Motor control learning and modular control architectures

Francesco Nori

Italian Institute of Technology, Genova, ITALY Robotics Brain and Cognitive Sciences Department, (former) member of LIRA-Lab

Giorgio Metta

IIT, Genova ITALY Robotics Brain and Cognitive Sciences Department

University of Genova, ITALY

Lorenzo Natale

Giulio Sandini IIT, Genova, ITALY

Robotics Brain and Cognitive Sciences Department

ent Robotics Brain and Cognitive Sciences Department

Internal Model and its Complexity (1/2)

1. **Experimental Evidence:** the central nervous system (CNS) uses and updates **internal models**. E.g. the dynamic internal model approximates limb *dynamics*:

desired movement $\xrightarrow{\text{internal model}}$ motor command

2. **Experimental Evidence:** the internal model develops (on the basis of past experience), learns new movements and adapts (to new contingencies).

Human arm:

- Number of muscles \geq 21,
- Number of degrees of freedom = 7,

Human hand:

- \bullet Number of muscles \sim 40,
- \bullet Number of degrees of freedom \sim 25,

Note: Very high complexity!

Internal Model and its Complexity (2/2)

Which are the 'building blocks' of the internal model?

"Look-up-table" (Raibert): Although simplified the table grows exponentially with the number of DOF!

(Mussa-Ivaldi and Bizzi, 2000): A limited number of motor commands that can be generalized to more complex ones.

Internal Model and its Complexity (2/2)

Which are the 'building blocks' of the internal model?

"Look-up-table" (Raibert): Although simplified the table grows exponentially with the number of DOF!

(Mussa-Ivaldi and Bizzi, 2000): A limited number of motor commands that can be generalized to more complex ones.

- Experimental evidence:
 - adaptive kinematic internal model (Flanagan& Rao, 1995).
 - adaptive dynamical internal model (Shadmehr & al., 1994).
 - independence of kinematic and dynamic model (Krakauer & Wolpert, 1999).
 - spinal fields (Mussa-Ivaldi & Bizzi, 2000).
 - composability of kinematic internal models (Gaharmani & Wolpert, 1997).
 - composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - synthesis of motion primitives.
 - adaptability of the motion primitives.

• Experimental evidence:

- adaptive kinematic internal model (Flanagan& Rao, 1995).
- adaptive dynamical internal model (Shadmehr & al., 1994).
- independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
- spinal fields (Mussa-Ivaldi & Bizzi, 2000).
- composability of kinematic internal models (Gaharmani & Wolpert, 1997).
- composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - **synthesis** of motion primitives.
 - adaptability of the motion primitives.

Kinematic internal model (Flanagan& Rao, 1995)

Unperturbed space (cartesian)

before learning

after learning

Perturbed space (perceived)

before learning

Before learning perturbation causes a distortion in the perceived space. The old internal kinematic model produces a wrong prediction.

After learning perturbation is compensated in the perceived space. An evident pertubation appears in the cartesian (non-perceived) space.

60

40

20

• Experimental evidence:

- adaptive kinematic internal model (Flanagan& Rao, 1995).
- adaptive dynamical internal model (Shadmehr & al., 1994).
- independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
- spinal fields (Mussa-Ivaldi & Bizzi, 2000).
- composability of kinematic internal models (Gaharmani & Wolpert, 1997).
- composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - synthesis of motion primitives.
 - adaptability of the motion primitives.

Dynamic internal model (Shadmehr & al., 1994)

Hand path is modified if we change the dynamics of the controlled system.

After learning perturbation is compensated. The presence of an evident after effect support the idea that a new internal model has been learnt (see also Milner & Cloutier, 1994).

Generalization and adaptability (Shadmehr & al., 1994)

 2^{nd} IIT school, robotic week, 22 - 25 January 2008

• Experimental evidence:

- adaptive kinematic internal model (Flanagan& Rao, 1995).
- adaptive dynamical internal model (Shadmehr & al., 1994).
- independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
- spinal fields (Mussa-Ivaldi & Bizzi, 2000).
- composability of kinematic internal models (Gaharmani & Wolpert, 1997).
- composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - **synthesis** of motion primitives.
 - adaptability of the motion primitives.

Independent learning of kinematic and dynamic internal models (Krakauer & al., 1999)

Independent learning of kinematic and dynamic internal models (Scheidt & al., 2000)

Observation: The dynamical model after effects disappear even if kinematic errors are prevented from occuring.

in

an

by

• Experimental evidence:

- adaptive kinematic internal model (Flanagan& Rao, 1995).
- adaptive dynamical internal model (Shadmehr & al., 1994).
- independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
- spinal fields (Mussa-Ivaldi & Bizzi, 2000).
- composability of kinematic internal models (Gaharmani & Wolpert, 1997).
- composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - **synthesis** of motion primitives.
 - adaptability of the motion primitives.

Control actions are organized in (linearly combinable) primitives.

Set of primitives \leftrightarrow Vocabulary Primitives \leftrightarrow Words Movements \leftrightarrow Sentences

1. generates only a finite number of different force fields (called spinal fields);

2. each spinal field has a unique equilibrium point in the workspace.

Modulating the same field and composing two fields

How can a finite number of force fields generate a wide range of movements?

A very simple syntax: fields can be literally added!

• Experimental evidence:

- adaptive kinematic internal model (Flanagan& Rao, 1995).
- adaptive dynamical internal model (Shadmehr & al., 1994).
- independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
- spinal fields (Mussa-Ivaldi & Bizzi, 2000).
- composability of kinematic internal models (Gaharmani & Wolpert, 1997).
- composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - **synthesis** of motion primitives.
 - adaptability of the motion primitives.

Composability of kinematic internal models (Gaharmani & Wolpert, 1997)

 2^{nd} IIT school, robotic week, 22 - 25 January 2008

• Experimental evidence:

- adaptive kinematic internal model (Flanagan& Rao, 1995).
- adaptive dynamical internal model (Shadmehr & al., 1994).
- independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
- spinal fields (Mussa-Ivaldi & Bizzi, 2000).
- composability of kinematic internal models (Gaharmani & Wolpert, 1997).
- composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - **synthesis** of motion primitives.
 - adaptability of the motion primitives.

Composability dynamic internal models (Davidson & Wolpert, 2004)

 2^{nd} IIT school, robotic week, 22 - 25 January 2008

- Experimental evidence:
 - adaptive kinematic internal model (Flanagan& Rao, 1995).
 - adaptive dynamical internal model (Shadmehr & al., 1994).
 - independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
 - spinal fields (Mussa-Ivaldi & Bizzi, 2000).
 - composability of kinematic internal models (Gaharmani & Wolpert, 1997).
 - **composability** of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - **synthesis** of motion primitives.
 - adaptability of the motion primitives.

Modelling the Spinal Fields as Motion Primitives

• Model of a limb:

$$\overline{M\ddot{\mathbf{q}} + C\dot{\mathbf{q}} + N} = \mathbf{u},$$
$$\mathbf{x} = \begin{bmatrix} \mathbf{q} \\ \dot{\mathbf{q}} \end{bmatrix}, \quad \mathbf{y} = h(\mathbf{q})$$

• Model of the spinal field paradigm:

 Φ^k makes the system converge to \mathbf{x}_f^k

- Experimental evidence:
 - adaptive kinematic internal model (Flanagan& Rao, 1995).
 - adaptive dynamical internal model (Shadmehr & al., 1994).
 - independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
 - spinal fields (Mussa-Ivaldi & Bizzi, 2000).
 - composability of kinematic internal models (Gaharmani & Wolpert, 1997).
 - composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - synthesis of motion primitives.
 - adaptability of the motion primitives.

Reformulation in a Control Theoretical framework

$$\begin{array}{l} \mbox{Admissible } \mathbf{u} = \sum_{k} \underbrace{\lambda_{k}}_{\text{New Inputs}} \cdot \underbrace{\Phi^{k}(\mathbf{x}, t)}_{\text{Motion Primitives}} \end{array} \implies \hline \mbox{Controllability may be lost!} \end{array}$$

Find a vocabulary for preserving output controllability.

Find $\{\Phi^1, \ldots, \Phi^K\}$ such that, given any reachable output configuration \mathbf{y}_f , there exists a time invariant $\lambda(\mathbf{y}_f) = \{\lambda_1, \ldots, \lambda_K\}$ that drives the system to \mathbf{y}_f .

 2^{nd} IIT school, robotic week, 22 - 25 January 2008

Solution of the synthesis problem

We proposed (Nori at al., Biol. Cyb. 2005) a solution to the synthesis problem for **input to output feedback linearizable** systems. Interestingly, 'fully actuated' systems are within this class.

• Feedback linearize the given system:

$$\mathbf{u} = \alpha(\mathbf{x})\mathbf{v} + \beta(\mathbf{x}).$$

• Using the superposition principle solve the synthesis problem for the linearized system:

$$\phi^1(\mathbf{x},t)\dots\phi^K(\mathbf{x},t) \qquad \lambda(\cdot).$$

• Transform the linearized solution into a solution for the nonlinear system:

$$\Phi^1(\mathbf{x},t)\ldots\Phi^K(\mathbf{x},t) \qquad \lambda(\cdot),$$

where:

$$\Phi^k(\mathbf{x},t) = \alpha(\mathbf{x})\phi^k(\mathbf{x},t) + \beta(\mathbf{x}).$$

The number of motion primitives is related to the complexity of the system. The more motion primitives we have, the more complex the system will be.

Given a kinematic chain with n degrees of freedom, the minimum number of motion primitives (necessary to preserve the system controllability) is n + 1.

Given a set of tasks described by a p dimensional space (manifold), the minimum number of motion primitives (necessary to perform all the tasks in the set) is p + 1.

p = 2: two-dimensional workspace

p + 1 = 3: minimum number of primitives (EP's should not be collinear)

 2^{nd} IIT school, robotic week, 22 - 25 January 2008

Qualitative Comparison with Experimental Data

Using the proposed paradigm we can subdivide the "minimum jerk" paradigm into a finite number of motion primitives.

- Experimental evidence:
 - adaptive kinematic internal model (Flanagan& Rao, 1995).
 - adaptive dynamical internal model (Shadmehr & al., 1994).
 - independence of kinematic and dynamical models (Krakauer & Wolpert, 1999).
 - spinal fields (Mussa-Ivaldi & Bizzi, 2000).
 - composability of kinematic internal models (Gaharmani & Wolpert, 1997).
 - composability of dynamical internal models (Davidson & Wolpert, 2004).
- Modelling the experimental evidence:
 - a formal definition of spinal fields as motion primitives.
 - synthesis of motion primitives.
 - adaptability of the motion primitives.

Adaptation to dynamical changes (1/3)

During everyday life dynamics we experience different dynamical contexts:

$$\mathbf{p} \triangleq \begin{bmatrix} \underbrace{m_1}_{\text{mass}} & \underbrace{I_1}_{\text{inertia}} & \underbrace{\mathbf{c}_1}_{\text{c.o.m. position}} & \dots & m_n & I_n & \mathbf{l}_n & \mathbf{c}_n \end{bmatrix}$$

Find a vocabulary for adapting to different dynamics.

Find $\{\Phi^1, \ldots, \Phi^K\}$ such that, given any reachable output configuration \mathbf{y}_f , there exists a time invariant $\lambda(\mathbf{y}_f, \mathbf{p}) = \{\lambda_1, \ldots, \lambda_K\}$ that drives the system with dynamical parameters \mathbf{p} to \mathbf{y}_f .

 2^{nd} IIT school, robotic week, 22 - 25 January 2008

Adaptation to dynamical changes (2/3)

$$\mathbf{u} = \sum_{k,j} \lambda_k(\mathbf{y}_f) \mu_j(\mathbf{p}) \Phi^{k,j}(\mathbf{x},t).$$

where $\Phi^{1,j}(\mathbf{x},t)$, ..., $\Phi^{K,j}(\mathbf{x},t)$ is a solution for a dynamic context \mathbf{p}^j .

Dynamic and kinematic have been separated:

Adaptation to dynamical changes (3/3)

The on-line adaptation rule is given by:

$$\frac{d\mu_j}{dt} = -\mathbf{e}^{\top}(t) \left[\sum_k \lambda_k(\mathbf{y}_f) \Phi^{k,j}(\mathbf{x},t) \right].$$

The stability of the above control structure can be proven using standard adaptive control tools.

Recombination of learned experiences

Suppose that a couple of objects is known, i.e. we know the coefficients that describe their dynamics:

If an unknown third object can be interpreted as the combination of two known objects, then its dynamics can be represented as follows:

Recombination of learned experiences: experiments

We tested the combination hypothesis on James.

Context	Training set MSE	Testing set MSE	Combnators
\mathbf{p}_1	0.5392	0.6086	$\mu_1 \ldots \mu_J$
\mathbf{p}_2	0.5082	0.5638	$\mu_1 \ \ldots \ \mu_J$
$\mathbf{p}_{1\&2}$	0.6143	0.5770	$\mu_1 \ \ldots \ \mu_J$
$p_1 + p_2$	-	0.7458	$\mu_1 + \mu_1 \ldots \mu_J + \mu_J$

 2^{nd} IIT school, robotic week, 22 - 25 January 2008

Future works on James

We will implement the adaptive motion primitives paradigm in the DSP boards of our humanoid robot James. The idea is to give James a representation of its own dynamics (and of held objects) in terms of the spinal field mixing coefficients and not in terms of classical parameters (masses, inertias, link lengths, etc.).

Conclusions

Conclusions:

- Machine learning provides tools for learning from experience thus mimicking human adaptive capabilities.
- Humans do not only learn. They also generalize previous experience in a smart way. Modern robots barely show this capability.
- There is experimental evidence supporting the idea that biological sensory motor systems are organized into modular structures.
- Modularity is potentially a way to generalize previously learnt experience.

Future Works:

- Investigating the potentialities of modular structures.
- Understanding more on human learning.
- Develop mathematical tools to compare human and machine learning.