattering)
- Thin resists (~0.5 nm by diffraction, de Broglie wavelength)
- SE range (5-10 nm)

resist:

- Polymer size (5-10 nm)
- Chemically Amplified Resists (acid diffusion ~50 nm)

In practice, best achievable resolution: in polymer resists ~ 20 nm (in inorganic resists, currently impractical, ~ 5 nm)

(Mark A. McCord, <u>Introduction to Electron-Beam Lithography</u>, Short Course Notes Microlithography 1999, SPIE's International Symposium on Microlithography 14-19 March, 1999; p.63)

What is possible ?

Ultra high resolution in PMMA (45 nm thickness): 16 nm line width <u>(in resist)</u>

Design must be adapted to dose

Johannes Kretz, Infineon, Munich

Proximity effect

e trajectories for:

- 1.5 µm thick resist on Si wafer
- 50 trajectories, 25 keV beam energy

(Kyser, Viswanathan, "Monte Carlo simulation of spatially distributed beams in EBL", J. Vac. Sci. Technol. 12(6), 1305 ('75))

Proximity Effect Correction software

Conclusions

- still a Top-down approach
- planar technique: possibly repeated, but no real 3-D outcome
- carries all limitations of SEM: slow, invasive, need vacuum, problems with insulators, ...
- ok for research, prototyping, R&D,
 not for mass production