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Internal Model and its Complexity (1/2)

1. Experimental Evidence: the central nervous system (CNS) uses and updates
internal models. E.g. the dynamic internal model approximates limb dynamics:

desired movement
internal model−→ motor command

2. Experimental Evidence: the internal model develops (on the basis of past ex-
perience), learns new movements and adapts (to new contingencies).

Human arm:

• Number of muscles ≥ 21,

• Number of degrees of free-
dom = 7,

Human hand:

• Number of muscles ∼ 40,

• Number of degrees of free-
dom ∼ 25,

Note: Very high complexity!
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Internal Model and its Complexity (2/2)

Which are the ‘building blocks’ of the internal model?
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“Look-up-table” (Raibert): Although
simplified the table grows exponentially
with the number of DOF!
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(Mussa-Ivaldi and Bizzi, 2000): A
limited number of motor commands that
can be generalized to more complex ones.
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Outline of the Talk

• Experimental evidence:

- adaptive kinematic internal model (Flanagan& Rao, 1995).

- adaptive dynamical internal model (Shadmehr & al., 1994).

- independence of kinematic and dynamic model (Krakauer & Wolpert, 1999).

- spinal fields (Mussa-Ivaldi & Bizzi, 2000).

- composability of kinematic internal models (Gaharmani & Wolpert, 1997).

- composability of dynamical internal models (Davidson & Wolpert, 2004).

• Modelling the experimental evidence:

- a formal definition of spinal fields as motion primitives.

- synthesis of motion primitives.

- adaptability of the motion primitives.
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Kinematic internal model (Flanagan& Rao, 1995)

Unperturbed space Perturbed space
(cartesian) (perceived)

Before learning perturbation
causes a distortion in the
perceived space. The old in-
ternal kinematic model pro-
duces a wrong prediction.

before learning before learning

After learning perturbation
is compensated in the
perceived space. An evident
pertubation appears in the
cartesian (non-perceived)
space.

after learning after learning
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Dynamic internal model (Shadmehr & al., 1994)

Hand path is modified if
we change the dynamics
of the controlled system.

Normal conditions Perturbed conditions
After learning pertur-
bation is compensated.
The presence of an evi-
dent after effect support
the idea that a new in-
ternal model has been
learnt (see also Milner &
Cloutier, 1994).

Learned perturbation After effect
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Generalization and adaptability (Shadmehr & al., 1994)

The after effect has been observed even
outside the training region. Therefore,
adaptation of the internal model is (to
a certain extent) generalized outside
the explored workspace. The inter-
nal model is non-local!

Training VS generalization

Normal conditions Training Transferred after effect
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Independent learning of kinematic and dynamic internal mod-
els (Krakauer & al., 1999)

Kinematic per-
turbation: 30o

field of view CCW
rotation

Dynamic per-
turbation: 1.5
kg mass added to
the forearm

Kinematic learn-
ing is influenced
by a different
kinematic learn-
ing but it is not
influenced by
dynamic learning.
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Independent learning of kinematic and dynamic internal mod-
els (Scheidt & al., 2000)

Hand path Handle forces
Subjects were
asked to perform
an horizontal
movement in
presence of an
orthogonal force
field. After-
effects were
kinematically
prevented by
a mechanical
guide.

Observation: The dynamical model after effects disappear even if kinematic errors
are prevented from occuring.
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Spinal Fields: E. Bizzi, F.A. Mussa-Ivaldi, S. Giszter

Control actions are organized in (linearly combinable) primitives.

Set of primitives ↔ Vocabulary Primitives ↔ Words Movements ↔ Sentences

EP1
EP2

EP3
EP4

1. generates only a finite number of different force fields (called spinal fields);

2. each spinal field has a unique equilibrium point in the workspace.
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Modulating the same field and composing two fields

How can a finite number of force fields generate a wide range of movements?

(1) Stimulating the same field with differ-
ent intensities modifies the amplitude of
the elicited field.

EP EP

(2) Stimulation of two fields lead to
their vectorial summation.

Simultaneous stimulation

EP1

EP2

EP1+2

A very simple syntax: fields can be literally added!
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Composability of kinematic internal models (Gaharmani &
Wolpert, 1997)

Control Perturbation

Two different
kinematic mod-
els have to be
visually learnt.

After visual
learning per-
turbation is
(blindly) gener-
alized gradually
shifting be-
tween the
learnt models.
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Composability dynamic internal models (Davidson & Wolpert,
2004)

New objects Composition of known obj.

When lifting unknown
objects a dynamical
model is learnt.

When lifting (for
the first time) com-
positions of known
objects, the internal
model is already
there.
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Modelling the Spinal Fields as Motion Primitives

•Model of a limb:

M q̈ +Cq̇ +N = u,

x =

[
q
q̇

]
, y = h(q)

qm

um

F

q2

u2
u1

q1

•Model of the spinal field paradigm:

···

···

Time invariant

combinators

Elementary

Control Actions

u y

x

λ1

λK

u =

K∑
k=1

λk︸︷︷︸
mixing coeff

· Φk(x, t)︸ ︷︷ ︸
Motion Primitives

Φk makes the system converge to xkf
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Reformulation in a Control Theoretical framework

Admissible
Controls

u =
∑
k

λk︸︷︷︸
New Inputs

· Φk(x, t)︸ ︷︷ ︸
Motion Primitives

=⇒ Controllability may be lost!

Find a vocabulary for preserving output controllability.

Find {Φ1, . . . ,ΦK} such that, given any reachable output configuration yf , there
exists a time invariant λ(yf) = {λ1, . . . , λK} that drives the system to yf .
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Solution of the synthesis problem

We proposed (Nori at al., Biol. Cyb. 2005) a solution to the synthesis problem for
input to output feedback linearizable systems. Interestingly, ‘fully actuated’
systems are within this class.

• Feedback linearize the given system:

u = α(x)v + β(x).

• Using the superposition principle solve the synthesis problem for the linearized sys-
tem:

φ1(x, t) . . . φK(x, t) λ(·).

• Transform the linearized solution into a solution for the nonlinear system:

Φ1(x, t) . . .ΦK(x, t) λ(·),

where:
Φk(x, t) = α(x)φk(x, t) + β(x).
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Minimum number of Motion Primitives

The number of motion primitives is related to the complexity of the system. The
more motion primitives we have, the more complex the system will be.

Given a kinematic chain with n degrees of freedom, the minimum number of
motion primitives (necessary to preserve the system controllability) is n + 1.

Given a set of tasks described by a p dimensional space (manifold), the minimum
number of motion primitives (necessary to perform all the tasks in the set) is p + 1.

Workspace

EP1

EP2

EP3

p = 2: two-dimensional workspace

p + 1 = 3: minimum number of
primitives (EP ’s should not be collinear)
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Qualitative Comparison with Experimental Data

Using the proposed paradigm we can subdivide the “minimum
jerk” paradigm into a finite number of motion primitives.
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Adaptation to dynamical changes (1/3)

During everyday life dynamics we experience different dynamical contexts:

p ,

[
m1︸︷︷︸
mass

I1︸︷︷︸
inertia

c1︸︷︷︸
c.o.m. position

. . . mn In ln cn
]>

Find a vocabulary for adapting to different dynamics.

Find {Φ1, . . . ,ΦK} such that, given any reachable output configuration yf , there
exists a time invariant λ(yf ,p) = {λ1, . . . , λK} that drives the system with
dynamical parameters p to yf .
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Adaptation to dynamical changes (2/3)

u =
∑
k,j

λk(yf)µj(p)Φk,j(x, t).

where Φ1,j(x, t), . . . , ΦK,j(x, t) is a solution for a dynamic context pj.

Dynamic and kinematic have been separated:
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Adaptation to dynamical changes (3/3)

The on-line adaptation rule is given by:

dµj
dt

= −e>(t)

[∑
k

λk(yf)Φk,j(x, t)

]
.

The stability of the above control structure can be proven using standard adaptive control tools.
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Recombination of learned experiences

Suppose that a couple of objects is known, i.e. we know the coefficients that describe their dynamics:

If an unknown third object can be interpreted as the combination of two known objects, then its dynamics

can be represented as follows:
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Recombination of learned experiences: experiments

We tested the combination hypothesis on James.

Context Training set MSE Testing set MSE Combnators

p1 0.5392 0.6086 µ1 . . . µJ
p2 0.5082 0.5638 µ1 . . . µJ

p1&2 0.6143 0.5770 µ1 . . . µJ
p1 + p2 - 0.7458 µ1 + µ1 . . . µJ + µJ
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Future works on James

We will implement the adaptive motion primitives paradigm in the DSP boards of our
humanoid robot James. The idea is to give James a representation of its own dynamics
(and of held objects) in terms of the spinal field mixing coefficients and not in terms
of classical parameters (masses, inertias, link lengths, etc. ).
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Conclusions

Conclusions:

• Machine learning provides tools for learning from experience thus mimicking human
adaptive capabilities.

• Humans do not only learn. They also generalize previous experience in a smart way.
Modern robots barely show this capability.

• There is experimental evidence supporting the idea that biological sensory motor
systems are organized into modular structures.

• Modularity is potentially a way to generalize previously learnt experience.

Future Works:

• Investigating the potentialities of modular structures.

• Understanding more on human learning.

• Develop mathematical tools to compare human and machine learning.
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